Multimodal Fusion of EHR in *Structures* and *Semantics*: Integrating Clinical Records and Notes with Hypergraph and LLM

Hejie CUI^{a*}, Xinyu FANG^{b*}, Ran XU^b, Xuan KAN^b, Joyce C. HO^b and Carl YANG^{b,1}

^a Center for Biomedical Informatics Research, Stanford University ^b Department of Computer Science, Emory University

Abstract. In recent decades, Electronic Health Records (EHRs) have become increasingly useful to support clinical decision-making and healthcare. EHRs usually contain heterogeneous information, such as structural data in tabular form and unstructured data in textual notes. Different types of information in EHRs can complement each other and provide a comprehensive picture of a patient's health status. While there has been a lot of research on the representation learning of structured EHR data, the fusion of different types of EHR data (multimodal fusion) is not well studied. This is mostly because of the complex medical coding systems and the noise and redundancy in the written notes. In this work, we propose a new framework called MINGLE, which effectively integrates both structures and semantics in EHR. Our framework uses a two-level infusion strategy to combine medical concept semantics and clinical note semantics into hypergraph neural networks, which learn the complex interactions between different types of data to generate visit representations for downstream prediction. Experiment results on two EHR datasets, the public MIMIC-III and private CRADLE, show that MINGLE can effectively improve predictive performance by 11.83% relatively, enhancing semantic integration as well as multimodal fusion for structural and textual EHR data.

Keywords. Electronic Health Record, Clinical Note, Multimodal Fusion, LLMs

1. Introduction

Electronic Health Records (EHRs) are widely used in healthcare and comprise heterogeneous data, including tabular records and clinical notes. Tabular records contain individual visits and are composed of a set of medical concepts like diagnoses and medications. Clinical notes are long documents written by healthcare providers containing detailed information such as patient history, clinical findings, and laboratory test results.

Previous research has focused on modeling structured EHR data for predictive purposes [1], typically using traditional machine learning (ML) models. However, this ap-

¹Corresponding Author: Carl Yang, j.carlyang@emory.edu.

proach overlooks complex interactions and does not capture hidden structures within the data. To address this, graph neural networks (GNNs) [2, 3] and hypergraph models [4] have been introduced to better capture interactions among visits and medical codes. In this study, we aim to integrate structured EHR data with textual data, combining structures and semantics using medical knowledge from LLMs. We focus on two types of textual information: medical code concept names and clinical notes. Integrating these presents challenges due to the diversity of coding systems (e.g., ICD-10, CPT, SNOMED) and the errors or irrelevant information often found in clinical notes.

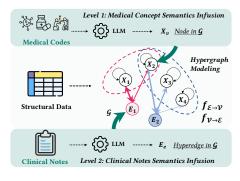


Figure 1.: Our framework MINGLE.

Integrating the semantics from medical concepts and clinical notes is crucial for accurate patient record modeling. Recent advances in LLMs offer new opportunities for this integration. We explore LLMs to generate semantic embeddings of medical concepts and fuse them with structural information to enhance visit-level reasoning. We propose **MINGLE**, a multimodal EHR fusion framework that integrates structures and semantics from clinical records and notes, as shown in Figure 1. Our approach uses a hypergraph neural network as the

backbone and infuses *medical concept semantics* and *clinical notes semantics* into the structural modeling process with a two-level semantics infusion strategy and LLMs. Experiment results on two EHR datasets demonstrate that **MINGLE** effectively enriches the representation of patient information. The joint modeling leverages the power of hypergraph GNNs to model complex relationships and harnesses the domain knowledge in LLMs and their strengths in natural language understanding.

2. Preliminaries

Hypergraph modeling for multimodal EHR data. EHR includes structured clinical records and unstructured clinical notes. The structured records are tabular, with each row representing a patient visit and columns for medical codes. Prior work [4] transforms EHR data into a hypergraph, where each visit is modeled as a hyperedge \mathcal{E} connecting nodes \mathcal{V} corresponding to medical codes. This hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ captures interactions among visits and codes, enabling more effective downstream predictive modeling.

Risk prediction. Given a multimodal EHR dataset $\mathcal{D} = \{\mathcal{T}, \mathcal{N}\}, \mathcal{T} = \{\mathcal{T}_p\}_{p=1}^{P}$ represents the structured patient record that include *P* rows of individual patient visits, and \mathcal{N}_p represents the corresponding clinical notes to each visit. Our method trains a predictive model that makes a clinical prediction for each given *p*-th visit $\mathcal{D}_p = \{\mathcal{T}_p, \mathcal{N}_p\}$.

