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Abstract

Relevance feedback image retrieval is an effective scheme bridging the gap
between low-level features and high-level concepts. It is essentially a multi-
query ranking problem where the user submitted image and provided positive
examples are considered as queries. Most of the existing approaches either
merge the multiple queries into a single query or consider them independently,
and then the geodesic distances on the image manifold are used to measure
the similarities between the query image and the other images in database.
In this paper, we propose a novel approach called Multi-Query Parallel Field
Ranking (MQPFR) which finds an optimal ranking function whose gradient
field is as parallel as possible. In this way, the obtained ranking function
varies linearly along the geodesics of the data manifold, and achieves the
highest value at the multiple queries simultaneously. Extensive experiments
are carried out on a large image database and demonstrate the effectiveness
of the proposed approach.

Keywords: Image Retrieval, Parallel Vector Field, Multi-query

1. Introduction

Content-Based Image Retrieval (CBIR) has received considerable interest
recently [1], partly because of the rapid growth of the mobile devices. Unlike
traditional keyword based search systems, CBIR utilizes the low-level visual
features automatically extracted from images, including global features (e.g.
color moment, edge histogram, LBP) and local features (e.g. SIFT). How
to narrow down the semantic gap between low-level features and high-level
concepts is a challenging problem.
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To bridge the semantic gap, relevance feedback is introduced into CBIR to
capture the subjectivity of human perception of images through interactions
with the user [2]. It was shown to dramatically increase the retrieval perfor-
mance. Most of previous relevance feedback methods can be classified into
two categories according to the way they deal with the user submitted query,
as well as the user provided positive examples. The first merges multiple
queries into a single one and considers image retrieval as a ranking problem
[3]. The other considers the problem as classification [4, 5]. However, some-
times the users only provide positive examples, in which case classification
algorithms can not be directly applied due to the lack of negative examples.
In this work, we consider relevance feedback image retrieval as a multi-query
ranking problem and aims to learn a ranking function whose highest values
are achieved at the multiple queries simultaneously.

Many manifold-based ranking approaches have been proposed [6, 7, 8, 9,
10, 11], following the intuition that naturally occurring data (e.g. images)
may be generated by structured systems with possibly much fewer degrees
of freedom than the ambient dimension would suggest [12, 13]. These ap-
proaches usually estimate the data manifold by an affinity graph, and the
Laplacian regularizer constructed over the graph is thus adopted to ensure
the smoothness of the learned ranking function along the geodesics of the
data manifold. It has been shown that manifold-based approaches have sig-
nificantly improved image retrieval performance. However, one of the major
limitations is that Laplacian regularization can only ensure smoothness, while
an optimal ranking function should preserve the ranking order of the data
points along the geodesics. In other words, the ranking function should vary
monotonically along the geodesics on the data manifold.

In this paper, we propose a novel algorithm, called Multi-Query Parallel
Field Ranking (MQPFR), for learning an optimal ranking function on the
data manifold which varies linearly along the geodesics and achieves the
highest ranking score at the multiple queries. In order to find such a function,
we note that recent theoretical works show that its gradient field has to be
a parallel vector field [14, 15]. Thus, we adopt the same idea to learn a
ranking function f and a vector field V simultaneously such that ∇f is as
close to V as possible and ∇V vanishes. Moreover, the user submitted query
and the provided positive examples are equally treated as multiple queries
by requiring that, for each one of them, the tangent vectors of its nearest
neighbors should all point to it. In this way, our proposed approach effectively
makes use of the multiple queries and the intrinsic distribution of data.
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2. Related Work

Image retrieval has been researched intensively, with a large number of
content-based ranking methods proposed every year. While earlier image
retrieval algorithms rank data directly according to the Euclidean distance
of simple image features like color features [16], more recently proposed al-
gorithms like [17] learns a parameterized similarity function among all data
based on pairwise similarity. In order to exploit the intrinsic distribution of all
data, Zhou et al proposed a transductive ranking algorithm called Manifold
Ranking (MR) by diffusing the label information among data neiborhoods
via a heat equation [6]. It is significantly different from distance-based rank-
ing algorithms which only consider pairwise distances or inner products as
shown in [18, 7]. Recently, more algorithms that directly make use of the data
manifold assumption [12, 13] and address specific issues of the original MR
have been proposed. For example, [10] and [11] solve for linear or nonlinear
projections of the original image features before comparing the Euclidean dis-
tance among data. The LRGA algorithm proposed in [8] learns the Laplacian
matrix for ranking data using local linear regression rather than directly com-
puting it using Gaussian kernel. [9] addresses multi-modality retrieval tasks
by harmonizing hierarchical data manifolds, and thus can be will applied
in scenarios like multi-task and cross-media retrieval. Still in other frame-
works, extra label information can be incorporated as explicit constraints
into the projection process [19] and more powerful and robust techniques
such as the iterated graph Laplacian [20], k-regular nearest neighbor graph
[21], anchor graph [22] and parallel vector field [15] are adopted for better
performance and scalability of ranking on data manifolds. Compared with
inductive learning algorithms, those frameworks can make use of both unla-
belled and labelled data for ranking and thus yield more stable and accurate
ranking results.

