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ABSTRACT

Graph convolutional networks (GCNs) are a powerful class of graph
neural networks. Trained in a semi-supervised end-to-end fashion,
GCNs can learn to integrate node features and graph structures
to generate high-quality embeddings that can be used for various
downstream tasks like search and recommendation. However, ex-
isting GCNs mostly work on homogeneous graphs and consider a
single embedding for each node, which do not sufficiently model
the multi-facet nature and complex interaction of nodes in real-
world networks. Here, we present a contextualized GCN engine
by modeling the multipartite networks of target nodes and their
intermediate context nodes that specify the contexts of their inter-
actions. Towards the neighborhood aggregation process, we devise
a contextual masking operation at the feature level and a contex-
tual attention mechanism at the node level to achieve interaction
contextualization by treating neighboring target nodes based on
intermediate context nodes. Consequently, we compute multiple
embeddings for target nodes that capture their diverse facets and
different interactions during graph convolution, which is useful for
fine-grained downstream applications. To enable efficient web-scale
training, we build a parallel random walk engine to pre-sample con-
textualized neighbors, and a Hadoop2-based data provider pipeline
to pre-join training data, dynamically reduce multi-GPU training
time, and avoid high memory cost. Extensive experiments on the
bipartite Pinterest graph and tripartite OAG graph corroborate the
advantage of the proposed system.
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1 INTRODUCTION

Graph convolutional networks (GCNs) have recently received sig-
nificant attention for the task of extracting information from large
graphs [3, 12, 15, 16, 18, 22, 32]. This is in part due to their fun-
damental connection to spectral graph theory and thus provable
representation power [4, 11, 38], as well as due to their promising
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performance on several graph mining benchmarks [10, 31, 45]. To
harness the power of GCNs, GraphSage utilized batch-wise train-
ing through fixed-sized neighborhood sampling [10]. It was later
adapted into a robust enterprise-scale version called PinSage [44]
and deployed at Pinterest. PinSage was shown to be extremely ef-
fective at recommending similar pins based on the industry-scale
pin-board graph. However, one key limitation of existing GCNs is
that they cannot distinguish multi-facet node properties and com-
plex node interactions, which manifests due to their homogeneous
treatment of node links. As illustrated in Figure 1(a), in real-world
industrial platforms like Pinterest, state-of-the-art GCN models mix
all related nodes in a single embedding space.

Present work. In this work, we argue that nodes in a network are
connected due to different reasons and are thus close to each other
in different ways, which cannot be simultaneously captured by a
single embedding. To this end, we propose MULTISAGE, which is
based on a novel idea of contextualized multi-embedding, where we
compute multiple embeddings for network nodes to capture their
contextualized interaction in the corresponding multiple embedding
spaces. Figure 1(b) illustrates the scenario where MULTISAGE re-
trieves and organizes nodes related to the query under different
contexts in multiple embedding spaces. Our MULTISAGE answers
two important questions: (1) how to find proper context; and (2)
how to leverage context in massive real-world networks to facilitate
effective and flexible downstream applications.

RQ 1: How to find proper context? Real-world applications often
care most about particular types of nodes (e.g., papers in academic
graphs, users in social networks, etc. [8, 44, 48]). However, we ob-
serve that real-world networks are often multipartite, i.e., including
multiple types of nodes, which naturally provides the context of
interactions between the nodes. Due to this observation, we find it
beneficial to model target nodes and context nodes in multipartite
networks, where the interactions between the target nodes can be
subtly modeled via the help of context nodes.

To help illustrate this idea consider the example of Pinterest,
where users interact with pins (e.g., images in Figure 1) mostly by
pinning them to personal boards, thus creating a massive bipar-
tite pin-board graph. Since the embeddings of pins are critical for
various downstream services like search and recommendation, we
regard all pins as the target nodes and aim to compute high-quality
contextualized multi-embeddings for them. At the same time, we
regard each board node as a context node as it encodes key details
of the relationship between the two pins that coexist on that board.

The intuition behind leveraging boards to contextualize inter-
actions among pins is natural—for example, if the paths connect-
ing two particular pins mostly pass through fashion boards, the
embeddings of the two pins are likely close because they both de-
scribe fashion related items. Besides simplicity, we also find the
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Figure 1: A toy example of related pin recommendation in Pinterest. In Subfigure (a), given the query pin (in red), PinSage
computes a single pin embedding and mixes up all related pins. On the contrary, in Subfigure (b), we compute multiple pin
embeddings based on different boards (e.g., fashion and crafts), which naturally organizes related pins according to their con-
textualized distances to the query and effectively distinguishes relatedness in different perspectives (fashion models are drawn
towards the query in the first space, whereas craft clothes in the second).

idea general—for example, on a publication network like OAG,! if
two papers are mostly connected by paths passing through a data
mining venue, they are likely close because they both study data
mining problems.

RQ 2: How to leverage context? We propose MULTISAGE, which
leverages ubiquitous graph context in real-world multipartite net-
works to extend GCN by injecting interaction contextualization into
its critical neighborhood convolution process, where we dynami-
cally compute multiple embeddings for each target node under the
conditions implied by different context nodes. Particularly, we de-
sign a novel GCN architecture with a learnable contextual masking
operation based on context node features for flexible feature-level
embedding projection, and a three-way contextual attention mech-
anism for node-level neighbor reweighing during graph convolu-
tions. To fully capture the rich information in web-scale networks,
we further implement a parallel contextualized random walk engine
and an efficient Hadoop2-based data provider pipeline to pre-join
and dynamically feed training data to the multi-GPU model trainer,
which allows scalable model training on massive networks with
millions to billions of nodes.