3. Method

Two textual semantics resources exist in the multimodal EHR dataset - the concept names of medical codes in tabular data and clinical notes. To infuse semantics into the structural learning of hypergraph modeling, we propose a two-level strategy, as illustrated below.

3.1. Infusing Medical Concept Semantics into the Structural Modeling of EHR data

We utilize the Deep Walk algorithm [5] to learn a structural latent representation $\mathbf{s}_{v} \in \mathbb{R}^{d_{1}}$ for each node v in the hypergraph. This is particularly useful in the EHR modeling task, as edges are sparse. To model the medical codes from different coding systems in a unified way, we map the original code v to the corresponding concept name c_{v} , then utilize GPT text-embedding-ada-002 model to generate a semantic embedding $\mathbf{c}_{v} \in \mathbb{R}^{d_{2}}$, which contains clinical knowledge and context background from LLMs. Different ways to combine network-based and knowledge-based encoding are investigated, and the simple concatenation achieves the best performance. Specifically, the node embedding $\mathbf{X}_{v}^{(0)}$ is initialized as the concatenation of both the structural feature \mathbf{S}_{v} and the semantic feature \mathbf{C}_{v} of the nodes in the hypergraph,

$$\boldsymbol{X}_{v}^{(0)} = [\boldsymbol{S}_{v}; \boldsymbol{C}_{v}].$$

These fused node embeddings are utilized as the node feature initialization of the messagepassing process, which induces the initial hyperedge embedding.

3.2. Infusing Clinical Note Semantics into the Structural Modeling of EHR data

In **MINGLE**, for each individual patient visit record \mathcal{T}_p (correspond to a hyperedge $e \in \mathcal{E}$), we match the corresponding discharge summary \mathcal{N}_p and filter irrelevant sections such as admission dates, services, etc. A document representation \mathbf{n}_p is generated for each *discharge summary* \mathcal{N}_p with the GPT embedding model, resulting in a corpus semantic matrix \mathbf{N}_e across all visits. In order to further incorporate fine-grained semantics, we treat single nodes as additional hyperedges in the hypergraph by adding a self-loop on each node. The overall hyperedge semantics embeddings \mathbf{H}_e is then the combination of the corpus semantic matrix \mathbf{N}_e and the medical concept semantic matrix \mathbf{C}_v :

$$\boldsymbol{H}_{e} = \mathrm{MLP}_{1}\left(\begin{bmatrix}\boldsymbol{N}_{e}\\\boldsymbol{C}_{v}\end{bmatrix}\right).$$

This leads to an enhancement of the central node semantics during its update from connected hyperedges, which also helps to establish a soft collaboration between finegrained concept semantics and coarse-grained document semantics. Finally, we improve the hyperedge representation updating rule as below:

$$\boldsymbol{E}_{e}^{(l)} = \mathrm{MLP}_{2}([f_{\mathcal{V} \to \mathcal{E}}\left(\mathcal{V}_{e,\boldsymbol{X}^{(l-1)}}\right); \boldsymbol{H}_{e}]).$$

The hyperedge embeddings H_e are incorporated into each message passing layer with the aggregated information from connected nodes, to update the hyperedge representation.

4. Experiments

Datasets. We have performed experiments on two clinical prediction datasets, MIMIC-III and CRADLE. The CRADLE dataset was collected from a large healthcare system in the United States. The MIMIC-III [6] dataset contains 36,875 visits in all, represented by 7423 medical codes, with 12,353 visits being labeled. The CRADLE dataset contains 36,611 visits with 12,725 codes. We divided them into a train, a validation, and a test set in the ratio of 7:1:2. As natural notes are not included in the CRADLE dataset, we convert individual visits into natural language through textualization.