Relevance feedback has been shown helpful in many image retrieval sys-
tems [23, 10, 7, 11, 9, 24, 2, 3, 4, 5]. Short-term relevance feedback algorithms
that only consider feedback information provided by the current user are
usually derived directly from some manifold-based ranking algorithms with
carefully constructed queries [7, 9], or from classification algorithms with
ranking scores computed from the decision values [4, 5]. To make use of the
feedback information provided by more users, various long-term relevance
feedback algorithms have also been proposed [23, 9, 10]. Moreover, other
algorithms like [25, 26] apply active learning to achieve better understanding
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of user preferences at the cost of less flexible interactive processes.
Our algorithm addresses short-term relevance feedback image retrieval

as a multi-query ranking problem and exploits the intrinsic distribution of
whole data to improve ranking results, which is generally similar to MR and
LRGA [7, 9]. But unlike them, we employ the parallel vector field to ensure
the linearity of our ranking function and we adopt the anchor graph to speed
up the optimization processes.

3. Multi-Query Parallel Field Ranking

In this section, we begin with the motivation of our algorithm and then
introduce the objective function which learns a multi-query ranking function
on the data manifold.

3.1. From Single Query to Multiple Queries

The generic problem of image retrieval can be described as following.
Given an image database {xi}ni=1 ⊂ R

m and an initial query image q1 ∈ R
m,

learn a ranking function f such that f(xi) reflects the semantic relationship
between xi and q1. However, in many real applications, only one query is not
enough to convey useful information and relevance feedback is an effective
way of enhancing the learning process. The typical relevance feedback based
retrieval process can be outlined as follows:

1. The system presents the top ranked images to the user by using a
pre-defined ranking function f , such as Euclidean distance function.

2. The user provides his relevance feedback to the system by labeling some
interested images as ‘positive’.

3. The system learns a new ranking function f by using the feedback
information and re-ranks the images in the database.

Since each image marked by the user as positive represents the user’s informa-
tion need, they should all be equally treated as multiple queries. Moreover,
there is usually no negative example available, so the image retrieval problem
here can not be considered as classification. Given these queries, most of the
traditional methods essentially merge them into a single query. Consider a
ranking problem in a 2-dimensional space, Figure 1(a) shows a result obtained
by one of the state-of-the-art approach [15]. In their approach, the obtained
ranking function can vary linearly along the geodesics on the data manifold
and reaches the highest value at a single point. Therefore, when dealing
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with more than one queries, for example, the three queries marked by ‘•’ in
Figure 1, they can only merge them into a single one, which is marked by
‘�’. However, there is no guarantee that this single query represents the most
relevant information due to the complexity of large databases, where relevant
data points are not necessarily clustered tightly around a single prototype
[27]. Therefore, important information may get lost during the merging pro-
cess and the ranking function may lack predictive power as a result. Unlike
most of the traditional approaches, our approach explicitly considers the lo-
cal geometrical structure of each query and yields highest ranking score at
the multiple queries simultaneously, as shown in Figure 1(b). In this way, we
make better use of the user submitted information and enhance the chances
of reliably learning user’s favored patterns.

3.2. Our Algorithm

In order to find a ranking function which effectively makes use of the
multiple queries and the geometrical structure of the data manifold, we use
techniques of parallel vector field [14]. A vector field V on the manifold M
is said to be parallel if ∇V ≡ 0, where ∇ is the covariant derivative on M.
According to [28], if the gradient field ∇f of the ranking function f is a
parallel vector field, f will vary linearly along any geodesics on the manifold.
Therefore, a linear function on the manifold can be obtained by requiring its
gradient field to be a parallel vector field. Therefore, we construct constraints
in the form of regularization terms to learn a ranking function f and a parallel
vector field V simultaneously as follows [14, 15]:

• The gradient field ∇f of the ranking function should be close to the
vector field V , so we have the first constraint as

min
f∈C∞,V

R1(f, V ) =

∫
M

‖∇f − V ‖2; (1)

