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Abstract. In recent decades, Electronic Health Records (EHRs) have become in-
creasingly useful to support clinical decision-making and healthcare. EHRs usually
contain heterogeneous information, such as structural data in tabular form and un-
structured data in textual notes. Different types of information in EHRs can com-
plement each other and provide a comprehensive picture of a patient’s health status.
While there has been a lot of research on the representation learning of structured
EHR data, the fusion of different types of EHR data (multimodal fusion) is not well
studied. This is mostly because of the complex medical coding systems and the noise
and redundancy in the written notes. In this work, we propose a new framework
called MINGLE, which effectively integrates both structures and semantics in
EHR. Our framework uses a two-level infusion strategy to combine medical concept
semantics and clinical note semantics into hypergraph neural networks, which learn
the complex interactions between different types of data to generate visit representa-
tions for downstream prediction. Experiment results on two EHR datasets, the public
MIMIC-III and private CRADLE, show that MINGLE can effectively improve
predictive performance by 11.83% relatively, enhancing semantic integration as well
as multimodal fusion for structural and textual EHR data.
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1. Introduction

Electronic Health Records (EHRs) are widely used in healthcare and comprise heteroge-
neous data, including tabular records and clinical notes. Tabular records contain individual
visits and are composed of a set of medical concepts like diagnoses and medications.
Clinical notes are long documents written by healthcare providers containing detailed
information such as patient history, clinical findings, and laboratory test results.

Previous research has focused on modeling structured EHR data for predictive pur-
poses [1], typically using traditional machine learning (ML) models. However, this ap-
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proach overlooks complex interactions and does not capture hidden structures within the
data. To address this, graph neural networks (GNNs) [2, 3] and hypergraph models [4]
have been introduced to better capture interactions among visits and medical codes. In this
study, we aim to integrate structured EHR data with textual data, combining structures
and semantics using medical knowledge from LLMs. We focus on two types of textual
information: medical code concept names and clinical notes. Integrating these presents
challenges due to the diversity of coding systems (e.g., ICD-10, CPT, SNOMED) and the
errors or irrelevant information often found in clinical notes.
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Figure 1.: Our framework MINGLE.

Integrating the semantics from medi-
cal concepts and clinical notes is crucial for
accurate patient record modeling. Recent
advances in LLMs offer new opportunities
for this integration. We explore LLMs to
generate semantic embeddings of medical
concepts and fuse them with structural in-
formation to enhance visit-level reasoning.
We propose MINGLE, a multimodal EHR
fusion framework that integrates structures
and semantics from clinical records and
notes, as shown in Figure 1. Our approach
uses a hypergraph neural network as the

backbone and infuses medical concept semantics and clinical notes semantics into the
structural modeling process with a two-level semantics infusion strategy and LLMs. Ex-
periment results on two EHR datasets demonstrate that MINGLE effectively enriches
the representation of patient information. The joint modeling leverages the power of
hypergraph GNNs to model complex relationships and harnesses the domain knowledge
in LLMs and their strengths in natural language understanding.

2. Preliminaries

Hypergraph modeling for multimodal EHR data. EHR includes structured clinical
records and unstructured clinical notes. The structured records are tabular, with each row
representing a patient visit and columns for medical codes. Prior work [4] transforms EHR
data into a hypergraph, where each visit is modeled as a hyperedge E connecting nodes V
corresponding to medical codes. This hypergraph G = (V,E) captures interactions among
visits and codes, enabling more effective downstream predictive modeling.
Risk prediction. Given a multimodal EHR dataset D= {T ,N}, T = {Tp}P

p=1 represents
the structured patient record that include P rows of individual patient visits, and Np
represents the corresponding clinical notes to each visit. Our method trains a predictive
model that makes a clinical prediction for each given p-th visit Dp = {Tp,Np}.

3. Method

Two textual semantics resources exist in the multimodal EHR dataset - the concept names
of medical codes in tabular data and clinical notes. To infuse semantics into the structural
learning of hypergraph modeling, we propose a two-level strategy, as illustrated below.
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3.1. Infusing Medical Concept Semantics into the Structural Modeling of EHR data
We utilize the Deep Walk algorithm [5] to learn a structural latent representation sssv ∈ Rd1

for each node v in the hypergraph. This is particularly useful in the EHR modeling task,
as edges are sparse. To model the medical codes from different coding systems in a
unified way, we map the original code v to the corresponding concept name cv, then utilize
GPT text-embedding-ada-002 model to generate a semantic embedding cccv ∈ Rd2 ,
which contains clinical knowledge and context background from LLMs. Different ways to
combine network-based and knowledge-based encoding are investigated, and the simple
concatenation achieves the best performance. Specifically, the node embedding XXX (0)

v is
initialized as the concatenation of both the structural feature SSSv and the semantic feature
CCCv of the nodes in the hypergraph,

XXX (0)
v = [SSSv;CCCv].