Tasks. We perform phenotyping prediction on MIMIC-III [6], predicting the presence of 25 care conditions in patients' next visits [7], given their current ICU records. On the

Model	MIMIC-III			CRADLE				
	ACC	AUROC	AUPR	F1	ACC	AUROC	AUPR	Fl
LR	68.66 ± 0.24	64.62 ± 0.25	45.63 ± 0.32	13.74 ± 0.40	76.22 ± 0.30	57.22 ± 0.28	25.99 ± 0.26	42.18 ± 0.35
SVM	72.02 ± 0.12	55.10 ± 0.14	34.19 ± 0.17	32.35 ± 0.21	68.57 ± 0.13	53.57 ± 0.11	23.50 ± 0.15	52.34 ± 0.22
MLP	70.73 ± 0.24	71.20 ± 0.22	52.14 ± 0.23	16.39 ± 0.30	77.02 ± 0.17	63.89 ± 0.18	33.28 ± 0.23	45.16 ± 0.26
GCT	76.58 ± 0.23	78.62 ± 0.21	63.99 ± 0.27	35.48 ± 0.34	77.26 ± 0.22	67.08 ± 0.19	35.90 ± 0.20	56.66 ± 0.25
GAT	76.75 ± 0.26	78.89 ± 0.12	66.22 ± 0.29	34.88 ± 0.33	77.82 ± 0.20	66.55 ± 0.27	36.06 ± 0.18	56.43 ± 0.26
HGNN	77.93 ± 0.41	80.12 ± 0.30	68.38 ± 0.24	40.04 ± 0.35	76.77 ± 0.24	67.21 ± 0.25	37.93 ± 0.18	58.05 ± 0.23
HyperGCN	78.01 ± 0.23	80.34 ± 0.15	67.68 ± 0.16	39.29 ± 0.20	78.18 ± 0.11	67.83 ± 0.18	38.28 ± 0.19	60.24 ± 0.21
HCHA	78.07 ± 0.28	80.42 ± 0.17	68.56 ± 0.15	37.78 ± 0.22	78.60 ± 0.15	68.05 ± 0.17	39.23 ± 0.13	59.26 ± 0.21
HypEHR	79.07 ± 0.31	82.19 ± 0.13	71.08 ± 0.17	41.51 ± 0.25	79.76 ± 0.18	70.07 ± 0.13	40.92 ± 0.12	61.23 ± 0.18
MINGLE	$80.17 \pm 0.08^{\circ}$	83.54 ± 0.06*	$72.50 \pm 0.07^{*}$	$46.26 \pm 0.61^{*}$	78.87 ± 0.48	73.01 ± 0.06*	45.76 ± 0.13*	63.49 ± 0.49
MINGLE w/o Medical Concept Semantics	79.08 ± 0.18	$82.37 \pm 0.14^*$	70.98 ± 0.26	41.83 ± 1.89	80.07 ± 0.38*	$72.49 \pm 0.26^*$	$44.63 \pm 0.24^*$	60.62 ± 1.5
MINGLE w/o Clinical Note Semantics	79.77 ± 0.33*	83.14 ± 0.18*	72.02 ± 0.32*	45.69 ± 2.68*	75.39 ± 1.34	70.83 ± 0.62*	43.90 ± 0.90*	63.19 ± 0.60

Table 1. Performance (100%) on MIMIC-III and CRADLE compared with different baselines. The result is averaged over 5 runs. We use * to indicate statistically significant results (p < 0.05). Bold and underlined indicate the best and second-runner results.

CRADLE dataset, the task aims to determine if patients diagnosed with type 2 diabetes will experience cardiovascular disease (CVD) endpoints within a year of their diagnosis. CVD endpoint is defined by the presence of coronary heart disease (CHD), congestive heart failure (CHF), myocardial infarction (MI), or stroke.

Baselines. We compare **MINGLE** with several baselines: (1) *Non-graph ML Models*. Logistic Regression (LR), SVM, and MLP. (2) *GNN Baselines*. In graph-based methods, the graph is constructed based on pair-wise relations among medical codes: an edge is created between two codes if they co-occur in the same visit. We choose GCT [3] and GAT [8]. (3) *Hypergraph Models*. These baselines are tested using the same hypergraph structure as **MINGLE** but with various neural network architectures. We include HGNN [9], HyperGCN [10], HCHA [11], and HypEHR [4].

5. Results

The results of **MINGLE** compared to baseline models on two EHR datasets are shown in Table 1. **MINGLE** outperforms baselines across four metrics on the MIMIC-III dataset, excelling in F1 score. On the CRADLE dataset, it improves AUROC and AUPR, demonstrating effectiveness in handling unbalanced datasets. A slight accuracy drop may result from better classification of minority classes. We conducted ablation and hyperparameter studies to analyze the model's components and configurations. The ablation study (Table 1, last two rows) highlights the importance of medical concept semantics, whose removal causes a significant performance drop. Clinical note semantics have less impact, likely due to challenges with noisy document representation.

