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Abstract
Graph representation learning has achieved great
success in many areas, including e-commerce,
chemistry, biology, etc. However, the fundamen-
tal problem of choosing the appropriate dimen-
sion of node embedding for a given graph still re-
mains unsolved. The commonly used strategies
for Node Embedding Dimension Selection (NEDS)
based on grid search or empirical knowledge suf-
fer from heavy computation and poor model per-
formance. In this paper, we revisit NEDS from the
perspective of minimum entropy principle. Sub-
sequently, we propose a novel Minimum Graph
Entropy (MinGE) algorithm for NEDS with graph
data. To be specific, MinGE considers both feature
entropy and structure entropy on graphs, which are
carefully designed according to the characteristics
of the rich information in them. The feature en-
tropy, which assumes the embeddings of adjacent
nodes to be more similar, connects node features
and link topology on graphs. The structure entropy
takes the normalized degree as basic unit to fur-
ther measure the higher-order structure of graphs.
Based on them, we design MinGE to directly cal-
culate the ideal node embedding dimension for any
graph. Finally, comprehensive experiments with
popular Graph Neural Networks (GNNs) on bench-
mark datasets demonstrate the effectiveness and
generalizability of our proposed MinGE.

1 Introduction
In recent years, Graph Neural Networks (GNNs) [Wu et al.,
2020; Xie et al., 2020] have attracted tremendous attention
from both research and industry, due to its powerful represen-
tation capability for large amounts of graph structured data in
practice, e.g., social networks, citation networks, road net-
works. GNNs are mostly used to compute distributed node
representations (a.k.a. embeddings), as dense vectors, which
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Figure 1: The overview of MinGE. The graph entropy considers
both feature entropy and structure entropy to guide NEDS for a given
graph. The feature entropy connects node features and link topology
on graphs, while the structure entropy further measures the higher-
order structure of graphs.

serves as the key to various downstream tasks in graph related
applications [Peng et al., 2019; Sun et al., 2021]. The dimen-
sion of node embedding, as a crucial hyperparameter, has
a significant influence on the performance of GNNs. First,
node embeddings with too small dimensions limit the infor-
mation expressiveness of nodes, whereas those with too large
dimensions suffer from overfitting. Second, the number of
parameters of GNNs that build on node embeddings is usually
a linear or quadratic function of node embedding dimension,
which directly affects model complexity and computational
efficiency [Yin and Shen, 2018].

However, we often have no idea towards the appropri-
ate dimension of node embedding and have to rely on grid
search or domain knowledge to adjust it as a model hy-
perparameter given a new graph. These approaches of-
ten suffer from the following problems: 1) Choosing node
embedding dimension by empirical experience can easily
lead to poor model performances. 2) Experimental strate-
gies such as grid search are resource-consuming and time-
consuming. This raises the questions of what is the appro-
priate dimension of node embedding for given graphs and
what should we base on to choose such dimension? Re-
cently, several researchers [Liu et al., 2020; Zhu et al., 2018;
Shen et al., 2020] have attempt to tackle these problems



through dimensionality reduction. However, these methods
focus on choosing important features or using complex ma-
trix transformation to reduce from a large dimension instead
of direct selection based on the graph. Moreover, different
from sequence and image data, graph data contains rich link
topology. The general dimensionality reduction methods only
consider node features but ignore it for GNNs, which results
in loss of useful information.

In this paper, inspired by recent dimension selection
works [Yin and Shen, 2018; Hung and Yamanishi, 2020] in
Natural Language Processing (NLP), we revisit NEDS from
the perspective of minimum entropy principle [Zhu et al.,
1997]. Specifically, entropy is a natural way to measure the
uncertainty of the dimension, the principle of minimum en-
tropy motivates us to choose an ideal node embedding di-
mension for any given graphs by minimizing the uncertainty
of the graph. As shown in Fig. 1, we design a novel graph
entropy that contains feature entropy and structure entropy
to account for the information regarding both node features
and link structures on graphs. Subsequently, we propose a
novel Minimum Graph Entropy (MinGE) algorithm1 to di-
rectly select an appropriate node embedding dimension for
a given graph through minimizing the graph entropy. As a
consequence, MinGE leads to appropriate NEDS without the
need of additional domain knowledge, and is obviously more
efficient than grid search.

