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Abstract—Graphs with abundant attributes are essential in
modeling interconnected entities and enhancing predictions
across various real-world applications. Traditional Graph Neu-
ral Networks (GNNs) often require re-training for different
graph tasks and datasets. Although the emergence of Large
Language Models (LLMs) has introduced new paradigms in
natural language processing, their potential for generic graph
mining—training a single model to simultaneously handle diverse
tasks and datasets—remains under-explored. To this end, our
novel framework MuseGraph, seamlessly integrates the strengths
of GNNs and LLMs into one foundation model for graph
mining across tasks and datasets. This framework first features a
compact graph description to encapsulate key graph information
within language token limitations. Then, we propose a diverse
instruction generation mechanism with Chain-of-Thought (CoT)-
based instruction packages to distill the reasoning capabilities
from advanced LLMs like GPT-4. Finally, we design a graph-
aware instruction tuning strategy to facilitate mutual enhancement
across multiple tasks and datasets while preventing catastrophic
forgetting of LLMs’ generative abilities. Our experimental results
demonstrate significant improvements in five graph tasks and
ten datasets, showcasing the potential of our MuseGraph in
enhancing the accuracy of graph-oriented downstream tasks
while improving the generation abilities of LLMs.

Index Terms—Generic Graph Mining, Large Language Models,
Instruction Tuning

I. INTRODUCTION

GRAPHS with plentiful attributes are widely used to model
interconnected real-world entities, and they are pivotal for

improving downstream predictions across diverse real-world
applications. Recently, Graph Neural Networks (GNNs) have
been commonly adopted for modeling attributed graphs [1],
[2]. However, they are usually trained on specific tasks and
datasets and need to be re-trained whenever applied to different
ones. Inspired by the great success of Large Language Models
(LLMs), the combination of GNNs and LLMs aims to enhance
the processing of text-attributed graphs, which can improve the
model’s capabilities across various tasks and datasets. Existing
studies can be categorized into two main approaches. The
first category tries to train GNNs with LLM-enhanced features
(e.g., LLM-GNN [3], TAPE [4], OFA [5], ALL-in-One [6],
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Fig. 1. An illustrative toy example of the need for a generic graph model that
can be directly applied to various graph-related tasks and datasets.

and GHGRL [7]). The second category explores LLMs for
various graph applications (e.g., GPT4Graph [8], GraphGPT [9],
HiGPT [10], NLGraph [11], and InstructGLM [12]).

Despite the promising direction of integrating LLMs with
GNNs, the full exploration of LLMs’ power and generation
capabilities for graphs has yet to be under-explored [5], [6], [13],
where one powerful graph model can be trained on multiple
tasks/datasets and generalize well to more tasks/datasets. Fig. 1
demonstrates the necessity for a generic graph framework,
showcasing a wide range of task and dataset combinations.
Such a generic graph model can capture the semantic and
structural information not only for various graph tasks (e.g.,
node classification, link prediction, and graph-to-text) but also
for diverse graph datasets (e.g., from IMDB’s movie data to
AGENDA’s academic texts). This enables one single foundation
model to understand graph data by generating contextually rich
textual interpretations that are central to LLMs. However, three
key challenges hinder the achievement of this goal.
Challenge I: How to extract informative graph descriptions
under the limitation of language tokens? To harness the full po-
tential of LLMs for generic graph mining, an essential obstacle
is translating the graph with abundant semantics and complex
structures into a format that LLMs can process effectively,
especially under strict language token limitations. Without a
compact graph description that accurately encapsulates key
information from graphs within the LLMs’ token limitations,
the model’s capabilities to grasp and utilize the graph’s semantic
and structural richness is severely limited, potentially leading
to suboptimal performance in graph applications.
Challenge II: How to automatically generate diverse instruc-
tions? Creating a diverse set of high-quality instructions for fine-
tuning LLMs is fundamental for generic graph tasks. However,
these instructions are often difficult for LLMs to comprehend
when encountering unfamiliar graph structures or new tasks,
and are costly to produce manually. While advanced LLMs
like GPT-4 possess the capabilities to understand and reason
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diverse instructions, it remains unknown how to effectively and
efficiently leverage the reasoning abilities of advanced LLMs
to produce relevant and task-specific instructions.
Challenge III: How to properly allocate instructions for graph-
oriented instruction tuning? The effectiveness of instruction
tuning for LLMs largely depends on how the instructions
are structured, enabling LLMs to accurately understand and
execute graph-related tasks. Balancing a variety of tasks and
datasets presents a significant challenge in facilitating mutual
enhancement across these graph applications while preventing
catastrophic forgetting of LLMs’ generative abilities.

To tackle these challenges, we propose Graph-oriented
Instruction Tuning of Large Language Models for Generic
Graph Mining (MuseGraph), which consists of three pivotal
steps: (i) Development of Compact Graph Descriptions, where
we introduce a novel “node energy” metric to textualize
graphs with essential semantic and structural details under
limited language tokens; (ii) Generation of Diverse Instructions,
which distills the reasoning abilities of advanced LLMs like
GPT-4 to create Chain-of-Thought (CoT)-based instruction
packages tailored for various graph tasks, thus enriching LLMs’
capabilities in understanding and analyzing graph data without
the expense of manual instruction crafting; (iii) Graph-aware
Instruction Tuning, which introduces a dynamic instruction
package allocation strategy based on the specific needs of each
graph task, ensuring comprehensive and effective LLM tuning.

Our overall contributions are summarized as follows:
• Formulation of generic graph mining. We establish a generic

graph framework that effectively and efficiently transforms
graph semantics and structures into LLM-friendly formats
while enhancing the generation capabilities necessary for
diverse graph-related tasks.

• Effective model designs. We design and implement a set
of models and mechanisms, including the development of
compact graph descriptions, automatically generating diverse
task-specific Chain-of-Thought (CoT)-based instruction pack-
ages, and graph-aware instruction tuning, targeting a unified
graph model across tasks and datasets.

• Extensive experiments across graph tasks and datasets. We
conduct thorough experiments to validate our approach with
five tasks and ten datasets, demonstrating its superiority
over existing state-of-the-art methods and highlighting its
effective, generative, and interpretable abilities in enhancing
generic graph mining.