We conduct extensive experiments and case studies on an enter-
prise Pinterest pin-board network as well as a public OAG publi-
cation network. The advantages of MULTISAGE are intriguing not
only because it outperforms various state-of-the-art baselines with
significant margins (9%-25% on MRR over the production model
of PinSage) by incorporating rich and subtle network information,
but also due to its corroborated utility in generating flexible and
meaningful multi-embeddings that naturally paves the way to fine-
grained search and recommendation.

https://www.openacademic.ai/oag/

2 OUR APPROACH

2.1 Preliminaries

Following abundant recent works on GCN [3, 10, 22, 49], we take
[15] proposed by Kipf and Welling as a representative to briefly
recapitulate its main design. Particularly, the output of the (I +1)-th
convolutional layer H+D of GCN is computed as follows

HO = o (Bt AT HO W), )

where A is the graph adjacency matrix with self-connections, D;; =
2 A; s WO is the trainable layer-wise weight matrix, and o (-) is
a nonlinear activation function such as ReLU or Sigmoid. H ¢
RN*D js the output of the [-th layer, with HO =X ie,the original
node features.

One major drawback of [15] is the requirement of putting the
whole graph (i.e., A,D € RN*N) into the main memory (or GPU
memory), which limits the training to graphs with only thousands
of nodes. To address this issue, GraphSage [10] proposed to sample a
fixed number of neighbors in each convolution layer and aggregate
the neighborhood embedding as follows

h%f(g = AGGREGATE({h", vu € N (v)}), @)

where N (v) is the sampled neighborhood of node v, and AGGRE-
GATE is the aggregation function such as mean pooling.

To fully leverage the model capacity of GCN and scalability
of GraphSage, PinSage [44] was developed at Pinterest for the
particular task of related pin recommendations. To suit this real-
world recommendation task, a series of techniques were adopted,
while the major one lies in the triplet-wise optimization objective
based on max-margin ranking as follows

J (vg,vp, vn) = max{0,hf, ho, —h h§ +5), 3)
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Figure 2: Target-context separation of Pinterest network.

where § is a margin hyper-parameter. In each triplet (vg, vp, vp),
vg and v), are the query and positive nodes sampled from available
training data (e.g., related pin pairs generated from users’ interac-
tions with pins), while vy, is the negative node sampled from Py, (vq)
(i.e., the distribution of negative examples for vg).

2.2 MULTISAGE

In this work, we leverage the heterogeneity of real-world networks
by separating nodes into two main types: target nodes and context
nodes. Our main focus is to learn embeddings of the target nodes,
while using the context nodes to describe the relationship between
the target nodes. Figure 2 gives an example of separating the multi-
partite Pinterest network into target nodes (i.e., pins) and context
nodes (i.e., boards), where pins are related to each other via boards.
Note that, we make two assumptions to achieve such desired simpli-
fications of the otherwise complicated heterogeneous networks: (1)
minimum domain knowledge is available to separate target nodes
from context nodes; (2) most important interactions among target
nodes involve context nodes. To show that both assumptions are
general and realistic, we give examples of a few commonly used
multipartite networks in Table 1. We note here that while in this
work, we consider only one type of context node (boards), our
framework can easily incorporate other types, such as users and
sessions, simultaneously.

Similar to GraphSage, MULTISAGE learns an embedding for a
given target node (say v - also referred to as ego target node) based
on its neighboring target nodes (Ny). However, unlike GraphSage
which would employ the same aggregation function for all the
neighbors, MULTISAGE leverages context nodes that underpin the
interaction between the ego node and its neighbors. Let us first
outline the importance of context during neighborhood aggrega-
tion via an example. In Figure 3 (a), when three neighbor pins are
aggregated through mean pooling, the resulting neighborhood em-
bedding simply lies in the center of the three pins, reflecting the
same influence of all neighbors on the ego. In contrast in Figure 3
(b), two neighbor pins are connected via the fashion board while
the other one via the crafts board, thus drawing the neighborhood

Other context
director, actor

Dataset Target | Context
IMDB [40] | movie genre
TCGA [43] | gene | pathway | disease, species
OAG [27] paper | venue | author, keyword

Pinterest [6] pin board user, session

Table 1: Target and context nodes on different networks.

Figure 3: (a) Absence of context vs (b) presence of context.

embedding more into the fashion direction. Such contextualization
over the target interaction is desirable, since each neighbor is similar
to the ego from a particular perspective, and thus should influence
the ego embedding more in the corresponding subspace. To achieve
this, we need to retrieve the context node(s) between each ego
and neighbor target node pair. For simplicity, we retrieve only one
dominant context node that best encodes ego-neighbor interaction
with a parallel contextualized random walk engine (details deferred
to Section 2.3). As a result, each neighbor u € N, € 7 of the ego
v € T is associated with a dominant context node o ~ (v,u) € C.

Raw feature transformation. Since |7 | and |C| can both be very
large for a real-world graphs (e.g., billions), identity based embed-
ding is impractical. To this end, we adopt the common practice of
feature based embedding for both target and context nodes, which
learns to project and transform raw node features via stacked dense
neural networks as follows

20 = ReLU(WY) . ReLUW " x; +b{") ... + (),
ze = ReLU(WE . ReLUW xe +bY) ... +BI), (9)

where x; and x. are the raw features of target and context nodes,
respectively, and {ng),bgk),wgc),bgk),\v’k ef{1,... ,K}} are the
learnable parameters, which are independent of the graph size (|77|
and |C]). z; and z. represent the embeddings of the target and the
context nodes, respectively.