• The vector field V should be as parallel as possible, so we have the
second constraint as

min
V

R2(V ) =

∫
M

‖∇V ‖2F , (2)

where C∞(M) denotes smooth functions on M and ‖ · ‖F denotes the
Frobenius norm. ∇ measures the change of the vector field V . V becomes a
parallel vector field when ∇ vanishes.
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(a) Rank by merging three queries into
a single one

(b) Rank with three queries simultane-
ously

Figure 1: A toy example illustrating the ranking results with single query and
multiple queries. In this example, three query points (marked by ‘•’) in a
two-dimensional space are given. The color represents the ranking score from
the highest (red) to the lowest (blue). (a) Ranking result obtained by the
Parallel Field Ranking algorithm. The three queries are merged into a single
query, which is marked by ‘�’. As it can be seen, the ranking function fails
to achieve the highest score at the three queries which represent user needs.
(b) Ranking result obtained by our approach. We can see that the highest
ranking score is achieve at the three queries simultaneously.

Secondly, we need to ensure that the ranking function f achieves the
highest score at the multiple queries. Let Q = (q1, q2, . . . , qs) denote the
queries. Without loss of generality, we assume that xi = qi, i = 1, · · · , s.
In this work, we consider the case that the images are sampled from some
underlying d-dimensional manifold M which is embedded in the ambient
Euclidean space R

m. That is, xi ∈ M, i = 1 · · · , n. Thus, for each query
qi, we require that the tangent vectors of its neighboring points should all
point to qi. Note that, the vector field V is as parallel as possible. That
is, the change between two neighboring tangent vectors is sufficiently small.
Therefore, for any point x ∈ M, there is a geodesic curve connecting x and
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qi such that the ranking function increases linearly from x to qi. In other
words, f achieves the highest value at the multiple queries qi simultaneously
and then decreases linearly along the geodesics passing through those queries
to nearby data points. Specifically, we have the third constraint as

min
V

R3(V ) =

s∑
t=1

∫
z∈Uqt

‖Vz − Pz(qt − z)‖2, (3)

where Uqt is a neighborhood of qt, Vz denotes the tangent vector at point z
and Pz is the projection operator which projects a vector to the tangent space
TzM. In practice, we can choose k nearest neighbors or ε nearest neighbors
of the query as neighborhood points. With the three regularization terms
R1, R2, and R3, we finally get the following objective function:

argminf∈C∞(M),V J (f, V )

= R0(y, f) + λ1R1(f, V ) + λ2R2(V ) + λ3R3(V ),

(4)

where R0 is a simple loss function that forces the ranking scores of the queries
to be close to a positive number, thus ensuring the solution to be unique.
The trade-off among the other three regularization terms is controlled by the
coefficients λ1, λ2 and λ3 in the range of (0,+∞).

3.3. Scalable Graph Construction

Like many other graph-based algorithms, before actually conducting the
label inference, we need to firstly construct a weight graph which represents
the data adjacency. A common resort is to employ the k-nearest neighbor
(kNN) graph due to its ability to capture local structure of the data as well as
its simplicity. However, the O(kn2) construction cost and O(n2) memory cost
of kNN are quite expensive, especially in large scale situations. Therefore,
to handle scalable data sets, we resort to the recently proposed anchor graph
[29] and a new design of adjacency matrix W proposed in [9].

Given the input samples X = {xi}ni=1 ⊂ R
m, the key idea of anchor

graph is to introduce a subset U = {uk}pk=1 ⊂ R
m called anchors and try

to represent the semantic properties f of X , such as label prediction and
ranking score as

f(xi) =

p∑
k=1

Zikf(uk), (5)
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where each Zik is a sample-adaptive value which represents the weight be-
tween data point xi and anchor uk and therefore can be used directly to
compute the adjacency matrix W . In this paper, following [9], we firstly
use k-means algorithm and select the centers of each cluster as the anchors.
Then we use the well known Nadarata-Watson kernel regression to assign the
weights smoothly as

zik =
K( |xi−uk|

λ
)∑s

l=1K( |xi−uk|
λ

)
, (6)

with the Epanechnikov quadratic kernel

Kλ(t) =

{
3
4
(1− t2) if |t| ≤ 1;

0 otherwise.
(7)

The smoothing parameter λ determining the size of the local region in which
anchors can affect the target point is set using the nearest neighborhood size
as

λ(xi) = |xi − u{r}|, (8)

where u{r} is the rth closest anchor of xi.
Then the adjacency matrix W is computed in a low-rank form

W = ZTZ, (9)

which means that if two data points are ‘close’ to each other (Wij > 0, and
we denote it as xi ∼ xj), they share at least one common anchor point. The
W designed this way preserves the good properties of sparseness and non-
negativeness of Z. Moreover, we do not need to compute and save W in
memory but only save the p× n matrix Z, where p is often far smaller than
n.