II. RELATED WORK

A. Semantic-rich Graph Representation Learning

Graph representation learning has emerged as a key tech-
nique for the complex structures of networks with abundant
attributes [2], [14]–[16]. Many existing node embedding ap-
proaches have explored and harnessed the significant potential
of Random Walks (RWs) in preserving the graph topological
structures [17]–[20]. However, these approaches overlook
the rich attribute information of nodes and edges on the
graph [16]. Recently, Graph Neural Networks (GNNs) learn
node representations through aggregating content information
from neighbor nodes while preserving the surrounding structure

TABLE I
A COMPARISON BETWEEN MUSEGRAPH AND RELATED METHODS, WHERE
“GNN” AND “LLM” REFER TO METHODS THAT TRAIN GNNS AND LLMS

AS PREDICTORS, RESPECTIVELY.

GNN LLM Cross-Task Cross-Dataset

LLM-GNN [3]  # # #
TAPE [4]  # # #
OFA [5]  #   
All-in-One [6]  #   
GHGRL [7]  # # #

GPT4Graph [8] # # # #
GraphGPT [9] #  #  
HiGPT [10] #  #  
NLGraph [11] # # # #
InstructGLM [12] #  # #
MuseGraph #    

of graphs [1], [21], [22]. However, most current GNNs are
trained within a supervised learning setting, which demands a
large amount of task-specific labeled data and may not always
be available in real-world scenarios [23], [24]. Moreover, the
learned embeddings often lack adaptability across different
downstream tasks [20], which have to be re-trained whenever
applied to various graph applications.

Despite the efforts to reduce reliance on labeled data through
pre-training expressive GNNs through self-supervised methods
(e.g., contrastive learning [23], [25], [26]), their effectiveness
in specific downstream tasks still significantly depends on
the appropriate choice of suitable self-supervision tasks and
attribute encoders [27], [28]. Therefore, there is still a lack of
a uniform framework for generic graph mining across different
tasks and datasets.

B. Leveraging LLMs for Graph Mining

Inspired by the remarkable advancements in Large Language
Models (LLMs), integrating Graph Neural Networks (GNNs)
with LLMs is creating substantial progress in handling complex
text-attributed graphs [3], [29]. Existing approaches that lever-
age this integration can be broadly divided into the following
two categories (shown in Table I).

The first category is training GNNs as predictors, augmented
with LLM-enhanced features, labeled “GNN” in Table I. For
example, the model LLM-GNN [3] used LLMs as annotators
to generate the pseudo labels of nodes used to train GNNs.
TAPE [4] prompted LLMs to obtain the explanations of
predictions to enhance node initial features. PRODIGY [13]
utilized LLMs to encode the textual information associated
with nodes on the graph. OFA [5] described all nodes and edges
using human-understandable prompt texts and converted them
into embedded features by LLMs. All-in-One [6] reformulated
different graph tasks with the unified graph prompts and lan-
guage prompts. GHGRL [7] employed LLMs to automatically
summarize and classify various data formats and types, aligning
node features. These approaches primarily leveraged LLMs to
process textual content within graphs and are often optimized
for specific domains. However, they generally struggle with
cross-task or cross-dataset applications, limiting the generation
capabilities of LLMs across various graph tasks and datasets.
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Fig. 2. The overall of MuseGraph, which consists of Compact Graph Description, Diverse Instruction Generation, and Graph-aware Instruction Tuning.

The second category, denoted as “LLM” in Table I, mainly
focuses on utilizing LLMs to directly perform graph tasks.
For example, GPT4Graph [8] and NLGraph [11] proposed
graph-based benchmarks, evaluating the understanding and
analytical capabilities of LLMs on graph data with designed
natural language prompts. Notably, although they do not fine-
tune LLMs on graph structures, their benchmarks effectively
uncover current limitations and future directions for improving
LLMs’ capabilities in graph comprehension and reasoning.
Both GraphGPT [9] and HiGPT [10] effectively combined task-
specific GNNs with one projector on top of LLMs, enhancing
performance across different datasets. InstructGLM [12] tuned
LLMs with scalable graph prompts based on natural language
instructions, where it can integrate node features from trained
GNNs to improve the accuracy of node classification tasks.
Compared with GNN-based methods, LLM-based methods
have the potential to perform generic graph mining with
powerful cross-task and cross-dataset abilities. However, such
potential remains largely under-explored, as many existing
LLM-based approaches still rely on node representations gen-
erated by GNNs tailored to specific tasks/datasets. According
to the characteristics of different models (shown in Table I),
there is a pressing need for a generic graph framework that can
accurately understand graph data while enhancing generation
capabilities across diverse tasks and datasets.

III. THE MUSEGRAPH FRAMEWORK

A. Overview of Our Framework

Objective: In this paper, we aim to develop a unified framework
that can seamlessly integrate the strengths of Graph Neural
Networks (GNNs) and Large Language Models (LLMs) into
one foundation model via graph-oriented instruction tuning of
LLMs. Through this, we seek to enable a more effective and

generic approach for graph mining across various downstream
tasks and datasets.
Overview: To achieve this goal, we propose MuseGraph
framework, which comprises three major components. Firstly,
we develop a compact graph description mechanism that
captures critical semantic and structural details within the
constraints of language token limitations. Secondly, we generate
a diverse range of instructions via the reasoning capabilities
of advanced LLMs like GPT-4, thus facilitating task-specific
Chain-of-Thought (CoT)-based instruction packages for graph
tasks. Thirdly, we adopt a graph-aware instruction tuning,
utilizing a dynamic allocation strategy for instruction packages
tailored to the unique requirements of each graph task and
dataset. The overall model architecture is shown in Fig. 2, and
we elaborate on the three main components.

B. Compact Graph Description

Leveraging the capabilities of LLMs for graphs presents
a unique set of challenges, primarily due to LLMs’ inherent
limitations in directly processing textual interpretations within
language token constraints. Therefore, it is non-trivial to
automatically encapsulate key information from graphs under
the token limitations, which requires a compact description in-
cluding complex node and edge attributes along with structural
details to accurately describe the graph.

Inspired by common graph analysis techniques such as
neighbors and walks, we propose a novel method of textu-
alization to describe graphs via these concepts. In this way,
neighbors are helpful to understand local connectivity and
feature distribution [1], [21], [22], providing a granular view
of node attributes; while walks offer a dynamic method to
explore the graph’s structure and the high-order relationships
between nodes, highlighting the diversity of connectivity and
paths [19], [20]. The integration of neighbors and walks can
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Algorithm 1: Procedure for generating the compact
graph description tailored to a specified node.