Contextual masking. The next step is to transform and aggregate
target embeddings z; based on context embeddings z.. Motivated by
the example in Figure 3, we design and apply a contextual masking
operation by first keeping the size of z; and z. to be the same, and
then element-wise multiplying the embedding of the context node
z.(0) onto the embeddings of both ego and neighbor target nodes
z;(v) and z; (u) as follows

Zi|c = 2t ® Zc. (5)

Note that, since the last embedding layer of z. is ReLU, certain
dimensions can be learned to be zero, which effectively “masks out”
irrelevant dimensions, so as to project the target embeddings into
particular subspaces directly controlled by the context embeddings,
which exactly matches the geometric intuitions in Figure 3 (b).

Although the contextual masking operation is geometrically
intuitive, to be comprehensive, we also explore and employ other
schemes to compute z;|.. Motivated by the popular translation
based relational models [2, 35], we compute Zt|c = Zt ® Z¢, which



“translates” target embedding into different spaces by element-wise
summation with context embedding. Moreover, motivated by the
power of dense neural networks [24], we also attach freely learnable
dense neural networks to the concatenation of target and context
embedding, i.e., z; = ReLU(Wp(zt Qz) + bp).

Contextual attention. Contextual masking allows us to project
different ego-neighbor pairs into various embedding subspaces,
so as to emphasize contextualized interaction among target node
pairs regarding particular embedding dimensions at the feature
level. However, it does not consider the overall impact of differ-
ent neighbors on the ego at the node level, especially under the
consideration of different interaction context.

Motivated by the attention networks [29, 31], we design a novel
contextual attention mechanism, by jointly computing an attention
weight for each ego-context-neighbor triplet, (v, o, u) =

eXP(T(aT [Watzs(v) © Wacze(0) © Warzs (u)]))

Zu’END,o’~(v,u/) eXP(T(aT [Watzt(v) O} Waczt(ol) OWgrzs (ul)]))
(6)

where {a, Wg;, W} are the learnable attention parameters (W,
for target embedding and W, for context embedding), and 7 is
the LeakyReLU activation function following [23, 31]. a(v, 0, u) is
learned to assign different weights to neighbors based on the em-
bedding of both context o and target pair (v, u), so as to allow graph
convolution at each ego to raise attention to important neighbors
and contexts. To further improve the capacity and stability, we
exploit multi-head attention [29, 31] to compute the aggregated
contextualized embedding as follows

D

TACETEDY D .0.0) 21e(0)) ()
d=1ueN,,o~(v,u)

where o is the Sigmoid function and x can be either v or u. While
being expressive, our multi-head contextual attention mechanism is
also feature based and cheap to compute. Particularly, all attention
parameters {a(d),ng),Wfldc),d € {1,...,D}} are shared across all
the links in the graph and independent of graph structure and size.
Training objective. For MULTISAGE, we directly add the contextu-
alized ego embedding zx;, (v) and neighbor embedding z;, (u) as
the final MULTISAGE embedding h(v). For training loss, we follow
the foot-steps of PinSage and take query-positive pairs (vg, vp),
and apply the negative sampling strategy [37, 44] to generate query-
positive-negative triplets (vq, Up, vn). The MULTISAGE embeddings
for Vg, Up and v, are optimized with the loss function in Eq. 3.
In Algorithm 1 (see Appendix), we provide the pseudo-code and
implementation details of our proposed MULTISAGE convolution
process. Figure 4 illustrates the detailed architecture of MULTISAGE.

2.3 Web-scale Implementation of MULTISAGE

Now we consider the implementation of MULTISAGE on web-scale
multipartite networks.

Parallel contextualized random walk. The first complexity of
MULTISAGE lies in the multi-layer graph convolutions, which re-
quires the retrieval of multi-order neighbors on the graph during
training. Since neighbors of a node can be almost anywhere on the
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Figure 4: The overall neural architecture of MULTISAGE.

graph due to the small world phenomenon [36], keeping adjacency
matrix in memory does not scale. Another approach is to compute
minibatches with fixed numbers of neighbors [10], but such mini-
batches still become too large and complex when the convolution
depth increases.

To simplify the multi-layer architecture of GCN while main-
taining its long-range propagation ability, we consider [16], which
shows that a single-layer GCN with neighbors sampled according
to personalized PageRank scores can mimic the behavior of multi-
layer GCNs while avoiding graph over-smoothing. To leverage this
observation, we use a parallelizable random walk engine to sample
a fixed number of higher-order neighbors for each target node and
store them in a database before model training.

The random walk engine also retrieves the context nodes be-
tween an ego-neighbor pair of target nodes. However, it is not
realistic to keep all the intermediate context nodes as it will blow
up in size and pose challenges to the design of the contextualized
graph convolution. It is also not necessary, because although each
ego node can have multiple facets, usually only one facet is active
when it interacts with a particular neighbor node. Therefore, we
use a lightweight greedy algorithm based on stream data process-
ing [1] to retrieve only one dominant context node per ego-target
node pair. This is achieved by running multiple random-walks from
the ego node and identifying the most frequently visited context
node when a target node is also visited in the same random-walk.
Algorithm 2 (see Appendix) provides details of our parallel con-
textualized random walk.