Overall, to build the adjacency matrix, we first use k-means clustering
algorithm to select informative anchors. Then we connect each data point
to its r nearest anchors and assign wights to each connection by the kernel
function. Finally, we use the weight matrix Z to compute the adjacency
matrix W directly. Note that, by employing anchor graph, we are able to
separate the graph construction into an off-line anchor selection stage and an
on-line graph construction stage, which might further improve the efficiency
because the second stage always has linear complexity and the carefully se-
lected anchors for a large data sets are relatively stable when new samples
are added [9].
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3.4. Discrete Objective Function

With the anchor graph constructed, we are now able to compute the data
manifold M and discretize the continuous objective function in Eq. (4).

We begin at estimating the local tangent spaces for all data points, which
can be efficiently performed using the anchor graph. Firstly, for each ui in
the anchor set, we estimate its tangent space Tui

M by performing PCA on
its local neighborhood. The local neighborhood of an anchor ui is formed
by the k nearest neighbors of it. We choose the eigenvectors corresponding
to the d largest eigenvalues since we assume that the data manifold TiM is
d-dimensional. Let Tui

∈ R
m×d be the matrix whose columns constitute an

orthonormal basis for Tui
M. Then Pui

= Tui
T T
ui

is the unique orthogonal
projection from R

m to the tangent space Tui
M. This is because for any

vector a ∈ R
m, we have Pui

a ∈ Tui
M and (a−Pui

a)⊥Pui
a [30, 14]. Then we

just use Z to assign the local tangent spaces of all data points xi by

TiM =

p∑
k=1

ZikTuk
M, (10)

where Z is the weight matrix computed while constructing the anchor graph.
It works well because each data point on the manifold can be locally approx-
imated by a linear combination of its nearby anchor points, and the linear
weights become its local coordinate coding [31].

Then we denote the discrete ranking function on the data manifold as
f = [f(x1), . . . , f(xn)] = [f1, . . . , fn]

T and the value of vector field V at each
data point xi as Vxi

. Similar to that in [15], Vxi
is a vector in tangent space

Txi
M and therefore can be represented by the local coordinates of the tangent

space. That is, Vxi
= Tivi, where vi ∈ R

d. We define V = [vT1 , . . . , v
T
n ] ∈ R

dn

as a dn-dimensional column vector concatenating all the vi’s.
Then R1, R2 and R3 reduce to

R1 (f,V) =

n∑
i,j=1

ωij

(
(xj − xi)

TTivi − fj + fi

)2

, (11)

R2 (V) =

n∑
i,j=1

ωij‖PiTjvj − Tivi‖2, (12)

R3 (V) =

s∑
t=1

∑
xj∼qt

‖Tjvj − Pj(qt − xj)‖2. (13)
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In order to remove an arbitrary scaling factor and make the solution
unique, we let y ∈ R

n be a column vector where the first s entries (corre-
sponding to the queries) are 1, and all other entries are 0. Thus, we have

R0 (y, f) =
s∑

i=1

(fi − yi)
2. (14)

Combining R0 in Eq. (14), R1 in Eq. (11), R2 in Eq. (12) and R3 in Eq.
(13), we get our discrete objective function as follows:

J (f,V) = R0(y, f) + λ1R1(f,V) + λ2R2(V) + λ3R3(V)

=
s∑

i=1

(fi − yi)
2

+λ1

n∑
i,j=1

ωij

(
(xj − xi)

TTivi − fj + fi

)2

+λ2

n∑
i,j=1

ωij‖PiTjvj − Tivi‖2

+λ3

s∑
t=1

∑
j∼qt

‖Tjvj − Pj(qt − xj)‖2. (15)

4. Optimization Approach

In this section, we briefly discuss how to solve the objective function Eq.
(15). We first rewrite R1 and R2 as follows:

R1 (f,V) = 2fTLf + V
TGV− 2VTCf, (16)

R2 (V) = V
TBV, (17)

where L = D − W denotes the Laplacian matrix of the graph with Wij =
ωij and Dii =

∑n
j=1 ωij, G is a dn × dn block diagonal matrix with Gii =∑

j∼i ωijT
T
i (xj − xi)(xj − xi)

TTi, C is a dn × n block matrix with Ci =∑
j∼i ωijT

T
i (xj − xi)s

T
ij, sij ∈ R

n is a selection vector of all zero elements
except for the i-th element being -1 and the j-th element being 1, B is a
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dn × dn sparse block matrix with Bii =
∑

j∼i ωij(QijQ
T
ij + I) and Bij =

−2ωijQij , and Q is a dn× dn block matrix with Qij = T T
i Tj .