Input: Attributed graph G with N nodes, token count
set T , node energy set H, target node v∗, token limitation
L(v∗)

Output: Key neighbor set N (v∗), key walk set W(v∗)
1: Initialize N (v∗), W(v∗) as empty sets;
2: Select vi ∈ G(v∗) with H(vi) ≥ H(v∗) and

L(v∗) ≥ T (vi) constraints for N (v∗), where G(v∗)
is v∗’s one-hop neighbors and H(·) can be
calculated according to Eq. 1;

3: Expand W(v∗) starting from v∗ based on G within
L(v∗) and H(v∗) constraints.

achieve a holistic understanding of graph structures. Notably,
this textualization method integrates GNN-inspired structural
priors (i.e., the core principles of message passing and high-
order propagation) into the graph description design, without
requiring training specific GNNs. This enables more powerful
and adaptive capabilities across diverse tasks and datasets.

Given LLM token limitations and the varied contributions of
neighbors and walks to node understanding, we further develop
an adaptive generation procedure to ensure the compactness
of the description. Specifically, we first design a “node energy”
metric H(·), assessing node information from two perspectives:
token count in node attributes and node degree count. This
metric enables us to effectively filter and select neighbor nodes
and walk nodes, prioritizing those that are abundant in semantic
information and possess a significant number of neighbor nodes,
thus enhancing the expressiveness of the graph description. The
calculation of node energy H(v∗) is formulated as follows:

H(v∗) = T (v∗)× ⌈log(D(v∗) + 1)⌉, (1)

where v∗ is the target node, T (v∗) is the number of node tokens
processed by a language tokenizer, D(v∗) is the number of
node degrees, and ⌈·⌉ is the ceiling operator.

Based on v∗, our method strategically incorporates neighbors
and walks, as depicted in Algorithm 1. A neighbor vi is chosen
to describe the target v∗ if its H(vi) surpasses H(v∗), ensuring
the included node can provide supplemental information. The
process of adding walks concludes when encountering a node
whose H(vi) does not meet the threshold set by the target’s
H(v∗), thus refining the input to maximize related graph
information within the constraints of the token limit. To further
demonstrate the adaptive input generation for neighbors and
walks tailored to each node, we present an example in Fig. 3.
Node v1’s with a relatively low H(v1) value includes a wide
range of neighbors to capture more context, excluding v4 due
to its even lower H(v4). Given the token limitation L(v1),
only two walks are sampled for v1 to maintain a compact
description. Conversely, v2 with its higher H(v2), inherently
carries more information, prompting the selection of fewer
neighbors. v6 is excluded since H(v6) < H(v2). This frees
up tokens to detail more walks for v2. The H metric thus
effectively balances neighbor and walk inclusion for each node,
marrying information-rich and token-efficient characteristics.

# T # D H

2 5 4
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2 1 2
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Fig. 3. Two examples on IMDB illustrate how to extract the key information of
nodes via neighbors and walks based on node energy H(v∗) and the language
token limitation L(v∗).

The process culminates in the textualization of each node’s
key information, producing a tailored and compact graph
description as depicted in the upper right of Fig. 2. Note
that, a graph-related task can involve multiple nodes (such as
link prediction). In this case, we adaptively allocate the token
limit requirement of each node involved by calculating the ratio
of all node energies using the softmax function. Additionally,
we provide the ablation in Section IV-C2 to further verify the
effectiveness of the compact graph description.
Remark. Given an attributed graph G = (V, E) and an LLM
token limitation L, the expected utility of including a node
v ∈ V in the compact graph description can be approximated
by the product of its semantic complexity T (v) and structural
centrality D(v) as follows:

E[ϕ(v)] ∝ T (v)× ⌈log(D(v) + 1)⌉ = H(v),

s.t.
∑
v∈G

T (v) ≤ L, (2)

where ϕ(v) denotes the information gain of including a
node v. Under the LLM token constraint

∑
v∈G T (v) ≤ L,

prioritizing nodes by descending H(v) value leads to a compact
yet informative subgraph G, which captures both semantic
richness and structural connectivity of the original graph
G. Notably, this formulation models node selection as a
constrained expected utility maximization problem [30], where
H(v) acts as a practical proxy for the expected informativeness
per node. Empirically, longer token spans tend to encode
richer semantics [31], [32], while high-degree nodes often
serve as key hubs that support global connectivity [33]–[36].
Therefore, the node energy H(v) naturally balances token cost
with information gain, making it a suitable metric for adaptive
neighbor and walk selection within limited LLM tokens.

C. Diverse Instruction Generation
With the compact graph descriptions tailored to each node,

another critical step in fine-tuning LLMs for generic graph
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Fig. 4. A process showing how to conduct the Chain-of-Thought (CoT)-based
instruction package for node classification. We leverage the reasoning ability
distilled from advanced LLMs (e.g., GPT-4) and integrate them with task-
specific instructions via a 1:10 mix ratio.

mining is crafting diverse and high-quality instructions [37],
[38]. Benefiting from the key graph information captured by our
designed compact graph descriptions, we can accurately and
efficiently construct abundant graph-related task instructions
(e.g., node classification, link prediction, and graph-to-text).
While these instructions enable LLMs to effectively grasp
compact graph descriptions, they may not always be easily
comprehended when encountering unfamiliar graph structures
or new tasks, potentially leading to inaccuracies and limited
reasoning across various datasets. Moreover, manual construc-
tion of these instructions is often highly costly in terms of both
time and resources.

To address these problems, we propose to distill the reasoning
capabilities from advanced LLMs [39] (e.g., GPT-4 [40] with
over 200 billion parameters) for graph-related tasks. Our
approach, inspired by the Chain-of-Thought (CoT) processing
methodology [41], prompts GPT-4 via a flexible template based
on our compact graph descriptions for different tasks and
then constructs task-specific CoT-based instruction packages.
Different from the existing methods that leverage CoT in the
prompting stage [41], [42], we directly construct CoT-based
instruction packages, harnessing their diversity and reasoning
abilities to facilitate instruction tuning with graph data.

Specifically, as shown in Fig. 4, we first design diverse
task-specific instructions based on compact graph descriptions,
such as node classification, link prediction, and graph-to-
text. Then, we prompt GPT-4 with a small number of task-
specific instructions to generate the corresponding step-by-step
reasoning, which is used to conduct CoT-based instructions
with the initial instructions across diverse tasks. This approach
distills GPT-4’s vast knowledge base to augment the reasoning
and analytical abilities of our MuseGraph, enhancing the
understanding of compact graphs.

To optimize the cost-effectiveness of querying GPT-4, we
introduce the CoT-based instruction package. For every set
of 1,000 standard task-specific instructions, we integrate 100
CoT-based instructions tailored to the same graph task. This
approach not only proves to be economical but also broadens
the diversity and flexibility of instructions, accommodating a
range of graph-related tasks.