Hadoop2-based data provider. The second complexity lies in
the retrieval and joining of node features. For example, consider a
Pinterest graph with 1 billion pins, each with 64-dim float visual fea-
tures and 128-dim short-int textual features. The feature store of all
pins will take 1TB space. During training and inference, again since
the neighbor of a node in the current batch can be anywhere on
the graph, neighbor retrieval is fast enough only if the 1TB graph is
completely stored in memory. This approach, though expensive, has
been adopted for PinSage under the support of the Linux HugePage
technology [44]. However, it is hard to acquire many dedicated
machines with such large memory for rapid model development
and training, and it constrains the inclusion of additional data and
signals as a path to further model improvements.



To remove the requirements of large memory, we develop a
Hadoop2-based data provider with pre-computed neighbor datasets
and AWS S3 streaming. The idea is to sample and fix the neighbor
lists S of all target nodes 7~ on G with Algorithm 2 offline, pre-join
the large feature stores with S and store the results on S3 cloud.
During training and inference of MULTISAGE, it is then possible to
dynamically prepare minibatches of nodes with neighbors, both
already joined with the features, so as to avoid the heavy joining
operation online. We develop an efficient and robust pipeline that
handles tremendous amounts of data (more than 60TB intermediate
data during a full join of all neighbor lists with the feature stores),
and synchronize the model training and inference on multiple GPUs
with S3 streaming through dedicated stream data loaders.

3 EXPERIMENTS
3.1 Experimental Setup

Dataset preparation. From Pinterest, we collect a pin-board graph
of 76M pins, 15M boards, and 2.7B pin-board links. In addition, we
collect a paper-venue graph of 87M papers, 46K venues and 87M
paper-venue links from OAG [26, 27] where all pairs of identical
papers have different titles, to further evaluate the generalizability
of MULTISAGE. Since in Pinterest and OAG, the most important
use cases for search and recommendation are around pins and
papers respectively, we model pins/papers as the target nodes, and
boards/venues/keywords as the context nodes.

For Pinterest, we collect training data based on the repin signals.
A repin pair (g,i) € R is created when a user stores a pin i after
exploring potentially related pins of ¢, which is a valuable signal
indicating that the user likes the recommendation of i based on g (i
and q are related in certain ways). A good model should be able to
learn to capture the similarity between i and q. We remove repin
pairs with low frequencies (e.g., less than 2 times) to reduce noise,
and keep a maximum number of repin pairs for the same query
(e.g., 20) to reduce bias. In our experiments, we collect a set of 75M
repin pairs. We create separate validation sets from all training data
by randomly sampling 1M from the 75M pairs.

For OAG, we collect 14M pairs of identical papers on Microsoft
Academic Graph and Aminer. Since most pairs are easy to classify
simply based on paper contents like titles, we further pick 72K from
the 14M pairs with different titles for model training and evaluation.
Similarly to Pinterest, a random set of 10K pairs are separated from
the 72K pairs, which is only used for evaluation.

Baseline algorithms. We mainly compare with the state-of-the-
art production model PinSage currently deployed at Pinterest, to-
gether with a few other commonly used embedding methods lever-
aging various signals with advanced mainstream deep learning
models [44]. The baselines we compare include

e Visual: The unified visual embedding used as pin features.

o Textual: The conceptnet textual embedding used as pin and
paper features.

e Combined: The combination of visual and textual embeddings
used as pin features.

e Pixie [6]: Graph-based ranking through aggregating random-
walk visiting counts deployed at Pinterest, which essentially
computes the popular Personalized PageRank scores [13].

o PinSage [44]: The state-of-the-art production pipeline that com-
putes pin embeddings by incorporating visual, textual and graph
signals currently deployed at Pinterest (V5).

e GAT [31]: Our implementation of graph attention networks
based on PinSage V5 for scalable training.

e HAN [34]: Our implementation of heterogeneous graph atten-
tion networks based on PinSage V5 for scalable training.

Note that, only HAN and our MULTISAGE variants can model the
context nodes between target nodes, whereas Pixie, PinSage and
GAT can only model the homogeneous network of target nodes by
ignoring their different interaction contexts.

Evaluation metrics. We evaluate the performance of different
models based on a separate set of evaluation node pairs P47
For each pair p = (q,i) € Peyar, We use q as a query and then
compute a set of metrics based on the ranking position of i among
a fixed pool 7 of 1M evaluation nodes. The ranking is done based
on exact cosine similarity for all embedding methods except Pixie,
which directly returns a rank list of nodes given a query. Similar
to [44], we compute the scaled Mean Reciprocal Rank as MRR =
m 2(qD)ePuvar m, where R; g is the rank of i among 7.
M is the scaling factor ensuring the difference between large ranks
to be still noticeable. We use Mg = 10 which is smaller than 100 used
in [44], because we now use a smaller pool 7 of nodes for faster
evaluations and also because all baselines including PinSage have
been largely improved in the past one year, which makes the ability
to distinguish between small ranking differences more important.
For the same reasons, for recall@K (short as REC@K, which is
defined as the fraction of queries g where i is ranked among the top
K among 1), we use small K’s such as 10 and 1 to subtly compare
the models.