Then we rewrite R0 as follows:

R0 (y, f) = (f − y)T I(f − y), (18)

where I is an n × n diagonal matrix with only entries at the i-th row and
i-th column being 1, i = 1, 2, . . . , s, and all other entries being 0. Similarly,
we rewrite R3 as follows:

R3 (V) = V
TDV− 2HT

V+

s∑
t=1

∑
j∼qt

‖Pj(qt − xj)‖2, (19)

where D is a dn × dn block diagonal matrix with the j-th d × d diagonal
block defined as follows:

Djj =

{
Id, if xj ∼ any qt in Q
0, otherwise,

(20)

and H is a dn× 1 block vector with the j-th d× 1 block as follows:

Hj =

{
T T
j (qt − xj), if xj ∼ any qt in Q

0, otherwise.
(21)

Finally, combining R0 in Eq. (18), R1 in Eq. (16), R2 in Eq. (17) and
R3 in Eq. (19), we get the simplified matrix form of the objective function
in Eq. (15) as follows:

J (f,V) = fT (I+ 2λ1L)f − 2yT If − 2λ1V
TCf

+V
T (λ1G+ λ2B + λ3D)V− 2λ3H

T
V

+yT Iy + λ3

s∑
t=1

∑
xj∼qt

‖Pj(qt − xj)‖2. (22)

Thus the derivatives of J (f,V) are
∂J(f,V)

∂f
= 2(I+ 2λ1L)f − 2y − 2λ1C

T
V, (23)

∂J(f,V)

∂V
= −2λ1Cf + (λ1G+ λ2B + λ3D)V− 2λ3H. (24)
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To make the derivatives vanish, we solve the following linear equation
system:

(I+ 2λ1L)f − λ1C
T
V = y, (25)

−λ1Cf + (λ1G + λ2B + λ3D)V = λ3H, (26)

which can be simplified to the following linear system:

(
I+ 2λ1L −λ1C

T

−λ1C λ1G+ λ2B + λ3D

)(
f
V

)
=

(
y
λ3H

)
. (27)

Since the linear system is a well-studied problem and the systems derived
in our algorithm are especially sparse, we can solve the ranking problem
efficiently using means of decomposition and iteration [30].

5. Computational Complexity Analysis

The computational complexity of our proposed MQPFR algorithm is
dominated by three parts: constructing the anchor graph, computing lo-
cal tangent space and solving a sparse linear system. For the anchor graph
construction, the overall complexity is O(pmn+ prmn), where n is the data
size, m is the dimension of raw data, p is the number of anchors and r is the
number of nearest anchors around a data point. Specifically, the k-means
algorithm for selecting anchors takes O(pmn)’s time, and the computing of
Z takes O(prmn)’s time. The complexity of local PCA is O(mk2), where k
is the size of largest local neighborhood. Therefore, the complexity of com-
puting the local tangent space for all data points is O(mpk2 + pn). Solving
the final sparse linear system has the complexity of O(kd2n), where d is the
dimension of underlying data manifold. In this way, the total computational
complexity of our MQPFR method is O(pmn+ prmn+mpk2 + pn+ kd2n).
Empirically, p, r, k and d can all be fixed as small constants that are ir-
relative to the size of specific data sets. Therefore, the total computational
complexity could be O(mn).

It is worth noting that, although the sparse linear system can be solved
in linear time using iterations theoretically, it often takes relatively long time
when the matrices are extremely huge. Therefore, solving a large sparse linear
system to compute the parallel vector field might not be the best way. Since
the vector field are only required to be parallel along the geodesics passing
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through the queries, a more efficient way to learn the vector field might be
propagating the tangent vectors from around the queries to other regions
parallelly on the data manifold. In this way, the accuracy of the learned
vector field will be well preserved around the queries, which is desirable for
the ranking problem.

6. Experimental Results

In this section, we investigate the performance of our proposed algorithm
for multi-query ranking problem. Several illustrative examples and experi-
mental evaluations are provided. We begin with two synthetic examples to
give some intuition about how our algorithm works.