D. Graph-aware Instruction Tuning

With the proposed compact graph descriptions and diverse
instruction generation mechanisms, identifying an effective
instruction tuning method for LLMs remains crucial. Such
tuning enables LLMs to understand and perform well a wide
range of graph mining tasks across multiple datasets and
contexts [38], [43]. However, a persistent challenge is the
catastrophic forgetting issue commonly faced by LLMs [44],
[45]. This phenomenon complicates the capabilities to maintain
extensive task and dataset coverage without compromising
previously acquired knowledge, necessitating strategies that
balance new learning with memory retention.

To this end, we propose a dynamic instruction package
allocation strategy to adaptively adjust the volume of task-
specific CoT-based instruction packages based on the complex-
ities of tasks and datasets, which ensures that more complex
tasks/datasets receive a proportionally larger set of instructions
for detailed guidance. The calculation process includes two
aspects as follows:

• For task complexity: We assess the complexity of tasks by
calculating the average number of answer tokens for each
task, which helps in tailoring the CoT-based instruction
packages to specific needs within a dataset. A larger
average number of answer tokens indicates a higher level
of reasoning and response complexity, enabling us to
proportionally allocate more instructions to such tasks.

• For dataset complexity: We calculate the total node energy
H(·) (cf., Eq. 1) for each graph data, utilizing this
metric to optimize the instruction distribution. A higher
overall node energy reflects richer semantic and structural
characteristics within a dataset, guiding the allocation of
more instructions to these information-dense graphs.

By performing this dynamic allocation of instructions, we en-
hance LLMs’ abilities to learn and retain extensive knowledge
across a diverse range of graph mining challenges. We provide
the ablation in Section IV-C4 to further assess the effectiveness
of the dynamic instruction package allocation strategy.

To balance the effectiveness with computational efficiency,
we adopt a graph-aware instruction tuning mechanism, which
can sufficiently utilize diverse and high-quality instructions for
fine-tuning LLMs [37]. Specifically, we adopt a general LLM
LLaMA3-8B [46] with LoRA [47] as our initial fine-tuning
point by default. Then, based on the diverse instruction package
set I = {I1, I2, . . . , ID} as model input, we adopt the negative
log-likelihood loss as the fine-tuning objective as follows:

pθ (Yj,k|Ij , Yj,<k) = LLMθ (Ij , Yj,<k) , (3)

Lθ = −
|Yj |∑
k=1

log pθ (Yj,k|Ij , Yj,<k), (4)

where θ is the learnable parameters of our proposed graph-
aware LLM (i.e., MuseGraph), Ij ∈ I is the input of LLM,
and Yj is the output of LLM.

After obtaining the fine-tuned LLM for generic graph mining,
we can apply it to various downstream tasks, such as node
classification, link prediction, and graph-to-text. Notably, our
MuseGraph can achieve superior performance across diverse
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TABLE II
STATISTICS OF THE DATASETS FOR NODE CLASSIFICATION.

Dataset IMDB Freebase Cora Arxiv
# Nodes 21,420 180,098 2,708 169,343
# Edges 86,642 1,057,688 5,429 1,166,243

# Labeled nodes 4,573 7,954 2,708 169,343
# Classes 5 7 7 40

tasks and datasets with few instruction packages based on the
graph-aware instruction tuning mechanism, even in the few-shot
and zero-shot settings (shown in Table VII and Fig. 6).
Model Extension. Our proposed MuseGraph establishes a
generic approach for integrating LLMs with graph data. We
can flexibly incorporate a variety of foundation LLMs, as
discussed in Section IV-C1, which enhances its generation
capabilities across different graph-related tasks. Building on
this flexibility, we can further replace our adopted LoRA [47]
with different parameter-efficient training approaches, such
as QLoRA [48], AdaLoRA [49], and FourierFT [50]. These
methods can be helpful to reduce the computational demands
while maintaining high performance. Additionally, we can
explore the incorporation of Reinforcement Learning from
Human Feedback (RLHF) [37] to further enhance the learning
process, adjusting model behaviors and improving decision-
making in complex graph scenarios.
Datasets Extension. Leveraging the proposed compact graph
description and diverse instruction generation mechanisms, we
can effectively include a wider range of attributed graphs via
our graph-aware instruction tuning, enriching the diversity of
applications across various domains. Since our MuseGraph
introduces a generic graph framework to simultaneously
capture the semantic and structural information of attributed
graphs across tasks and datasets, it can be applied for tasks
across diverse datasets, including biological networks, social
networks, and knowledge graphs. Furthermore, the zero-shot
generalization capabilities of our MuseGraph, as evaluated via
graph-informed DyVal (demonstrated in Fig. 6 in Section IV-B),
highlight its potential to perform accurately on more datasets
where it was not explicitly trained. This ability to generalize
well in zero-shot scenarios underscores the practical utility of
MuseGraph in navigating and analyzing unexplored graphs.

IV. EXPERIMENT

In this section, we conduct extensive experiments to validate
the effectiveness and efficiency of our proposed MuseGraph
under diverse conditions, aiming to answer the following three
key research questions:
• RQ1: How does our MuseGraph framework perform in

comparison to the representative graph-oriented methods for
generic graph mining?

• RQ2: What are the effects of different model components?
• RQ3: Can the compact graph description help the model

better understand the graph structure?

A. Experimental Setup

1) Datasets: To comprehensively evaluate the effectiveness
and efficiency of our MuseGraph, we utilize two real-world

TABLE III
STATISTICS OF THE DATASETS FOR LINK PREDICTION.

Dataset # Nodes # Edges # Link type # Node type
Yelp 82,465 30,542,675 4 4

MIMIC-III 32,267 559,290 4 3

TABLE IV
STATISTICS OF THE DATASETS FOR GRAPH-TO-TEXT.

Dataset # Graph # Rel Avg.#
Nodes

Avg.#
Triples

Avg.
Length

AGENDA 40,720 7 12.37 4.48 140.36
WebNLG 8,783 246 5.91 2.95 13.02

datasets for Heterogeneous Node Classification (i.e., IMDB
and Freebase), two for Homogeneous Node Classification
(i.e., Cora and ogbn-arxiv (abbr. Arxiv)), two for Link Pre-
diction (i.e., Yelp and MIMIC-III), and two for Graph-to-
Text (i.e., AGENDA and WebNLG). Additionally, we apply
graph-informed DyVal [51] to evaluate MuseGraph with two
Dynamic Reasoning tasks (i.e., Reachability and Max Sum
Path), including four levels with increasing complexity (i.e.,
D1, D2, D3, and D4). The detailed statistics are shown in
Table II, Table III, and Table IV. Furthermore, the detailed
descriptions of tasks and datasets are provided as follows:

i) Heterogeneous Node Classification: Heterogeneous Node
Classification classifies the target node into pre-defined classes,
leveraging diverse relationships and attributes within the graph,
where the graph consists of multiple types of nodes and edges.
Following [52], we split each dataset for Heterogeneous Node
Classification into training/validation/testing sets with a ratio
of 24%/6%/70%.