The main contributions of this paper are summarized as
follows: (1) We stress the importance of direct NEDS for
GNNs on arbitrary graphs and revisit it from an intuitive per-
spective based on the principle of minimum entropy. (2) We
develop the MinGE algorithm based on our novel design of
graph entropy to enable direct NEDS, which considers the
rich feature and structure information on graphs. (3) Exper-
imental results with several popular GNNs such as GCN,
GAT, and GCNII over node classification and link predic-
tion tasks on benchmark datasets demonstrate the effective-
ness and generalizability of our proposed MinGE algorithm.

2 Related Work
Dimension Selection. How to choose the appropriate em-
bedding dimension is always an open and challenging prob-
lem for deep learning. In NLP, motivated by the unitary-
invariance of word embedding, [Yin and Shen, 2018] pro-
posed the pairwise inner product loss to measure the dis-
similarities between word embeddings. Inspired by the this
work, [Wang, 2019] proposed a fast and reliable method
based on Principle Components Analysis (PCA) to choose the
dimension of word embedding, which use grid search to re-
duce the complexity of the algorithm. By rethinking the clas-
sical skip-gram algorithm, [Hung and Yamanishi, 2020] pro-
posed a novel information criteria-based method to select the
dimension of word embedding, and gave a theoretical anal-
ysis from the perspective of probability theory. Similarly, in
Computer Vision (CV), researchers also try to reduce the rep-
resentation dimensionality by sampling operation on the in-
put data [Luo et al., 2020]. In graph mining, existing work

1https://github.com/RingBDStack/MinGE

about embedding dimension selection is based on dimension-
ality reduction to select important features. Many previous di-
mensionality reduction algorithms are based on a predefined
graph, however, there are noise and redundant information in
original data. [Xiong et al., 2017] proposed the linear mani-
fold regularization with adaptive graph to directly incorporate
the graph construction into the objective function to solve the
problem. Similarly, [Liu et al., 2020] proposed the termed
discriminative sparse embedding to learn a sparse weight ma-
trix to reduce the effects of redundant information and noise
of original data. In order to avoid choosing the dimension
that is outliers, [Zhu et al., 2018] proposed a robust graph
dimensionality reduction algorithm to map high-dimension
data into lower-dimensional intrinsic space by a transforma-
tion matrix. Although there are amounts of fantastic work
for dimension selection. However, these methods focus on
studying how to choose important features to reduce the di-
mensionality instead of direct selection based on the graph.
Moreover, these methods ignore the rich link structures of
graph data in dimensionality reduction, which results in loss
of information.

Structure Entropy. The conception of structure entropy
originate from the research of [Shannon, 1953], who estab-
lish the structural theory of information to support the analy-
sis of communication system. Subsequently, a large number
of methods are proposed about understanding the complexity
of networks. [Mowshowitz and Dehmer, 2012] proposed the
entropy of graph to measure the entropy of the distribution
p(G) at the global level. Besides, there were some meth-
ods to measure the structure entropy of nodes. [Raychaud-
hury et al., 1984] first proposed the local measure of graph
entropy, which is distance-based. Some extension works
such as parametric graph entropy [Dehmer, 2008], Gibbs en-
tropy [Bianconi, 2009], Shannon entropy, and Von Neumann
entropy [Braunstein et al., 2006] designed the structure in-
formation measurement of the network from different angles.
Furthermore, [Li and Pan, 2016] first proposed the metric for
structure information and defined the K-dimensional struc-
ture information of the graph, which can not only detect the
natural or true structure but also can measure the complexity
of dynamic evolving networks.

So far, there is still no effective solution to directly select an
appropriate node embedding dimension for any given graph.
Therefore, in this paper, we revisit the NEDS from the per-
spective of minimum entropy principle. Based on it, we de-
sign a novel MinGE algorithm that contains feature entropy
and structure entropy for direct NEDS.