6.1. Two Synthetic Examples

Two synthetic examples are given in Figure 2. In the first example, we
randomly sampled 2,000 data points from a punctured sphere and selected
three points as queries. The ranking result obtained by using our proposed
algorithm is shown in Figure 2(a). The color represents the ranking scores
from the highest (red) to the lowest (blue). In the second example, we
randomly sampled 2,000 data points from a twin-peak surface and selected
two points as queries. Figure 2(c) shows the ranking result. As it can be
seen, in both examples, the obtained ranking functions achieve their highest
values at the multiple queries simultaneously.

In order to show how the obtained ranking functions vary on the mani-
folds, we also present their corresponding vector fields learned by our algo-
rithm in Figure 2(b) and 2(d). As shown in each example, the vector field
remains constant along the geodesics passing trough the queries on the man-
ifold. This indicates that the obtained ranking functions vary linearly along
the geodesics and consequently well preserve the order of the data points
with respect to the multiple queries.

6.2. Image Retrieval Experiments

In this subsection, we evaluate the performance of our proposed algorithm
for multi-query image retrieval in two real world image databases. The results
of both relevance feedback experiments and pure multi-query experiments are
shown and we begin with a description of the data preparation.
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(a) Ranking results on a punc-
tured sphere surface

(b) The vector field of the rank-
ing function

(c) Ranking results on a twin-
peak surface

(d) The vector field of the rank-
ing function

Figure 2: Two simple synthetic examples. The ranking results are obtained by
using our proposed MQPFR algorithm and the color represents the ranking
scores from the highest (red) to the lowest (blue). (a) Ranking results on
a punctured sphere. The three query points are marked by ‘•’. (b) The
obtained vector field on the punctured sphere. (c) Ranking results on a twin-
peak surface. The two query points are marked by ‘•’. (d) The obtained
vector field on the twin-peak surface. As it can be seen, the obtained ranking
functions achieve their highest scores at the multiple queries simultaneously.
Moreover, the vector fields show how the ranking functions increase from the
distant points to the query points and they are indeed quite parallel.

6.2.1. Data Preparation

Two real world data sets are used in our experiments. The first one
consists of 5,000 images of 50 semantic categories, from the widely used
Corel image database. Each of the 50 different categories has 100 images,
such as cat, lion, lighthouse, couple and so on. Images within the same
category are judged relevant and otherwise irrelevant. Figure 3 shows some
sample images from the Corel database. For each image, we extract a 297-
dimensional feature vector which combines the following information:

• Grid Color Moment: Each image is partitioned into 3 × 3 grids. For
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each grid, three color moments: mean, variance and skewness are ex-
tracted in each color channel (R, G, and B) respectively. Thus, an
81-dimensional grid color moment vector is adopted.

• Edge: The Canny Edge detector [32] is used to obtain the eage map
for the edge orientation histogram, which is quantized into 36 bins of
10 degrees each. An additional bin is to count the number of pixels
without edge information. Hence, a 37-dimensional vector is used.

• Gabor Wavelets Texture: Each image is first scaled to 64 × 64 pixels.
The Gabor wavelet transform [33] is then applied on the scaled image
with 5 levels and 8 orientations, which results in 40 subimages. For each
subimage, 3 moments are calculated, i.e., mean, variance and skewness.
Thus, a 120-dimensional vector is used.

• Local Binary Pattern: The LBP [34] is a gray-scale texture measure
derived from a general texture definition in a local neighborhood. A
59-dimensional LBP histogram vector is adopted.

The second data set is from the CMU PIE face database [35]. This database
contains 68 subjects with 41, 368 face images as a whole. The face images
were captured by 13 synchronized cameras and 21 flashes, under varying
poses, illuminations and expressions. In this experiment, we choose the
frontal pose (C27) with varying lighting conditions, which leaves us 42 im-
ages per subject. Preprocessing to locate the faces were applied. Original
images were normalized (in scale and orientation) such that the two eyes
were aligned at the same position. Then the facial areas were cropped into
the final image for matching. The size of each cropped image in all the ex-
periments is 32 × 32, with 256 gray levels per pixel. Therefore, each image
can be represented by a 1024-dimensional feature vector in the image space.
No further preprocessing is done. Figure 4 shows some sample faces of two
different people in the CMU PIE database.