• IMDB1 is a website about movies and related information,
including a subset from the Action, Comedy, Drama,
Romance, and Thriller genres. Each labeled movie has
one or multiple labels.

• Freebase2 is a knowledge graph of books, films, music,
sports, people, locations, organizations, and businesses.
Each labeled book has only one label.

ii) Homogeneous Node Classification: Different from
Heterogeneous Node Classification, Homogeneous Node Clas-
sification forecasts the target node’s label within the graph
containing the same type of nodes and edges. We employ a
60%/20%/20% training/validation/testing split for Cora, which
is consistent with [4]. For Arxiv, we adopt the public dataset
split in [53], which is 54%/18%/28%.

• Cora3 comprises 2,708 scientific publications classified
into one of seven classes–case-based, genetic algorithms,
neural networks, probabilistic methods, reinforcement
learning, rule learning, and theory, with a citation network
consisting of 5,429 links.

• Arxiv4 represents the citation network among computer
science arXiv papers. Each paper in the dataset is asso-

1https://www.kaggle.com/karrrimba/movie-metadatacsv
2http://www.freebase.com
3http://www.cora.justresearch.com/lander
4https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
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ciated with a research category, manually labeled by the
authors and arXiv moderators. These research categories
are chosen from 40 subject areas.

iii) Link Prediction: Link Prediction predicts the likelihood
of a future or missing connection between two nodes in a
graph. We train all methods using the randomly selected 80%
of links and evaluate them on the remaining 20% held-out
links as suggested in [14] and [54].

• Yelp5 is a user-business network collected from Yelp,
including four types of nodes, which are businesses, users,
locations, and reviews.

• MIMIC-III6 consists of a graph of diseases, patients, and
visits, with nodes and relations derived from electronic
health records.

iv) Graph-to-Text: Graph-to-Text generates a descriptive
text based on the information and structure of the graph.
Following [55], we design different few-shot settings with
four training instance sizes ranging from 50, 100, 200, to 500.

• AGENDA7 (Abstract Generation Dataset) is a dataset that
links knowledge graphs with paper abstracts from scientific
domains. The graphs in AGENDA are automatically
extracted from the SciIE information extraction system.
Each instance in AGENDA includes the paper’s title,
entities, graph, and abstract.

• WebNLG8 is a crowd-sourced RDF triple-to-text dataset
manually crafted by human annotators. The dataset in-
cludes graphs from DBpedia with up to seven triples
paired with one or more reference texts. We adopt three
large domains of data from WebNLG v1.5 for experiments
(i.e., Airport, Building, and Food).

v) Dynamic Reasoning: Reachability and Max Sum Path
are Dynamic Reasoning tasks generated by graph-informed
DyVal [51], which generates test samples dynamically, mitigat-
ing the issues of data contamination and static complexity. We
adopt a zero-shot setting consistent with DyVal [51], where
we produce 500 samples for each task of varying complexity
to balance test time and discrepancy.

• Reachability determines if one node can reach another
node in the graph. Respond with “True” or “False”.

• Max Sum Path finds the maximum sum path between two
nodes in a graph. The sum value is obtained by summing
up the values of nodes in the path. If such a path does
not exist, directly answer “N/A”.

2) Evaluation Protocols: For Heterogeneous Node Classi-
fication and Homogeneous Node Classification, we use two
commonly adopted evaluation metrics [14], [52], [54]: Macro-
F1 (across all labels) and Micro-F1 (across all nodes). The
F1 score is a metric of the model’s accuracy in binary and
multi-class classification tasks, which considers both precision
and recall. For Link Prediction, we compute the AUC metric
as suggested in [9], [14], [54]. AUC measures the area under
the ROC curve, indicating the model’s ability to distinguish
between positive and negative classes across various thresholds.

5https://www.yelp.com/dataset
6https://physionet.org/content/mimiciii/1.4
7https://github.com/rikdz/GraphWriter/tree/master/data
8https://github.com/ThiagoCF05/webnlg

For Graph-to-Text, we report BLEU-4 [56] as our metric,
where BLEU-4 measures the precision of four-word sequences
(4-grams) in the generated text compared to the reference
text. Moreover, we evaluate Reachability and Max Sum Path
performance with Accuracy that is consistent with DyVal [51].

3) Methods for Comparison: The following characteristic
baseline methods can be classified into three categories: i) GNN-
based methods, ii) LLM-based methods, and iii) GNN+LLM-
based methods.

i) GNN-based methods: We follow [9], [11], [14], [16],
[52] in selecting GNN-based methods that are commonly used
in homogeneous and heterogeneous network benchmarks.

• GraphSAGE [1] generates node embeddings by sampling
and aggregating features from a node’s local neighborhood,
enabling scalable learning on large graphs.

• GCN [21] scales linearly in the number of graph edges
and learns hidden layer representations that encode both
local graph structure and features of nodes.

• GAT [57] utilizes masked self-attention mechanisms to
enhance the processing of graph data by addressing
limitations in traditional graph convolution methods.

• RevGNN [58] captures long-range interactions in graph
data and reduces memory complexity with grouped
reversible connections, enabling more effective training
of deep and wide GNNs.

• HINormer [16] uses graph transformers to learn node
representations on heterogeneous information networks
by capturing both local structure and heterogeneity.

• R-GCN [59] improves traditional GCNs with relation-
specific convolutions, enhancing learning from diverse
edge types in knowledge graphs.

• HGT [60] extends the transformer architecture to handle
heterogeneous graphs by incorporating type-specific pa-
rameters and an attention mechanism to capture diverse
node and edge interactions.

ii) LLM-based methods: We choose representative and
widely adopted LLM-based methods as baselines, covering
both general-purpose and graph-specific LLMs. Note that we
include the BART [61] and T5 [62] series as standard encoder-
decoder baselines for Graph-to-Text, consistent with [55], [63].

• Baichuan2-7B-Base [64] is an open-source, bilingual
language model developed by Baichuan Inc., trained on
2.6 trillion tokens with 7 billion parameters.

• Qwen2-7B-Instruct [65] is an instruction-tuned 7 billion
parameter model, designed to excel in tasks like language
understanding, generation, and more, with support for
processing up to 131,072 tokens in context.