3 Methodology
In this section, we first introduce the basic notations used in
this paper. Then we present the overall framework of our
minimum graph entropy approach MinGE, followed by the
detail of how to calculate the feature entropy and the structure
entropy for graph data with rich link structures.

3.1 Notation
Suppose we are given an undirected graph G = (V,E,A),
where V denotes the node set of the graph, E denotes the



set of edges, and A ∈ RN×N denotes the adjacency matrix
with the element A[i, j] = A[j, i] indicating whether edge
(vi, vj) in E. N is the number of nodes. The link structures
can be presented by the first-order adjacency matrix A and
the second-order adjacency matrix A2. The adjacency matrix
after normalization is denoted as Ar. Similarly, the second-
order adjacency matrix after normalization is denote as A2

r .
The degrees of all nodes are represented by a vector D ∈
R1×N , and the normalized degree is Dr.

3.2 Graph Entropy
Information entropy proposed by Shannon [Shannon, 1948]
is a measure of information uncertainty, which is defined as:

H = −
n∑
i

PilogPi, (1)

where H denotes the entropy, Pi is the probability of event
i, n is the number of events. It indicates that, the smaller
the entropy, the lower information uncertainty, which equally
means the more useful information. However, using single in-
formation entropy to measure graph data with rich link struc-
tures is brittle. Therefore, in this paper, we propose a novel
graph entropy to consider both rich node features and link
structures on graphs, which is defined as:

Hg = Hf + λHs, (2)

where Hg represents graph entropy, Hf and Hs represents
feature entropy and structure entropy respectively. λ is a hy-
perparameter that controls the ratio of structure entropy for
NEDS. In the following, we will discuss how to define Hf

and Hs in detail. Especially for the feature entropy Hf , it
establishes the connection between dimension n and graph
entropy. The structure entropy further search the ideal node
embedding dimension. Finally, we can directly calculate the
appropriate node embedding dimension n by setting Hg = 0.
Feature Entropy. Information entropy measures the uncer-
tainty of information. The core of information entropy is how
to define the basic unit of events. For graph data, we design
a novel feature entropy as shown in Fig. 1. Based on the as-
sumption that the node embeddings of adjacent nodes to be
more similar, we use node embedding dot product of node
pairs as the basic unit and the probability is defined as:

P (vi, vj) =
e〈vi,vj〉∑
i,j e
〈vi,vj〉

, (3)

where vi and vj are the corresponding node embedding, 〈·, ·〉
is the dot product operation. For brevity, we denote Z =∑
i,j e
〈vi,vj〉. The feature entropy of graph data is defined as:

Hf = −
∑
ij

P (vi, vj)logP (vi, vj)

= −
∑
ij

e〈vi,vj〉

Z
log

e〈vi,vj〉

Z

= logZ − 1

Z

∑
ij

e〈vi,vj〉〈vi, vj〉. (4)

To calculate Eq. (4), we approximate the sum operation with
sampling, which is defined as:

Z =
∑
ij

e〈vi,vj〉 = N2 1

N2

∑
ij

e〈vi,vj〉

≈ N2Evi,vj (e〈vi,vj〉),

(5)

∑
ij

e〈vi,vj〉〈vi, vj〉 = N2 1

N2

∑
ij

e〈vi,vj〉〈vi, vj〉

= N2Evi,vj (e〈vi,vj〉〈vi, vj〉),
(6)

where E is the expectation operation. Plugging the approxi-
mate expressions from Eqs. (5) and (6) into Eq. (4), we can
calculate the feature entropy by

Hf =logZ − 1

Z

∑
ij

e〈vi,vj〉〈vi, vj〉

=logN2 + logEvi,vj (e〈vi,vj〉)−
Evi,vj (e〈vi,vj〉〈vi, vj〉)

Evi,vj (e〈vi,vj〉)
.