In addition to the ranking based metrics which only measure
the relative distances among relevant and irrelevant nodes, we also
compute the average cosine distances (DC) and Euclidean distances
(DE) among the embeddings of all nodes (DCx and DE#) and all
relevant nodes pairs (DC+ and DE+). This helps us to understand
the absolute distribution of nodes in the embedding space. A good
embedding method should be able to spread all nodes further apart
to occupy vast areas in the embedding space (large D+’s), while
putting relevant nodes close to each other (small D+’s).

Furthermore, we compute the sets of top-K retrieved nodes for
both g and i (TopK(q) and TopK (i), respectively), and thus compute
the average sizes of intersection (INT = |TopK(q) N TopK(i)|) and
union (UNI = |TopK(q) U TopK (i)|) of the two sets, as well as their
Jaccard index (JAC = INT/UNI). These metrics help us to further
understand how query nodes and positive nodes are distributed in
the embedding space. A good embedding method should put g and i
closer in the embedding space, in the sense that their neighborhoods
TopK(q) and TopK (p) has higher overlap, leading to large values
of INT, small values of UNI, and large values of JAC.

Due to paper space limit, we put more details about dataset
preparation and model training in Appendix B.

3.2 Quantitative Evaluation

Overall comparison. We first compare MULTISAGE against all
baseline methods on the related pin recommendation task based
on repin pairs, which is the most classic evaluation scenario in



Pinterest MRR REC@! REC@10 | DC+ DC*  DE+ DE* | INT UNI _ JAC
Visual 04406 01710 03606 | 0.4194 0.6337 09101 1.1255 | 23.32 17467 0.1506
Textual 05741 01888 04965 | 0.3414 07614 0.7549 1.2050 | 31.78 166.21 0.1917
Combined | 04438 0.1731 03635 | 0.4190 0.6340 0.9096 1.1258 | 23.44 17453 0.1512
Pixie 03093 00418 02169 | N/A N/A N/A NA | 2132 17665 0.1351
PinSage 0.8759 04928  0.8234 | 0.2655 0.9279 07161 13593 | 47.30 150.69  0.3302
GAT 0.8880  0.5357  0.8665 | 0.2532 0.9343 0.7060 13618 | 48.70 149.24  0.3572
HAN 09013 05653  0.8838 | 0.2501 0.9415 0.6907 1.3558 | 50.29 148.83  0.3672
MuLTISAGE-2 | 0.9569 0.6215  0.9326 | 0.2316 0.9655 0.6660 1.3871 | 53.95 144.04 0.3906

OAG MRR REC@! REC@10 | DC+ DC*  DE+ DE* | INT _UNI _ JAC
Textual 0.1418  0.0273  0.0399 | 0.1081 04788 0.2814 1.0557 | 33.10 16487 0.2193
Pixie 03126 01054 02642 | NJ/A N/A N/A  NA | 3658 160.76 02517
PinSage 05682  0.1845 05193 | 0.1238 0.6381 03179 1.1577 | 41.13 156.80  0.2935
GAT 0.6059 02355  0.5498 | 0.1104 0.6416 0.2908 1.2022 | 43.02 15570 0.3144
HAN 0.6214 02641 05749 | 0.1005 0.6543 0.2869 1.2383 | 44.96 15449  0.3200
MULTISAGE-2 | 0.6874 03270  0.6455 | 0.0836  0.6989 0.2542 12769 | 48.63 14897  0.3602
MuLTISAGE-3 | 0.7026 0.3614  0.6875 | 0.0814 0.7127 02583 1.3058 | 51.63 145.40 0.3891

Table 2: Performance of state-of-the-art large-scale embedding methods for general recommendation.

Method Home Decoration Women’s Fashion
MRR REC@1 REC@10 MRR REC@1 REC@10
PinSage 0.8021/0.8067 0.4195/0.4257 0.7439/0.7460 0.7537/0.7545 0.3754/0.3759 0.6838/0.6976
MULTISAGE | 0.8407/0.8488 0.4899/0.5160 0.7954/0.8146 | 0.8058/0.8294 0.4363/0.4711 0.7533/0.7806

Table 3: Off-task utility of embeddings produced by PinSage and MULTISAGE in shopping recommendation.

Pinterest due to its close connection to user engagement [44]. Simi-
larly, we also present results on same paper identification based on
the paper pairs on OAG. Table 2 shows the comprehensive set of
evaluation metrics computed on both datasets. The differences in
the performances between MULTISAGE and baselines all passed the
standard paired t-test with p-value 0.01.

MULTISAGE-2 is our model on bipartite networks (i.e., pin-board
networks of Pinterest and paper-venue networks of OAG). As we
can see, it consistently outperforms all baselines with significant
margins in all cases, which provides a strong signals towards its
effectiveness and robustness in utilizing network contexts. In Par-
ticular, the performance gain over PinSage and GAT clearly demon-
strates its broader model capacity regarding context nodes, while
the improvements over HAN also corroborates its appropriate
model design for handling the multipartite contexts.

To show that MULTISAGE is general and lends itself to model-
ing multipartite networks with more than two types of nodes, we
further incorporate keywords into the OAG network to form a
tripartite network by linking each paper to its keywords. During
convolution (Algorithm 1), we compute two sets of context embed-
dings for each paper based on both the neighboring venues and
keywords, which have the same neural architecture (Eq. 4-7) but
different sets of learnable parameters. We observe that MULTIS-
AGE-3, which is computed on the tripartite network, can lead to
additional performance gain, thus indicating the generalizability of
our proposed system.