Case study. We present two case studies on MIMIC-III *Cardiac Dysrhythmias* phenotype prediction (Figure 2) to highlight differences in important medical node selection between **MINGLE** and the baseline, based on attention weights in the self-attention mechanism.

Important Codes by HypEHR • Disease: Bulbus cordis anomalies and anomalies of cardiac septial closure, Other rheumatic heart disease • Prescription: Carvedilol, Warfarin, Zolpidem Tartrate, Nitroprusside Sodium, Oxycodone-Acetaminophen, Aspirin, Furosemide • Procedure: Heart aneurysm excision	Important Codes by MINGLE • Disease: Cardiomyopathy, Essential hypertension, Hearf aliure, Cardia dysthythmias, Diseases of mitral valve • Prescription: Carvedilol, Insulin, Zolpidem Tartate, Nitroprusside Sodium, Diphenhydramine HCI, Losartan Potassium, Atorvastain Case 1	Common Codes by HypEHR & MINGLE • Disease: Complications peculiar to certain specified procedures • Procedure: Rad dissec thorac struct • Additional Info by MINGLE from Clinical Note PAST MEDICALI HISTORY: heart failure with a negative stress test <u>HOSPITAL COURSE</u> : the patient did well until postoperative day one when he developed a hypertension with rapid atrial fibrillation MEDICATIONS ON DISCHARGE: Percocet p.o. q.4-oh Case 2
---	---	---

Figure 2. Case studies on important codes identified by HypEHR and MINGLE. Blue shows common ones, while Red highlights additional information identified by MINGLE.

* **Case 1.** Both HypEHR and **MINGLE** identified key codes like *Carvedilol*, *Nitroprusside Sodium*, and *Zolpidem Tartrate*, which are relevant to *Dysrhythmias*. However,

MINGLE uniquely identified diseases related to cardiac function, such as *Heart Failure*, *Cardiomyopathy*, and *Cardiac Dysrhythmias*, demonstrating its ability to incorporate medical concept semantics for deeper clinical insights.

* **Case 2. MINGLE** utilized clinical notes for additional context. For example, the patient's *past medical history* showed *heart failure near admission*, and the *hospital course* noted *rapid atrial fibrillation* and *hypertension*. The medication *Percocet*, known for cardiovascular effects, added further insight. By combining clinical notes with EHR data, **MINGLE** provided a more comprehensive patient profile.

6. Conclusion and Discussion

We propose a framework called **MINGLE**, which is designed to combine structured EHR and clinical notes using a two-level semantic infusion strategy. The framework uses a hypergraph model and additional semantic information from LLMs to enable the joint learning of complex interactions among medical codes and patient visits. Results demonstrate the benefits of integration, particularly the concept name semantics.

Acknowledgements

This research was partially supported by US NIDDK of NIH under Award Number K25DK135913. The research has also benefited from the Microsoft Accelerating Foundation Models Research (AFMR) grant program.

References

- [1] Benjamin Shickel and et al. Deep ehr: a survey of recent advances in deep learning techniques for electronic health record analysis. *BHI*, 22:1589–1604, 2017.
- [2] Juan G Diaz Ochoa and et al. Graph neural network modelling as a potentially effective method for predicting and analyzing procedures based on patients' diagnoses. *Artificial Intelligence in Medicine*, page 102359, 2022.
- [3] Edward Choi and et al. Learning the graphical structure of electronic health records with graph convolutional transformer. In *AAAI*, 2020.
- [4] Ran Xu and et al. Hypergraph transformers for ehr-based clinical predictions. AMIA, 2023.
- [5] Bryan Perozzi and et al. Deepwalk: Online learning of social representations. In *KDD*, 2014.
- [6] Alistair EW Johnson and et al. Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.
- [7] Hrayr Harutyunyan and et al. Multitask learning and benchmarking with clinical time series data. *Scientific data*, 6(1):1–18, 2019.
- [8] Petar Veličković and et al. Graph attention networks. In ICLR, 2018.
- [9] Yifan Feng and et al. Hypergraph neural networks. In *AAAI*, volume 33, pages 3558–3565, 2019.
- [10] Naganand Yadati and et al. Hypergen: A new method for training graph convolutional networks on hypergraphs. *NeurIPS*, 2019.
- [11] Song Bai and et al. Hypergraph convolution and hypergraph attention. *Pattern Recognition*, 110:107637, 2021.