(7)
However, 〈vi, vj〉 is hard to calculate directly in Eq. (7). In
the experiments of graph representation learning, we observe
that the absolute value distribution of the values of each di-
mension is uniform. Therefore, we assume that the absolute
value of each element is 1, which is called the distributed hy-
pothesis [Sahlgren, 2008]. Furthermore, to calculate 〈vi, vj〉,
we map node embeddings to the n-dimensional hyper-sphere
with radius

√
n. Then, 〈vi, vj〉 = n ∗ cosθ [Li et al., 2020],

where θ is the angle between any two vectors, and it connects
the node embedding dimension n with entropy. Next, the
probability distribution of the angle θ between two random
vectors in the n-dimensional hyper-sphere is needed to keep
n as the only variable. Because of the isotropy, we only need
to consider the unit vector. Besides, we only need to fix one
of the vectors and consider the random change of the other
vector. Therefore, we set the n-dimensional random vector
x = (x1, x2, · · · , xn), the fixed vector is y = (1, 0, · · · , 0).
Converting x to hyper-sphere coordinates is defined as:

x1 = r ∗ cos(ϕ1)
x2 = r ∗ sin(ϕ1)cos(ϕ2)

...
xn−1 = r ∗ sin(ϕ1)sin(ϕ2) · · · sin(ϕn−2)cos(ϕn−1)
xn = r ∗ sin(ϕ1)sin(ϕ1) · · · sin(ϕn−2)sin(ϕn−1),

(8)
where r =

√
x21 + x22 + · · ·+ x2n = 1 is a radial coordinate,

ϕn−1 ∈ [0, 2π), others ϕ ∈ [0, π]. Note that ‖x‖ = 1 and
‖y‖ = 1, therefore the angle between x and y is

arccos(
xT y

‖x‖‖y‖
) = arccos(cos(ϕ1)) = ϕ1. (9)

where arccos is the inverse cosine (arccosine) function.
Eq. (9) shows that the angle between x and y is ϕ1. In par-
ticular, the probability of the angle between x and y that does
not exceed θ is

P (ϕ1 ≤ θ) =
Γ(n2 )

Γ(n−12 )
√
π

∫ θ

0

sinn−2ϕ1d(ϕ1). (10)



The probability density of θ is denoted (following [Henderson
and Moura, 1996]) by

Pn(θ) =
Γ(n2 )

Γ(n−12 )
√
π
sinn−2θ. (11)

Therefore, plugging the probability density from Eq. (11) to
Eq. (7), the feature entropy is updated by

Hf = logN2 + logE(encosθ))− E(encosθncosθ)

E(encosθ)
, (12)

where the calculation of the expectation operation is

E(encosθncosθ) =

∫ π

0

encosθncosθPn(θ)dθ, (13)

E(encosθ) =

∫ π

0

encosθPn(θ)dθ. (14)

Structure Entropy. Structure entropy measures the com-
plexity of networks, which is original from the Shannon’s
1953 question [Jr., 2003]. For graph data, we design a novel
structure entropy to measure the information of link struc-
tures as shown in Fig. 1. The structure entropy uses normal-
ized node degree as basic unit to further search the ideal di-
mension, which considers two-hop neighbors. First, given a
graph with the adjacency matrix A that contains first-order
link structures, the second-order adjacency matrix is defined
as A2 = ATA to measure the second-order link structures.
At the same time, the degree vector D is generated by the ad-
jacency matrix A. Second, the normalized degree vector Dr,
which contains first-order and second-order link structures,
can be defined as:

Dr = DTA2
r, (15)

where A2
r represents the normalized second-order adjacency

matrix defined as:

A2
r[i, j] =

A2[i, j]∑
j A

2[i, j]
, (16)

where A2[i, j] is the value of the i-th row and j-th column
of the second-order adjacency matrix A2. Following the
paradigm of information entropy, the structure entropy with
the normalized degree of nodes as a unit event is defined as:

Hs = −
N∑
i

PilogPi = −
∑
i

Dr[i]∑
iDr[i]

log(
Dr[i]∑
iDr[i]

),

(17)

where Dr[i], calculated by Eq. (14), is the normalized degree
of node i. Therefore, the graph entropy is defined as:

Hg = Hf + λHs (18)

= logN2 + log

∫ π

0

encosθPn(θ)dθ

−
∫ π
0
encosθncosθPn(θ)dθ∫ π
0
encosθPn(θ)dθ

− λ
∑
i

Dr[i]∑
iDr[i]

log(
Dr[i]∑
iDr[i]

).