Off-task analysis. In addition to related pin recommendation, we
now focus on the comparison between MULTISAGE and the produc-
tion model PinSage to evaluate how the learned pin embeddings can
influence the performance of other important but not directly re-
lated tasks. For instance, besides the repin signals that quantify user
engagement, shopping signals are impactful in monetization. How-
ever, since high-quality shopping pairs are expensive and scarce,
can an embedding model trained based on repin signals be useful
in a shopping recommendation task?

Table 3 presents the off-task utility of pin embeddings on shop-
ping recommendation. As we can observe, the gap between MuL-
TISAGE and PinSage change from those evaluated on repin pairs,
but the advantage of MULTISAGE is clearly maintained, indicating
its general beneficial effects on different related tasks. We further
randomly take out half of the shopping pairs from the evaluation
set and mix into the training data of repin pairs. The second value in
the last two rows of Table 3 are computed from embeddings trained
with the mixture of repin and shopping pairs. As we can observe,
MULTISAGE is able to improve significantly on the shopping metrics
given additional shopping pairs for training, while the performance
of PinSage almost stays the same. Note that, although related, sim-
ilarity among repin pairs and shopping pairs might be slightly
different. The results indicate that such subtle differences might be
more effectively captured by MULTISAGE, which deliberately takes
the contextualized proximity of nodes into account.

Ablation tests. To demonstrate the utility of our proposed tech-
niques of contextual masking and contextual attention, we compare
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Figure 5: Performance of different model variants on Pinterest. Scores are computed every 10K iterations on the testing data.

multiple MULTISAGE variants with different model designs as in-
troduced in the previous section, which are inspired by common
practices in recent neural network models. We also conduct ablation
tests with several variants of MULTISAGE:

e trans: Adding context, target embeddings before aggregation.

e concat: Concatenating context embeddings to target embed-
dings and computing a learnable projection before aggregation.

e mask: Applying the learnable contextual masking operation to
the target embedding according to Eq. 5 before aggregation.

o mask-diff: Contextual mask plus difference based aggregation
(more details in Section 3.3.1).

e mask-atn (MULTISAGE): Contextual masking plus contextual
attention based aggregation according to Eq. 6, which constitutes
the final version of our proposed MULTISAGE model.

Figure 5 shows the main metrics we measured during the train-
ing of different model variants on the Pinterest graph. As we can
observe, the full MULTISAGE model with contextual masking and
contextual attention is able to converge most rapidly to stable per-
formance and outperform all other model variants, indicating the
reasonableness of our model design in achieving efficient and effec-
tive contextualized multi-embedding.

Scalability study. We study the scalability of our MULTISAGE pipeline
from three perspectives: parameter complexity, runtime complexity,
and storage complexity.

As we claim in Section 2, the model parameter complexity of
MULTISAGE is independent of the graph sizes. Empirically, the train-
ing time complexity is linear with the number of training batches.
In practice, as similar to PinSage, we find MULTISAGE to converge
before a full epoch through all training pairs, which results in only
a slightly longer runtime than PinSage within the same pipeline
and hardware settings, due to the processing of additional train-
ing features and updating of additional model parameters. How-
ever, training on the AWS GPU machines synchronized with our
Hadoop2-based data provider pipeline leads to around a 25% reduc-
tion in runtime in comparison with the original Pinsage pipelines,
while maintaining extremely close evaluation metrics.

Regarding storage, the original pipeline of PinSage requires the
whole training graph (e.g., over 2TB for the production graph in
Pinterest) to be stored in memory for fast random access during
neighbor aggregation, which was supported by Linux HugePage. As
for our Hadoop2-based MULTISAGE pipeline, we completely remove
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Figure 6: Attention over different self-neighbor pairs.

this memory requirement by pre-joining and storing all data on
AWS S3 and using dedicated stream data loaders to train the model
on multiple GPUs. As a direct benefit, this new training pipeline
reduces the resources needed for MULTISAGE model training, and
allows us to further increase the size of training graphs by adding
various other features and signals upon availability.

3.3 Qualitative Exploration

Model visualizations. Although the usage of attention is intu-
itive for weighing the neighbors during graph convolution [31], it
is unclear exactly how attention exactly weighs different neighbors.
One interesting assumption could be that since GCN is ultimately
conducting graph-based feature smoothing [18], attention might
help stabilize this process by assigning less weight to more dif-
ferent neighbors based on the current embeddings. Based on this
assumption, we designed the difference-based aggregation function
by computing a weight for each neighbor u € N, based on the
embedding distance distance between u and the ego v, which is
shown to be beneficial in Figure 5 (mask-+diff). Here, through partic-
ularly designed model visualizations, we aim to further study how
the attention mechanism works and why it is better than simple
difference-based weights.

In Figure 6, we fix the ego embedding to all zeros, while varying
each of the 256 dimensions of the neighbor embedding so as to
change the norms of the (a) summation and (b) difference of ego
and neighbor embeddings along the X-axis. The Y-axis denotes the
average attention weights yielded by the attention network learned
on the Pinterest dataset. Each colored curve corresponds to the
changes on one of the 256 dimensions, while the thick yellow curve
denotes the average of all thin curves. As we can observe from
both subfigures, attention learns to put different stress on different



Query Pin

Fashion
Model

Query Pin

Decorative
Accessory

Board Mask | {Christmas) 1

Board Mask |l (Decorafion)

Figure 7: Examples of Pinterest pins recommended under
different board-indicated semantic contexts.

dimensions. Moreover, in (a), attention generally puts more weights
to neighbors that sum up with egos to have larger norms, and in
(b), it puts slightly less weights to neighbors that are more different
from egos. In this sense, attention generalizes and is more powerful
than simple difference-based weights. In the multi-head attention
setting, we observe the aggregated behaviors of multiple attention
networks to be similar to those of the single-head attention, but the
particular neighbor weights are assigned based on slightly different
embedding dimensions, which could have further improved the
attention capacity.