• LLaMA1-7B [66] is an open-source large language model
developed by Meta. It is designed for natural language
understanding and generation tasks, featuring 7 billion
parameters for efficient and powerful text processing.

• LLaMA2-7B [67] is an improved version of LLaMA1,
featuring 7 billion parameters with enhancements in data,
training techniques, and model performance.

• LLaMA3-8B [46] succeeds LLaMA2, offering improved
performance with 8 billion parameters through advance-
ments in architecture, training data, and optimization.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 8, AUGUST 2025 8

• GPT-3.5 [37] is a large-scale language model developed
by OpenAI, trained on a vast corpus of text with 175
billion parameters, capable of generating human-like text
and understanding complex contexts.

• GPT-4 [40] builds upon GPT-3.5, providing advanced
language generation and understanding capabilities with
greater scale and improved performance.

• BART-large [61] is a pre-trained language model based
on the transformer architecture, featuring both encoder
and decoder components, and encompasses 160 million
parameters, making it a powerful tool for NLP tasks.

• T5-large [62] is a transformer-based pre-trained language
model that uses a unified architecture for encoding and
decoding, consisting of a 768-layer deep network with 11
billion parameters, effectively handling text-based tasks.

iii) GNN+LLM-based methods: We compare recent LLM-
enhanced or instruction-tuned graph learning paradigms, as
summarized in Table I. For methods such as GPT4Graph [8]
and NLGraph [11], we exclude them as they are general-
purpose benchmark frameworks rather than concrete graph
models with training pipelines. LLM-GNN [3] and TAPE [4]
rely on GPT-3.5 APIs to generate high-quality annotations and
explanations for each dataset. Therefore, we only utilize the
publicly released features for the Cora and Arxiv datasets910,
and mark “-” for the other datasets in Table V and Table VI.
Additionally, since GHGRL [7] is designed with node-centric
prompts for node classification, making it unsuitable for link
prediction, we report “-” in Table VI.

• LLM-GNN [3] involves LLMs to generate confidence-
aware annotations for a subset of nodes, which are then
used to train GNNs for downstream prediction.

• TAPE [4] leverages LLMs’ explanations to generate infor-
mative node features for text-attributed graphs, boosting
the performance of various GNNs.

• OFA [5] describes diverse text-attributed graphs using
human-understandable prompts and encodes them into a
unified embedding space via LLMs, thereby guiding the
training of a single GNN model.

• All-in-One [6] converts different-level tasks to the graph-
level task with the unified graph and language prompts
for improving the multi-task performance of GNNs.

• GHGRL [7] employs LLMs to automatically summarize
and classify heterogeneous data, and apply a specialized
GNN for task-specific learning.

• GraphGPT [9] integrates LLMs with graph knowledge
using a graph structural instruction tuning paradigm,
enhancing understanding through text-graph grounding
and step-by-step reasoning.

• HiGPT [10] aligns LLMs with heterogeneous graph
knowledge using instruction tuning, a specialized graph
tokenizer, and a mixture-of-thought augmentation to
improve understanding and tackle data sparsity.

• InstructGLM [12] tunes LLMs with highly scalable graph
prompts that combine natural language instructions and
node features from trained GNNs.

9https://github.com/CurryTang/LLMGNN
10https://github.com/XiaoxinHe/TAPE

Fig. 5. Comprehensive performance of different models on various tasks
and datasets. The radar charts compare the performance of six models (i.e.,
HiNormer, HiGPT, LLaMA3-8B, GraphGPT, GPT-4, and MuseGraph) across
multiple tasks. Micro-F1 scores are shown for Node Classification on IMDB
(Heterogeneous) and Cora (Homogeneous). Link Prediction on Yelp uses AUC
scores. For limited-data Graph-to-Text tasks on AGENDA and WebNLG, we
report BLEU-4 scores. Additionally, accuracy measures for Dynamic Reasoning
tasks like Reachability and Max Sum Path (D3 to D4 complexities) from the
DyVal benchmark are included. Results are normalized for clarity.

4) Implementation Details: For our MuseGraph, we utilize
LLaMA-Factory [68] to train a unified framework using a
mixture of instruction packages across various tasks and
datasets. By default, we choose LLaMA3-8B11 [46] as the
foundation model for fine-tuning, and we perform parameter-
efficient learning via LoRA [47] with r = 32 and α = 64. The
learning rate is set to 5e−5 and the maximum input length of
LLM is set to 1200. The training process is carried out for
two epochs. For GNN-based methods, we train and evaluate
baselines based on CogDL [69], HGB [52], or HNE [14].
For LLM-based methods, we load the checkpoint of LLM
from HuggingFace12 or call official API from OpenAI13 for
evaluation. Additionally, for a fair comparison, we select
GNN+LLM-based methods with public checkpoints or tuning
details from their original papers. All LLM-based methods,
GNN+LLM-based methods, and MuseGraph, are evaluated
using the same test instructions. The hyperparameters of
baselines are chosen carefully based on either grid search
or their official source codes, and the learning rate is searched
in [1e−5, 1e−2]. All experiments are conducted using only one
NVIDIA GTX 3090 Ti GPU.

Notably, given the GPU constraints during the training phase,
we leverage HiGPT [10] checkpoint from Vicuna-7B-v1.5,
which was fine-tuned with 60-shot instruction data on the
IMDB14, GraphGPT [9] checkpoint tuned with Arxiv-PubMed-
mix-NC-LP instruction data15, and InstructGLM [12] public
checkpoint16 for conducting respective experiments. The full
code for this work is available17.

11https://ai.meta.com/blog/meta-llama-3
12https://huggingface.co
13https://platform.openai.com
14https://huggingface.co/Jiabin99/HiGPT
15https://huggingface.co/Jiabin99/GraphGPT-7B-mix-all
16https://github.com/agiresearch/InstructGLM
17https://github.com/Melinda315/MuseGraph
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TABLE V
EXPERIMENTAL RESULTS ON FOUR BENCHMARK DATASETS FOR HETEROGENEOUS NODE CLASSIFICATION AND HOMOGENEOUS NODE CLASSIFICATION.

THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLDFACE AND THE SECOND RUNNERS ARE UNDERLINED.