Algorithm 1: MinGE
Input: Graph G(V,E,A); Hyperparameter λ;
Output: The ideal node embedding dimension n for

the graph G
1 Initialize A2 ←− ATA;
2 Calculate A2

r ←− Eq. (16);
3 Estimate the feature Entropy by Hf ←− Eq. (7);
4 Calculate Dr ←− Eq. (15);
5 Calculate the structure entropy by Hs ←− Eq. (17);
6 Calculate the graph entropy by Hg ←− Eq. (18);
7 Obtain the ideal node embedding dimension
n←− Hg = 0.

Algorithm. We summarize the whole process of MinGE in
Algorithm 1. To be specific, we first perform sampling to
approximate the sum operation and map the node embedding
to the n-dimensional hyper-sphere with radius

√
n to estimate

the feature entropyHf by Eq. (7) and (12). Then we calculate
the structure entropy Hs by Eq. (17) based on the normalized
degree vector in Eq. (15). Finally, according to the minimum
entropy principle [Zhu et al., 1997], we can get the ideal node
embedding dimension n by setting Hg = 0. The calculated
dimension n is taken as the ideal embedding dimension that
can carry all information of node features and link structures.

Time complexity analysis. In theory the time complexity
of MinGE is O(n2), due to matrix multiplication. However,
graphs are usually sparse in practice, and we optimize MinGE
with sparse matrix computations, which results in rather effi-
cient computation much less than O(n2) in practice (as ana-
lyzed in Fig. 3).

4 Experiments

Dataset Cora Citeseer Pubmed Airport
# Nodes 2708 3327 19717 3188
# Edges 5429 4732 44338 18631

# Features 1433 3703 4500 4
# Classes 7 6 3 4

# Validation
Node

500 500 500 500

# Test Nodes 1000 1000 1000 1000

Table 1: Summary of datasets used in our experiments.

In this section, we conduct extensive experiments on
benchmark datasets to demonstrate the effectiveness and gen-
eralizability of the proposed MinGE for GNN methods.

4.1 Experimental Settings
Datasets. In our experiments, we choose the most authori-
tative benchmark datasets, Cora, Citeseer, Pubmed proposed
by [Sen et al., 2008] and Airport [Chami et al., 2019]. More
details of the datasets are shown in Table 1. We conduct
node classification and link prediction on above benchmark
datasets, and evaluate the performance of our MinGE.



Task Node Classification
Dataset Cora Citeseer
Dim. 20 40 60 80 Apt (98) 120 140 160 180 20 40 60 80 Apt (101) 120 140 160 180
MLP 54.5 59.8 57.3 57.3 60.6 59.3 58.3 58.2 60.0 58.8 60.0 59.7 59.2 60.3 60.0 58.5 59.2 59.3
GCN 82.5 83.2 83.1 83.1 83.5 82.6 83.0 82.9 82.8 64.7 66.2 67.0 67.2 67.4 67.6 67.0 67.4 67.2
GAT 82.9 83.9 82.4 83.1 84.3 82.8 83.9 80.4 82.8 68.9 69.5 68.5 67.9 69.6 69.4 69.4 68.6 69.1

GCNII 83.9 84.3 84.8 84.3 85.1 85.0 84.6 83.9 84.6 72.4 72.6 72.4 72.4 73.5 72.0 72.9 72.3 71.4
Dataset Pubmed Airport
Dim. 20 40 60 80 100 Apt (123) 140 160 180 20 40 60 80 Apt (100) 120 140 160 180
MLP 71.1 72.3 71.5 72.8 72.5 74.5 72.9 73.3 72.5 50.2 48.6 45.7 47.7 54.1 53.6 51.2 52.6 52.0
GCN 78.0 78.2 77.5 78.8 78.4 79.2 79.0 79.2 77.9 63.6 63.9 64.3 64.8 65.8 64.9 64.0 64.4 64.2
GAT 77.4 77.5 78.9 77.5 77.6 79.6 79.1 77.8 78.5 65.3 64 65.9 63.9 67.9 67.8 65.1 66.8 67.3