Case studies. In the previous experiments, although we compute
multi-embeddings during graph convolution, we only use the aggre-
gated embeddings to evaluate the overall item similarity due to the
lack of evaluation data for multi-embeddings. Now we showcase
how to leverage the multi-embeddings we learn for fine-grained ap-
plications such as contextualized recommendation. In the future, it
will be important to further study the quality of multi-embeddings
in a more principled and quantitative fashion.

Rather than generalized recommendation [44], in contextualized
recommendation, we aim to rank items (e.g., pins) based on contexts
(e.g., boards), which is flexibly personalized towards fine-grained
semantics. In Figure 7, we use two random real cases from Pinterest
generated based on the learned MULTISAGE model to demonstrate
its utility in the important but seldom studied task of contextualized
recommendation in the real world. Specifically, given a query pin

of a fashion model (decorative accessory), rather than returning
a list of generally relevant pins, we can choose arbitrary boards
like fashion and crafts (Christmas and decoration), apply the cor-
responding learned board-based contextual masking on the base
embedding of both query and candidates, and retrieve lists of pins
that are relevant to the query in the corresponding perspectives.
Such flexible contextualization can be easily combined with any
existing search or recommendation services to enable fine-grained
effective and interpretable personalization.

4 RELATED WORK

While the development of MULTISAGE is driven by the novel concept
of contextualized multi-embeddings, we draw connections between
it and various widely applied techniques in related fields.

Message passing on graphs. As an instance of GCN-based mod-
els, MULTISAGE can be regarded as message passing neural networks
[5, 9, 32]. Existing works learn the same filter functions for all nodes
[3, 10, 15, 42, 44] or edges [17, 25, 31, 47]. A few recent works ex-
tend GCN to the heterogeneous network setting [25, 34, 41, 46] by
simultaneously modeling multiple types of nodes and links. How-
ever, they do not focus on any particular types of nodes and devise
dedicated GCN layers to each type of links, thus bringing in lots of
unnecessary complexity and instability.

Local and global graph convolutions. The power of GCN comes
from its learnable convolutions among graph local neighborhoods
[15], which is closely related to spectral smoothing in the Fourier
domain [4, 11]. Empirical studies [10, 31, 45] and theoretical analy-
ses [22, 38] also show the benefit of stacking multiple convolution
layers to capture the global graph structures. However, more con-
volution layers lead to more complex and less stable models, which
are harder to train and scale, and sometimes lead to worse perfor-
mance due to the phenomenon of over smoothing [18]. To capture
both local and global structures while avoiding the drawbacks in
complexity and instability, we join the spirit of [16, 32, 44] to reduce
the GCN-core of MULTISAGE to single-layer and use random walk
with restart to account for both direct and higher-order neighbors
during graph aggregation.

Relational models. Although seldom considered in traditional
network mining [28], relational models have been widely studied
on knowledge bases [2, 19, 20, 35, 39]. They jointly model entities
and relations in correlated embedding spaces, which are connected
by particularly designed translation functions. For example, TransE
[2] models the entity on one side of the relation as a summation of
the entity on the other side and the relation itself, while some others
transform the embedding spaces before the translations through
linear summation [19, 35] or projection [20, 39]. For MULTISAGE, we
find the projection (i.e., masking) operation more powerful, because
it changes the distance metric in the translated spaces, which allows
the modeling of different contextualized interactions between the
same pairs of nodes.

Conditional similarity networks. Conditional similarity is pro-
posed in [30] to model the possibly different similarities between
the same pairs of images, conditioned on different semantic aspects
of focus. MULTISAGE takes a close approach in spirit to model the
different node interactions on graphs under different contexts.



Recent works on network multi-embedding. During the writ-
ing of this paper, we notice several recent works on network condi-
tional similarity and multi-embeddings [7, 14, 21, 33], which rein-
forces the approach taken in this work. In particular, [7, 21] leverage
additional graph clustering algorithms to find latent aspects of node
similarity, whereas [14, 33] leverage fixed categories or textual pat-
terns to define the different conditions. MULTISAGE is closer to
[14, 33], since it also relies on explicit data in addition to the tar-
get networks. However, MULTISAGE is essentially different from
[14, 33], due to its ability for flexible contextualization in continu-
ous feature spaces, unified leverage of the powerful GCN models,
and remarkable scalability.