6.2.2. Experimental Settings

Firstly, we designed an automatic feedback scheme to simulate the real
relevance feedback image retrieval process. We begin with a single query ran-
domly picked out from the data set. Since the user usually only cares about
the most relevant images and the irrelevant images are usually very diverse,
we only require the user to provide positive examples. At each iteration,
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Figure 3: 16 randomly selected sample images from Corel image database of
semantic concept cat, lion, lighthouse and couple.

Figure 4: Some sample face images of two different people from CMU PIE
dataset. The First two rows belong the one subject while the next two rows
belong to another.
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the user is required to provide one positive example, which is simulated by
randomly picking out one relevant image from the top ranked images. Then
different algorithms are performed to re-rank the images in the database.
Ten iterations are performed until there are ten queries.

Secondly, since in some cases the user may have more than one query
images at the beginning or during a certain feedback iteration, we also com-
pare different algorithms with multiple query images right from the start.
We call it pure multi-query image retrieval because no feedback iterations
are involved.

For each experiment of the two kinds, the evaluation metrics are com-
puted by averaging the results from ten separate runs for each category of
the data sets. It is worth noticing that most existing graph-based algorithms
need to construct a nearest neighbor graph over the data and invert a matrix
whose size is at least n × n, which is time consuming. In order to perform
the methods more efficiently, we first rank all the images according to the
Euclidean distances to the original query image and then choose the top 500
images as candidates. We then perform different ranking algorithms on this
small subset. The evaluation metrics used in our experiments include Pre-
cision, Recall, Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG) [36], which provide a comprehensive view of the
ranking performance of different algorithms.

For our MQPFR algorithm, the dimensionality of the manifold (d) in
real data sets is unknown. We perform cross-validation and choose d = 2 for
Corel data set and d = 5 for CMU PIE data set. The intrinsic parameters of
our algorithm λ1, λ2 and λ3 are all set to 0.01 except for model selection. For
other parameters, we empirically set the number of anchors (p) to be 300,
the number of nearest anchors for representation (r) to be 8 and the number
of nearest neighbors to estimate the local tangent space of anchors (k) to be
16.

6.2.3. Compared Algorithms

To demonstrate how our algorithm improves the performance of multi-
query image retrieval, we compared the following five algorithms.

• Our proposed MQPFR algorithm.

• PFRank [15]: Parallel Field Ranking, which is the most related algo-
rithm to ours. The major difference is that PFRank considers single-
query ranking, while our algorithm considers multiple-query ranking.
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(d) Mean Average Precision

Figure 5: The retrieval precision and MAP versus the number of available
queries on Corel dataset.
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Figure 6: The retrieval precision and MAP versus the number of available
queries on CMU PIE dataset.
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Figure 7: The average retrieval precision versus scope on Corel dataset. Note
that, in this case all the queries are considered as initial queries and there is
no relevance feedback involved.
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Figure 8: The average retrieval precision versus scope on CMU PIE dataset.
Note that, in this case all the queries are considered as initial queries and
there is no relevance feedback involved.
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Compared Algorithm R@10 R@20 R@30 R@40 R@50

MQPFR 0.1783 0.2587 0.3243 0.3727 0.4145
PFRank 0.1271 0.1875 0.2363 0.2774 0.3111
LRGA 0.1583 0.2312 0.2822 0.3233 0.3565
MR 0.1328 0.1820 0.2253 0.2618 0.2948
SVM 0.1095 0.1697 0.2197 0.2587 0.2937

Table 1: Performance comparison using the metrics Recall (R), when 3 queries
are available during the simulated feedback iterations, on Corel dataset.

Compared Algorithm R@10 R@20 R@30 R@40 R@50

MQPFR 0.7196 0.6110 0.5496 0.5011 0.4639
PFRank 0.5668 0.4760 0.4244 0.3881 0.3586
LRGA 0.6634 0.5494 0.4809 0.4333 0.3956
MR 0.6104 0.4896 0.4323 0.3934 0.3648
SVM 0.4167 0.3648 0.3343 0.3094 0.2915

Table 2: Performance comparison using the metrics NDCG (N), when 3 queries
are available during the simulated feedback iterations, on Corel dataset.

• LRGA [9]: Local Regression and Global Alignment, which is another
state-of-the-art ranking algorithm.

• MR [6]: we also compare with the Manifold Ranking algorithm since
we focus on learning a ranking function on the data manifold.

• SVM [27]: we also compare with the SVM classification method, which
has been successfully applied to relevance feedback image retrieval. We
use the well known LIBSVM toolbox [37] in our experiments and set
data points with the lowest ranking scores as negative samples.