GCNII 78.6 78.8 79.5 80.0 79.5 80.5 80.0 79.8 79.7 65.5 67.9 64.1 68.8 70.4 68.9 67.1 69.2 68.6
Task Link Prediction

Dataset Cora Citeseer
Dim. 20 40 60 80 Apt (98) 120 140 160 180 20 40 60 80 Apt (101) 120 140 160 180
MLP 85.8 88.3 88.1 90.3 90.7 89.8 90.4 89.1 90.0 90.1 90.2 90.3 91.9 92.5 91.3 91.6 91.8 92.2
GCN 87.6 90.4 91.3 90.5 92.6 92.1 92.4 87.6 87.7 90.6 91.9 92.7 92.9 95.4 94.7 94.5 94.4 95.4
GAT 91.1 93.4 92.8 93.5 94.4 94.1 94.3 93.7 94.2 96.5 97.2 97.1 97.5 97.7 97.5 97.3 97.5 97.4

GCNII 94.1 95.8 95.7 96.1 96.6 96.4 96.2 95.9 96.2 98.9 99.2 99.3 99.5 99.7 99.8 99.5 99.5 99.6
Dataset Pubmed Airport
Dim. 20 40 60 80 100 Apt (123) 140 160 180 20 40 60 80 Apt (100) 120 140 160 180
MLP 85.2 90.8 91.0 92.3 92.4 92.6 92.4 92.3 91.9 89.6 89.8 89.6 89.9 90.2 89.9 89.4 89.9 89.8
GCN 90.3 93.1 93.8 93.4 93.7 94.1 93.7 94.0 93.9 89.1 91.8 92.9 92.0 93.2 92.6 92.6 93.1 92.8
GAT 87.0 89.9 91.2 90.9 90.8 92.7 90.8 90.9 92.5 91.8 92.6 92.5 92.9 92.9 92.8 92.7 92.7 92.6

GCNII 95.4 97.6 98 98.1 98.3 98.5 98.5 98.4 98.2 92.5 93.0 93.1 93.5 93.8 93.7 93.5 93.6 92.8

Table 2: Performance on node classification and link prediction. Apt denotes the appropriate dimensions calculated by MinGE.

GNNs. We validate the effectiveness and generalizability
of MinGE on most popular models, including Multi-Layer
Perception (MLP), Graph Convolution Network (GCN) [Kipf
and Welling, 2017], Graph Attention network (GAT) [Velick-
ovic et al., 2018] and Graph Convolution Network via Initial
residual and Identity mapping (GCNII) [Chen et al., 2020].

Protocols. For node classification task, following the exper-
iment setting of GAT [Velickovic et al., 2018], only 20 sam-
ples per class are allowed for training. We further choose 80,
140 per class for Cora, Citeseer and Airport, and 2000, 3000
per class for Pubmed to crop the data set at different scales
and postpone the index to divide the validation set with 500
and a test set with 1000. For link prediction task, we ran-
domly split the edges with a ratio of 85%, 5%, and 10% for
training, validation and test sets. For both tasks, comparative
experiments are constructed by setting dimension interval to
20 for GNNs. Early stopping strategy is used on validation
set with a patience of 100 epoches for all experiments. All
results are the average of 10 times. Furthermore, experiments
are conducted to validate the efficiency of MinGE.

Hyperparameters. MinGE has only one hyperparameter λ
to control the ratio of the structure entropy. We set λ = 1
in experiments and analysis it in Section 4.2. The values of
node embedding dimension calculated by the MinGE algo-
rithm are 98, 101, 123, 100 for Cora, Citeseer, Pubmed and
Airport separately. Where these dimensions are the size of
the last layer of GNNs representation model. In practice, we
set hidden as a hyperparemeter to control the dimension size.