These fused node embeddings are utilized as the node feature initialization of the message-
passing process, which induces the initial hyperedge embedding.
3.2. Infusing Clinical Note Semantics into the Structural Modeling of EHR data
In MINGLE, for each individual patient visit record Tp (correspond to a hyperedge e ∈ E),
we match the corresponding discharge summary Np and filter irrelevant sections such
as admission dates, services, etc. A document representation nnnp is generated for each
discharge summary Np with the GPT embedding model, resulting in a corpus semantic
matrix NNNe across all visits. In order to further incorporate fine-grained semantics, we treat
single nodes as additional hyperedges in the hypergraph by adding a self-loop on each
node. The overall hyperedge semantics embeddings HHHe is then the combination of the
corpus semantic matrix NNNe and the medical concept semantic matrix CCCv:

HHHe = MLP1

([
NNNe
CCCv

])
.

This leads to an enhancement of the central node semantics during its update from
connected hyperedges, which also helps to establish a soft collaboration between fine-
grained concept semantics and coarse-grained document semantics. Finally, we improve
the hyperedge representation updating rule as below:

EEE(l)
e = MLP2([ fV→E

(
Ve,XXX(l−1)

)
;HHHe]).

The hyperedge embeddings HHHe are incorporated into each message passing layer with the
aggregated information from connected nodes, to update the hyperedge representation.

4. Experiments

Datasets. We have performed experiments on two clinical prediction datasets, MIMIC-III
and CRADLE. The CRADLE dataset was collected from a large healthcare system in
the United States. The MIMIC-III [6] dataset contains 36,875 visits in all, represented
by 7423 medical codes, with 12,353 visits being labeled. The CRADLE dataset contains
36,611 visits with 12,725 codes. We divided them into a train, a validation, and a test set
in the ratio of 7:1:2. As natural notes are not included in the CRADLE dataset, we convert
individual visits into natural language through textualization.

Tasks. We perform phenotyping prediction on MIMIC-III [6], predicting the presence
of 25 care conditions in patients’ next visits [7], given their current ICU records. On the
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Table 1. Performance (100%) on MIMIC-III and CRADLE compared with different baselines. The result
is averaged over 5 runs. We use * to indicate statistically significant results (p < 0.05). Bold and underlined
indicate the best and second-runner results.

Model
MIMIC-III CRADLE

ACC AUROC AUPR F1 ACC AUROC AUPR F1

LR 68.66 ± 0.24 64.62 ± 0.25 45.63 ± 0.32 13.74 ± 0.40 76.22 ± 0.30 57.22 ± 0.28 25.99 ± 0.26 42.18 ± 0.35
SVM 72.02 ± 0.12 55.10 ± 0.14 34.19 ± 0.17 32.35 ± 0.21 68.57 ± 0.13 53.57 ± 0.11 23.50 ± 0.15 52.34 ± 0.22
MLP 70.73 ± 0.24 71.20 ± 0.22 52.14 ± 0.23 16.39 ± 0.30 77.02 ± 0.17 63.89 ± 0.18 33.28 ± 0.23 45.16 ± 0.26

GCT 76.58 ± 0.23 78.62 ± 0.21 63.99 ± 0.27 35.48 ± 0.34 77.26 ± 0.22 67.08 ± 0.19 35.90 ± 0.20 56.66 ± 0.25
GAT 76.75 ± 0.26 78.89 ± 0.12 66.22 ± 0.29 34.88 ± 0.33 77.82 ± 0.20 66.55 ± 0.27 36.06 ± 0.18 56.43 ± 0.26

HGNN 77.93 ± 0.41 80.12 ± 0.30 68.38 ± 0.24 40.04 ± 0.35 76.77 ± 0.24 67.21 ± 0.25 37.93 ± 0.18 58.05 ± 0.23
HyperGCN 78.01 ± 0.23 80.34 ± 0.15 67.68 ± 0.16 39.29 ± 0.20 78.18 ± 0.11 67.83 ± 0.18 38.28 ± 0.19 60.24 ± 0.21
HCHA 78.07 ± 0.28 80.42 ± 0.17 68.56 ± 0.15 37.78 ± 0.22 78.60 ± 0.15 68.05 ± 0.17 39.23 ± 0.13 59.26 ± 0.21
HypEHR 79.07 ± 0.31 82.19 ± 0.13 71.08 ± 0.17 41.51 ± 0.25 79.76 ± 0.18 70.07 ± 0.13 40.92 ± 0.12 61.23 ± 0.18

MINGLE 80.17 ± 0.08∗ 83.54 ± 0.06∗ 72.50 ± 0.07∗ 46.26 ± 0.61∗ 78.87 ± 0.48 73.01 ± 0.06∗ 45.76 ± 0.13∗ 63.49 ± 0.49∗
MINGLE w/o Medical Concept Semantics 79.08 ± 0.18 82.37 ± 0.14∗ 70.98 ± 0.26 41.83 ± 1.89 80.07 ± 0.38∗ 72.49 ± 0.26∗ 44.63 ± 0.24∗ 60.62 ± 1.53
MINGLE w/o Clinical Note Semantics 79.77 ± 0.33∗ 83.14 ± 0.18∗ 72.02 ± 0.32∗ 45.69 ± 2.68∗ 75.39 ± 1.34 70.83 ± 0.62∗ 43.90 ± 0.90∗ 63.19 ± 0.60∗