Method Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Dataset (Hete NC) IMDB (Hete NC) Freebase (Homo NC) Cora (Homo NC) Arxiv
GraphSAGE 62.06 52.28 58.97 27.59 85.98 84.57 71.69 50.82
GCN 64.23 58.43 59.86 29.35 82.87 81.29 71.98 51.26
GAT 64.28 58.81 65.83 40.40 82.50 81.42 72.13 52.67
RevGNN 65.03 59.90 56.02 20.85 85.79 83.14 72.76 50.38
HINormer 67.63 64.29 66.51 48.87 82.84 81.28 71.01 51.81
R-GCN 62.98 58.90 58.57 47.03 80.63 79.14 71.04 50.79
HGT 66.95 62.71 60.46 29.33 81.52 80.76 71.80 51.43
Baichuan2-7B-Base 40.57 39.15 3.60 1.62 8.78 5.68 1.20 0.82
Qwen2-7B-Instruct 64.83 61.39 20.85 13.47 58.34 48.23 40.42 18.74
LLaMA1-7B 22.57 16.76 4.22 1.72 12.92 5.93 1.35 1.17
LLaMA2-7B 31.03 27.46 5.29 1.78 14.02 6.08 1.82 1.21
LLaMA3-8B 37.51 34.86 5.98 3.76 14.76 8.49 23.03 11.09
GPT-3.5 55.96 54.14 30.61 25.34 65.31 55.34 43.17 32.82
GPT-4 59.47 59.18 28.02 24.19 67.71 56.41 51.29 43.44
LLM-GNN - - - - 75.61 73.95 66.05 45.33
TAPE (GCN) - - - - 88.19 87.16 74.36 55.74
OFA 64.81 57.91 56.58 34.75 71.68 70.21 69.31 50.70
All-in-One 60.75 55.17 50.48 21.04 68.45 64.18 65.57 47.06
GHGRL 65.40 59.24 55.96 26.15 83.96 80.97 63.10 42.05
HiGPT 56.72 53.77 16.17 7.02 23.86 14.17 10.76 6.25
GraphGPT 44.52 43.70 15.80 6.14 24.57 15.26 31.08 17.12
InstructGLM 13.59 9.41 5.65 2.38 15.62 10.88 42.60 28.43
MuseGraph (Qwen2-7B-Instruct) 75.77 73.08 76.40 58.18 84.35 80.71 64.88 45.41
MuseGraph (LLaMA1-7B) 75.73 72.51 75.42 51.36 81.29 77.50 58.82 35.54
MuseGraph (LLaMA2-7B) 74.65 72.44 73.68 48.44 84.06 81.25 65.45 43.94
MuseGraph (LLaMA3-8B) 76.57 73.78 78.01 59.62 86.83 84.74 67.80 47.71

TABLE VI
AUC RESULTS ON TWO BENCHMARK DATASETS FOR LINK PREDICTION.
THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLDFACE AND THE

SECOND RUNNERS ARE UNDERLINED.

Dataset Yelp MIMIC-III
GraphSAGE 68.85 53.40
GCN 69.94 53.27
GAT 70.38 54.46
RevGNN 68.97 56.79
HINormer 75.03 57.82
R-GCN 72.17 57.31
HGT 79.02 64.01
Baichuan2-7B-Base 14.50 12.55
Qwen2-7B-Instruct 11.18 18.31
LLaMA1-7B 10.78 19.39
LLaMA2-7B 22.14 25.08
LLaMA3-8B 26.64 26.05
GPT-3.5 50.82 56.83
GPT-4 57.44 53.53
LLM-GNN - -
TAPE (GCN) - -
OFA 71.56 59.33
All-in-One 70.83 56.20
GHGRL - -
HiGPT 49.73 51.04
GraphGPT 48.24 52.01
InstructGLM 49.38 34.35
MuseGraph (Qwen2-7B-Instruct) 70.87 80.21
MuseGraph (LLaMA1-7B) 76.52 65.56
MuseGraph (LLaMA2-7B) 70.09 67.84
MuseGraph (LLaMA3-8B) 80.07 69.92

B. Main Results Across Different Tasks (RQ1)

In this subsection, we provide a comprehensive performance
analysis of our proposed MuseGraph framework across various
graph tasks, evaluating its generation and adaptability capabili-
ties in general, few-shot, and zero-shot settings compared with

state-of-the-art baselines.

Overall, our proposed MuseGraph consistently demonstrates
superior performance, highlighting its robust understanding
of graph data combined with strong language generation
capabilities (shown in Fig. 5). In Node Classification and Link
Prediction tasks across six datasets, MuseGraph achieves an
average ranking of 2.17. In few-shot Graph-to-Text tasks and
Dynamic Reasoning tasks in the zero-shot setting, MuseGraph
secures the first and second rankings, respectively. Specifically,
despite GPT-4’s strength in handling attribute-rich datasets and
outperforming our MuseGraph in most Dynamic Reasoning
tasks, it often struggles with adaptability across unfamiliar
tasks and settings. The ability of MuseGraph to match GPT-4
in complex Dynamic Reasoning tasks with significantly fewer
trainable 13,631,488 parameters and training data highlights
not just resource efficiency but also a practical solution for
real-world graph applications requiring high adaptability and
lower computational demands.

Similarly, domain-specific models such as HiGPT and
GraphGPT perform commendably within their respective
training contexts (e.g., IMDB) but falter when faced with
scenarios outside these predefined datasets. HINormer, while
effective at managing complex relationships in graph-specific
tasks, lacks the versatility needed for broader applications (e.g.,
Graph-to-Text and Dynamic Reasoning tasks). In contrast,
LLaMA3-8B excels in Graph-to-Text due to its extensive
linguistic pre-training but, like others, it encounters limitations
when stepping beyond its core competencies. MuseGraph,
however, maintains robust performance across a variety of tasks,
effectively integrating and generalizing graph data and language
generation abilities where other models show constraints.
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TABLE VII
BLEU-4 SCORES FOR THE GRAPH-TO-TEXT TASK ON AGENDA AND WEBNLG DATASETS. GPT-4, HIGPT, AND GRAPHGPT RESULTS REFLECT

PERFORMANCES WITHOUT FINE-TUNING. IN CONTRAST, MODELS LIKE BART-LARGE, T5-LARGE, QWEN2-7B-INSTRUCT, LLAMA3-8B, AND
MUSEGRAPH DEMONSTRATE VARIED PERFORMANCES ACROSS DIFFERENT TRAINING INSTANCE SIZES RANGING FROM 50 TO 500. THE BEST

PERFORMANCES ARE HIGHLIGHTED IN BOLDFACE AND THE SECOND RUNNERS ARE UNDERLINED.