For other hyperparameters, we follow the settings in the orig-
inal text for most models, which are considered to be optimal.
However, because of the differences between the datasets, we
also make corresponding adjustments. For the MLP model,
the optimizer is Adam with learning rate is 0.01 and weight
decay is 0.0005, epoch is 250, drop out is 0.5. For GAT and
GCN models, we fully keep the default settings. For GCNII
model, the hyperparameters partly follow the default settings
and early stopping strategy. The differences are that the learn-
ing rate is 0.008 for Cora, the lamda is 0.3 for Citeseer, the
dropout is 0.5 and lamda is 0.4 for pubmed, and layer is 16
for all datasets.

4.2 Results and Analysis
Performance on node classification and link prediction.
For node classification and link prediction tasks, the results of
GNNs with different dimensions on benchmark datasets are
shown in Table 2. Where Apt denotes the appropriate dimen-
sion calculated by the MinGE in all Tables. From Table 2,
by comparing with other dimensions, we can see that GNNs
with the appropriate dimension selected from MinGE achieve
the best or near the best performance. Besides, from the per-
spective of overall trend, we can see that it always locates in
the peak area of the result change curve. Moreover, we also
compare with the experimental results of GCN, GAT, GCNII
models in the original texts. We find that GNNs with MinGE
can improve 2%, 1.3%, 1.6% on Cora and 0.6%, 0.6%, 0.2%
on Pubmed respectively. The above experimental results ver-
ify the effectiveness and generalizability of MinGE in guid-
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(c) GAT on Cora.
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(d) GCNII on Cora.
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(e) MLP on Citeseer.
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(f) GCN on Citeseer.
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(g) GAT on Citeseer.
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(h) GCNII on Citeseer.
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(i) MLP on Pubmed.
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(j) GCN on Pubmed.
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(k) GAT on Pubmed.
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(l) GCNII on Pubmed.
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(m) MLP on Airport.
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(n) GCN on Airport.
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(o) GAT on Airport.

20 40 Def(64) 80 Apt(100)120 140 160 180
Hidden Dimension

75

76

77

78

79

A
c
c
u
r
a
c
y
(
%
)

75.3

76.9

76.3
76.1 76.7

77.2
77.6

76.9
77.2

77.5

78.1

77.3
77.7

75.2

76.1

77.3
77.0

76.7

GCNII-80 GCNII-140

(p) GCNII on Airport.

Figure 2: Node classification accuracy with different dimensions. Numbers like 80 and 140 in the legends denote the numbers of samples sep-
arately selected per class in the training set. The yellow inverted triangles denote the performance of GNNs with the appropriate dimensions
selected by MinGE and the blue ones denote that with default dimensions mentioned in the original papers (MLP has no default dimension).

ing the NEDS for GNNs on different tasks and GNN models.
The main reason is that around an appropriate dimension for
a GNN model, the lower node embedding dimension is hard
to cover all information due to the limitation of expression
capacity, and the higher one tends to overfit the training data
due to the excessive model complexity. In order to search an
appropriate dimension for each model of each task, MinGE
leverages the both feature entropy and structure entropy to
measure the node features and link structures in the graph for
NEDS, which leads to better performance.

Furthermore, in order to eliminate the influence of un-
even data distribution and further verify the genralizability
of MinGE, we conduct experiments on benchmark datasets
cropped at different scales. The performance of GNNs with
80, 140 samples per class for Cora, Citeseer and Airport sep-

arately and 2000, 3000 samples per class for Pubmed are
shown in Fig. 2. Where Apt denotes the ideal dimension
selected by MinGE, and Def denotes the default dimension
mentioned in original paper. According to the results, it is
obvious that the performance of GNNs with the appropriate
dimension selected by MinGE always locate in the peak cen-
ter of the accuracy curves, and the accuracy of each model has
been greatly improved as the training set increases. Further-
more, compared with GNNs with default dimension, GNNs
with the ideal dimension all achieve better performance. The
experimental results are in line with the conclusions verified
in Table 2, which indicates generalizability of MinGE.