CRADLE dataset, the task aims to determine if patients diagnosed with type 2 diabetes
will experience cardiovascular disease (CVD) endpoints within a year of their diagnosis.
CVD endpoint is defined by the presence of coronary heart disease (CHD), congestive
heart failure (CHF), myocardial infarction (MI), or stroke.
Baselines. We compare MINGLE with several baselines: (1) Non-graph ML Models.
Logistic Regression (LR), SVM, and MLP. (2) GNN Baselines. In graph-based methods,
the graph is constructed based on pair-wise relations among medical codes: an edge
is created between two codes if they co-occur in the same visit. We choose GCT [3]
and GAT [8]. (3) Hypergraph Models. These baselines are tested using the same hyper-
graph structure as MINGLE but with various neural network architectures. We include
HGNN [9], HyperGCN [10], HCHA [11], and HypEHR [4].

5. Results

The results of MINGLE compared to baseline models on two EHR datasets are shown
in Table 1. MINGLE outperforms baselines across four metrics on the MIMIC-III
dataset, excelling in F1 score. On the CRADLE dataset, it improves AUROC and AUPR,
demonstrating effectiveness in handling unbalanced datasets. A slight accuracy drop
may result from better classification of minority classes. We conducted ablation and
hyperparameter studies to analyze the model’s components and configurations. The
ablation study (Table 1, last two rows) highlights the importance of medical concept
semantics, whose removal causes a significant performance drop. Clinical note semantics
have less impact, likely due to challenges with noisy document representation.
Case study. We present two case studies on MIMIC-III Cardiac Dysrhythmias phenotype
prediction (Figure 2) to highlight differences in important medical node selection between
MINGLE and the baseline, based on attention weights in the self-attention mechanism.

Important Codes by HypEHR
• Disease: Bulbus cordis anomalies and 

anomalies of cardiac septal closure, 
Other rheumatic heart disease

• Prescription: Carvedilol, Warfarin, 
Zolpidem Tartrate, Nitroprusside 
Sodium, Oxycodone-Acetaminophen, 
Aspirin, Furosemide 

• Procedure: Heart aneurysm excision 

Important Codes by MINGLE
• Disease: Cardiomyopathy, Essential 

hypertension, Heart failure, Cardiac 
dysrhythmias, Diseases of mitral valve

• Prescription: Carvedilol, Insulin, 
Zolpidem Tartrate, Nitroprusside 
Sodium, Diphenhydramine HCl, 
Losartan Potassium, Atorvastatin

Common Codes by HypEHR & MINGLE 
• Disease: Complications peculiar to certain specified procedures
• Procedure: Rad dissec thorac struct

Additional Info by MINGLE  from Clinical Note
PAST MEDICAL HISTORY: …… heart failure with a negative stress test .....
HOSPITAL COURSE: …… the patient did well until postoperative day one when he 
developed a hypertension with rapid atrial fibrillation ……
MEDICATIONS ON DISCHARGE: …… Percocet p.o. q.4-6h ……Case 1 Case 2

Figure 2. Case studies on important codes identified by HypEHR and MINGLE. Blue shows common ones,
while Red highlights additional information identified by MINGLE.

⋆ Case 1. Both HypEHR and MINGLE identified key codes like Carvedilol, Nitro-
prusside Sodium, and Zolpidem Tartrate, which are relevant to Dysrhythmias. However,
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MINGLE uniquely identified diseases related to cardiac function, such as Heart Failure,
Cardiomyopathy, and Cardiac Dysrhythmias, demonstrating its ability to incorporate
medical concept semantics for deeper clinical insights.
⋆ Case 2. MINGLE utilized clinical notes for additional context. For example, the
patient’s past medical history showed heart failure near admission, and the hospital
course noted rapid atrial fibrillation and hypertension. The medication Percocet, known
for cardiovascular effects, added further insight. By combining clinical notes with EHR
data, MINGLE provided a more comprehensive patient profile.

6. Conclusion and Discussion

We propose a framework called MINGLE, which is designed to combine structured
EHR and clinical notes using a two-level semantic infusion strategy. The framework
uses a hypergraph model and additional semantic information from LLMs to enable the
joint learning of complex interactions among medical codes and patient visits. Results
demonstrate the benefits of integration, particularly the concept name semantics.
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[8] Petar Veličković and et al. Graph attention networks. In ICLR, 2018.
[9] Yifan Feng and et al. Hypergraph neural networks. In AAAI, volume 33, pages

3558–3565, 2019.
[10] Naganand Yadati and et al. Hypergcn: A new method for training graph convolutional

networks on hypergraphs. NeurIPS, 2019.
[11] Song Bai and et al. Hypergraph convolution and hypergraph attention. Pattern

Recognition, 110:107637, 2021.