5 CONCLUSIONS

In this work, for the first time, we propose to improve GCN with
novel contextualized multi-embeddings. To leverage rich contexts
on real-world multipartite networks, we design a powerful GCN
engine that flexibly computes multiple embeddings for the tar-
get nodes based on the context nodes during graph convolution.
Extensive experiments and case studies demonstrate the effective-
ness and efficiency of our proposed GCN engine in both general
and fined-grained recommendation in the real world. For future
work, it would be important to further study the quality of multi-
embeddings in a principled and quantitative manner, as well as how
much the contextualized embeddings can help in recommending
less popular and more fresh items under different contexts.
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APPENDIX A: Algorithm Pseudo-Code and
Implementation Details

MULTISAGE convolution. With the novel contextual masking op-
eration and contextual attention mechanism introduced in Section
2.3.1, we formulate our proposed MULTISAGE convolution proce-
dure in Algorithm 1. The contextual masking operation in Line 3
allows the graph convolution to be focused on subspaces indicated
by corresponding interaction context at the feature level, while
the contextual attention mechanism in Line 4 allows the graph
convolution to bias towards neighbors with certain important inter-
action context at the node level. Line 6 applies normalization to the
final MULTISAGE embedding for stable training and efficient nearest
neighbor search in the subsequent tasks like recommendation.

Algorithm 1 MurTISAGE Convolution

Input: ego feature x,,, neighbor features {x,, Yu € Ny}, con-
text features {x.,Yc ~ (v,u),u € Ny}
Output: MULTISAGE embedding h,, for ego node v

: Comp. target embedding z; (v), z; (u) w.r.t. Eq. 4

Comp. context embedding z.(c) w.r.t. Eq. 4

Comp. contextualized embedding z;«c(v), Zt«c (u) wrt. Eq. 5

: Comp. aggregated embedding zy;, (v),zy, (u) wr.t. Eq. 6-8

s hy —zp (V) + 2z, (0)

: hy < hy/|lhyl2

NS I N TSR R

Parallel contextualized random walk. Algorithm 2 outlines the
details of our proposed parallel contextualized random walk al-
gorithm. For each start target node v, we use vis[v], ctx[v] and
dom[v] to record the visiting count, dominant context, and the
‘dominance’ of the context of each end target. In Line 7, a random
walk path of length { is generated through the standard random
walk with restart on graph G, with path[1] as the first context
node and path[-1] as the last target node visited by the walk. Lines
8-15 describe the particular greedy algorithm for context retrieving,
which gets motivation from stream data processing [1]. It does not
always guarantee the retrieval of the most dominant context in
a stream, but can find the near-optimal one in most cases. More
importantly, it is light in both computation and memory, which
keeps the whole procedure highly efficient and parallelizable.
Note that, PinSage also leverages short random walks to sample
node neighborhoods, but it does not replace multi-layer convolution
of direct neighbors with the single-layer convolution of higher-
order neighbors, and it does not consider contexts in random walks.

APPENDIX B: Experimental Setup Details

Dataset Preparation. All node features we use in the Pinterest
and OAG datasets are summarized as follows.

e Pinterest:

— A 2048-dim pin unified embedding is computed based on the
visual signals from the canonical image of each pin;

— A 300-dim pin conceptnet embedding is computed based on
the textual signals from the texts associated with each pin;

— A 1-dim pin degree vector is computed based on how many
neighboring boards each pin is connected to on the pin-board
graph;

Algorithm 2 Parallel Contextualized Random Walk

Input: graph G = {7, C, &}, walk length {, number of walks
Kk, number of threads &, number of neighbors to keep s
Output: sampled contextualized neighbor lists S = {{v :
[(c,u),Yu € Ny, ¢ ~ (v,u)]},Yv € T}

1: Y € T, S[v] « 0, vis[v], ctx[v], dom[v]« defaultdict(int)

2: Start a pool Q of ¢ threads in parallel

3. forvin |7 | do

4 with o = rand(Q)

5 for i in k do

6 path « rand_walk(v, {)

7: vis[v][path[-1]] ++

8 if ctx[v][path[-1]] == path[1] then

9 dom[v][path[-1]] ++

10: else

11: if dom[v][path[-1]]>0 then
12: dom[path[-1]] - -

13: else

14: dom[v][path[-1]] ++

15: ctx[v][path[-1]] = path[1]
16: end if

17: end if

18: end for

19: S[v] « top s target-context pairs w.r.t. vis[v] & ctx[v]
20: end for

— A 300-dim board conceptnet embedding is computed based
on words and phrases in the board names and board descrip-
tions;

— A 300-dim board categorical vector is computed based on the
category labels annotated for each board.

e OAG:

— A 300-dim paper conceptnet embedding is computed based
on the textual contents of papers;

— A 300-dim venue topic vector is computed based on pre-
computed latent topic distributions of venues trough LDA.

— A 300-dim keyword conceptnet embedding is computed based
on the words inside each keyword.

Training details. As for model parameters, we use two separate
three-layer feedforward neural networks (FNN) with sizes 2349 —
1024 — 256 for target embedding for Pinterest (300 — 256 — 128
for OAG), and use another two-layer FNN with sizes 600 — 256
for context embedding for Pinterest (300 — 128 for OAG). A three-
layer FNN with sizes 768 — 128 — 1 is used for the computation of
three-way attention weights for Pinterest (384 — 64 — 1 for OAG).
All FNNss are with ReLU activations. On both datasets, we set the
number of attention heads to 10, the training batch size to 256 and
the number of epochs to 100K. We always use the Adam optimizer
with learning rate 0.0001. The random walk parameters {, x, £ and
s are empirically set to 10, 10K, 128, and 20, respectively, and the
random walk is restarted with probability 0.1 at each target node.
We deploy the data provider pipeline described in Section 2.3 on a
Hadoop?2 cluster with 378 d2.8xlarge Amazon AWS nodes. Model
training is then done in parallel on a p2.16xlarge AWS machine
with 8 GeForce GTX 1080 Ti GPUs.
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