Memory Efficiency. GCNII is the current state-of-the-art
model that can achieve better performance with deeper neu-



Layers 2 4 8 16 2 4 8 16
Dim. Def Def Def Def Apt Apt Apt Apt
Cora 80.2 82.3 82.8 83.5 82.5 83.0 83.9 85.1

Citeseer 66.1 67.9 70.6 72.0 72.1 72.7 73.2 73.5
Pubmed 77.7 78.2 78.8 80.3 79.7 79.9 80.0 80.5
Airport 64.1 64.3 65.0 66.7 66.5 67.8 69.2 70.4

Table 3: Node classification accuracy with varying numbers of GNN
(GCNII) layers.

ral networks, as shown in Table 3. However, deeper network
spends more memory and time during model training. Com-
pared with the node dimension by default in original paper,
MinGE can find an appropriate dimension for GCNII with
different numbers of layers. In such a case, GCNII with
MinGE can use fewer layers but achieve similar or better per-
formance to a deeper GCNII with the node dimension by de-
fault setting. For example, the performance of GCNII with 16
layers and the node dimension by default is worse than GC-
NII with two layers and an appropriate dimension selected by
MinGE on Citeseer. In summary, by using MinGE, GCNII
can choose fewer layers to achieve good performance while
memory limitation becomes crucial.

Time Efficiency. Considering fairness, we conduct exper-
iments to compare the time that MinGE runs once with that
GNNs run once. Fig. 3 shows the running time of MinGE
and GNN methods. From these results, we can observe
that MinGE costs much less runtime compared with training
GNNs. It turns out our approach adds almost no additional
computational overhead and is more efficient for an appro-
priate embedding dimension selection through MinGE. Note
that, our approach only requires the runtime of MinGE with
a single execution of different GNNs here, while finding a
good dimension by grid search needs to run the GNNs multi-
ple times, so as to cost more computational burden and time.

Hyperparameter Analysis. In our MinGE algorithm, there
is only one hyperparameter λ, which controls the weight
of structure entropy. The structure entropy provides addi-
tional help to the feature entropy. In order to determine the
weight of the strcture entorpy, we use GCN to analyze λ on
benchmark datasets. All dimensions calculated by MinGE
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Figure 3: Running time of MinGE compared with GNNs.

Dataset Cora Citeseer
λ 0.1 0.5 1 2 0.1 0.5 1 2

Dim 69 82 98 131 71 84 101 134
GCN 82.6 83.2 83.5 83.2 67.2 67.4 67.4 67.6

Dataset Pubmed Airport
λ 0.1 0.5 1 2 0.1 0.5 1 2

Dim 86 102 123 164 71 84 100 133
GCN 78.8 78.4 79.2 79.1 64.5 64.7 65.8 64.3

Table 4: Node classification accuracy with varying hyper-
parameters.

are rounded up. From Table 4, it is not hard to see that the
structure entropy is often equally important as the feature en-
tropy for NEDS in general. Therefore, we can simply set λ
to 1 by default given an arbitrary graph. We also observe that
the graph entropy with λ = 0.1, which can be considered as
feature entropy alone, can give pretty good results. Adding
structure entropy with different weights can further improve
the performance but with slight variance compared with ex-
perimental results as shown in Table 2.

5 Conclusion
In this paper, we revisit Node Embedding Dimension Selec-
tion (NEDS) for graph data from the perspective of mini-
mum entropy principle. We proposed MinGE, a novel algo-
rithm that combines well-designed feature entropy and struc-
ture entropy, to guide the NEDS for GNNs and addressed the
challenge of how to directly select the appropriate node em-
bedding dimension for graph data. We focused on MinGE
that can maximize node information and structure informa-
tion for appropriate NEDS by using minimum entropy prin-
ciple. Moreover, to the best of our knowledge, MinGE is the
first study that applies minimum entropy theory to NEDS of
graph data. In practice, with this theory, we discovered the ef-
fectiveness and generalizability of our MinGE algorithm for
popular GNNs. All of our discoveries were concretely vali-
dated on benchmark datasets.
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