6.2.4. Performance Evaluation

Figure 5 and Figure 6 show the retrieval precision, as well as mean av-
erage precision, as a function of the number of available queries for different
algorithms on the two real datasets respectively. As it can be seen, our pro-
posed MQPFR algorithm consistently outperforms the other four algorithms.
Our algorithm performs particularly well as the number of available queries
increases. This indicates that it has stronger generalization capability than
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Compared Algorithm R@10 R@20 R@30 R@40 R@50

MQPFR 0.5066 0.7564 0.8303 0.8597 0.8698
PFRank 0.3700 0.4646 0.5039 0.5290 0.5465
LRGA 0.4519 0.6013 0.6388 0.6608 0.6768
MR 0.3900 0.5354 0.6153 0.6623 0.6944
SVM 0.2372 0.3049 0.3442 0.3724 0.3992

Table 3: Performance comparison using the metrics Recall (R), when 3 queries
are available during the simulated feedback iterations, on CMU PIE dataset.

Compared Algorithm R@10 R@20 R@30 R@40 R@50

MQPFR 0.8837 0.7452 0.6051 0.5051 0.4304
PFRank 0.7239 0.5333 0.4267 0.3605 0.3147
LRGA 0.8235 0.6371 0.5022 0.4189 0.3818
MR 0.7653 0.6077 0.5080 0.4365 0.3845
SVM 0.5070 0.3743 0.3053 0.2617 0.2318

Table 4: Performance comparison using the metrics NDCG (N), when 3 queries
are available during the simulated feedback iterations, on CMU PIE dataset.
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the other four algorithms. Also, since PFRank and SVM essentially deal
with multiple queries by simply merging them together, their performances
increase very slowly when more queries are available.

Table 1, Table 2, Table 3 and Table 4 show the Recall and NDCG for
different algorithms on the two real datasets when three queries are available.
Again, our algorithm outperforms the other four algorithms on these metrics.
Our approach performs particularly well when the scope is small. It would
be important to note that, in practice the user is more interested in the top
returned images. Thus, the precision with small scope is especially important.

Figure 7 and Figure 8 show the retrieval precision in the pure multi-query
experiments on the two real datasets respectively. In these cases, there is no
relevance feedback involved. The retrieval precision is measured within the
top 10 to 50 returns for each compared algorithm. In all the cases, our
algorithm performs better than the other four algorithms.

6.2.5. Model Selection

Model Selection is a critical problem for most learning algorithms. Since
the learning performance may vary dramatically due to different choices of
the parameters in some situations. In this subsection, we explicitly carry out
experiments to study the impact of the parameters on the performance of
our MQPFR algorithm. The essential parameters in our algorithm are λ1,
λ2 and λ3 which control the trade-off among the three regularization terms.
In all the previous experiments, we empirically set λ1 = λ2 = λ3 = 0.01, and
in this subsection, we fix other parameters the same as before while let one
of λ1, λ2 and λ3 vary in a wide range.

Since our algorithm mainly deals with multiple queries and more queries
transmit richer user needs, we originally want to rank the data due to more
queries. However, typical users will not submit too much feedback infor-
mation and they easily get impatient during the long iterations. Therefore,
three queries or so may be the most proper to collect major user needs while
keeping the users interested. Moreover, it is appropriate to put about 20
images on a screen to show users the most relevant retrieval results in most
cases. So in this subsection, we show the average retrieval precision at 20 of
MQPFR with three randomly chosen queries in each category with respect
to different values of λ1, λ2 and λ3. As we can see in Figure 9 and Figure
10, our algorithm is generally not very sensitive to different parameters and
outperforms the other three methods over a wide range of parameters.
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Figure 9: The average precision at top 20 images retrieved versus various pa-
rameters when 3 queries are available on Corel dataset.
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Figure 10: The average precision at top 20 images retrieved versus various
parameters when 3 queries are available on CMU PIE dataset.

7. Conclusion

This paper introduces a novel ranking algorithm called Multi-Query Par-
allel Field Ranking, to enable more effective relevance feedback image re-
trieval. By using techniques from vector field theories, we are able to build
multi-query information into a single objective function. By requiring the
gradient field of the ranking function to be as parallel as possible and to
point to the queries in their neighborhoods, the obtained ranking function
varies linearly along the geodesics of the data manifold and achieves the
highest ranking score at the multiple queries simultaneously. The experi-
mental results on Corel and CMU PIE datasets show that our approach can
significantly improve the image retrieval performance.

Our primary interest in this paper is focused on relevance feedback image
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retrieval. However, our results may also be of interest to researchers in
Web search and recommender systems, where the user may have multiple
information needs.
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