Dataset AGENDA WebNLG
# Instances 50 100 200 500 50 100 200 500
GPT-4 7.87 5.43
HiGPT 8.49 2.66
GraphGPT 8.23 2.45
InstructGLM 5.97 5.68
BART-large 9.91 10.58 11.99 12.49 26.59 28.53 30.62 33.15
T5-large 1.82 5.59 7.75 9.55 21.27 23.57 26.48 31.64
Qwen2-7B-Instruct 7.95 8.28 9.90 12.41 27.24 32.29 34.90 36.02
LLaMA3-8B 10.35 10.44 13.07 13.36 26.53 33.43 33.55 36.54
MuseGraph (Qwen2-7B-Instruct) 10.77 11.34 12.78 12.86 31.15 32.35 35.89 36.87
MuseGraph (LLaMA3-8B) 11.32 13.11 13.28 14.64 31.46 33.97 34.25 36.83

Fig. 6. Accuracy Results for the Reachability and Max Sum Path tasks on
the graph with varying difficulty levels (i.e., D1 to D4), where “D” represents
different degrees of complexity.

1) Compared with GNN-based Methods: As shown in
Table V and Table VI, our MuseGraph outperforms GNN-
based methods across most tasks and datasets, demonstrating its
accurate comprehension of graph data. Notably, MuseGraph
achieves significant performance gains in Heterogeneous Node
Classification on IMDB and Freebase with an average of
13.99% and 19.64%. Moreover, MuseGraph consistently
outperforms all GNN-based baselines in Link Prediction with
an average performance improvement of 17.54%.

Specifically, while approaches like HINormer excel in
Heterogeneous Node Classification, GraphSAGE and GAT
in Homogeneous settings, and HGT in Link Prediction, they
generally struggle with Graph-to-Text and Dynamic Reasoning
tasks due to their limited adaptability and lack of linguistic
features. In contrast, MuseGraph that can be easily tuned on
different foundation models with a small number of corpora
demonstrates a comprehensive understanding of graph data
coupled with language generation capabilities. The overall
performance across a variety of tasks and datasets makes
MuseGraph a more practical solution than traditional GNN-
based methods like HINormer and GAT.

2) Compared with LLM-based Methods: Generally, Muse-
Graph surpasses all LLM-based methods with significant
improvements on both general graph tasks and few-shot ones,

highlighting MuseGraph’s superior capabilities in generic
graph mining (shown in Table V, Table VI, and Table VII).
Note that, by effective graph-aware tuning, our MuseGraph
outperforms its foundation model LLaMA3-8B, ranging from
0.79% in BLEU-4 under 500 training instances on WebNLG
to 1485.64% in Macro-F1 on Freebase.

In detail, GPT-4, known for its extensive parameter set and
strong generalization ability, excels in Dynamic Reasoning
tasks and attribute-rich datasets (as depicted in Fig. 6 and
Table V). However, its large scale and closed-source nature
often preclude fine-tuning, which limits its adaptability to
complex graph structures and unfamiliar tasks. For example,
when accessed via its official API without fine-tuning, GPT-4
produces verbose and inaccurate text in few-shot Graph-to-
Text tasks, resulting in suboptimal BLEU-4 scores due to
hallucinatory content. By comparison, open-source LLMs (e.g.,
Qwen2-7B-Instruct and LLaMA3-8B) that can be slightly fine-
tuned demonstrate improved performance and reduced training
costs. For instance, BART-large and LLaMA3-8B, tailored with
a specific corpus of Graph-to-Text, gain average improvements
over GPT-4 with 245.11% and 274.38%, respectively. However,
without our proposed diverse instruction generation mechanism,
these LLMs still encounter challenges in fully comprehending
complex graph structures, reflecting inherent limitations in their
adaptability to diverse graph data.

Note that, MuseGraph employs a graph-aware instruction
tuning mechanism that utilizes fewer but more diverse CoT-
based instruction packages and fewer trainable parameters. This
approach not only enhances the precision of graph-oriented
downstream tasks with a single NVIDIA GTX 3090 Ti GPU
but also boosts generation capabilities, enabling MuseGraph
to effectively match GPT-4 in complex Dynamic Reasoning
tasks with improved efficiency and adaptability.

3) Compared with GNN+LLM-based Methods: Overall, our
proposed MuseGraph exceeds the majority of GNN+LLM-
based methods across various tasks and datasets, demonstrating
its robust understanding of diverse graph data with powerful
language generation capabilities (as depicted in Table V,
Table VI, Table VII, and Fig. 6). For Heterogeneous Node
Classification, the performance improvements range from
17.08% in Micro-F1 on IMDB to 71.57% in Macro-F1 on
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Fig. 7. Comparison of results for Heterogeneous Node Classification on
IMDB across different graph descriptions as input. (I) through (IV) denote
varying levels of neighbor inclusion: (I) utilizes central node attributes; (II)
integrates one-hop neighbors; (III) includes up to two-hop neighbors; and (IV)
encompasses three-hop neighbors. (V) employs a proposed method combining
one-hop neighbors and random walks. Micro-F1 and Macro-F1 scores are
shown alongside the average number of tokens used on IMDB.

Freebase. Additionally, MuseGraph significantly outperforms
all GNN+LLM-based methods in both Graph-to-Text and
Dynamic Reasoning tasks, benefiting from its superior language
generation and reasoning capabilities.

Some methods (e.g., LLM-GNN, TAPE, OFA, and GHGRL)
train GNNs as predictors with LLM-enhanced features, com-
bining the interpretative strengths of LLMs with GNNs to
improve text-attributed graph representation learning. Partic-
ularly, OFA unifies different graph data by describing nodes
and edges using natural language and converts them into
a shared embedding space via LLMs. TAPE achieves top
performance on node classification datasets like Cora and
Arxiv by encoding LLMs’ explanations. However, it relies on
manually customized prompts and GPT-3.5 APIs to generate
high-quality explanations for each dataset, which incurs high
training costs and restricts its adaptability across diverse tasks
and datasets. Moreover, these methods do not apply to Graph-
to-Text and Dynamic Reasoning tasks due to their lack of
language understanding and generation abilities. This further
highlights the adaptability and flexibility of MuseGraph
beyond traditional graph prediction tasks.

Another category of methods, like HiGPT, GraphGPT, and
InstructGLM, utilizes LLMs to directly perform graph tasks.
These methods typically depend on task/dataset-specific GNNs
for graph encoding and integrate node representations into the
input instructions, which leads to significant computational
overhead and limited cross-dataset adaptability. By contrast,
as illustrated in Table VII, MuseGraph achieves substantial
performance gains by efficiently fine-tuning with even a limited
number of examples. This ability highlights its effectiveness
in adapting to different Graph-to-Text tasks and securing
significant improvements in model performance. Note that
HiGPT demonstrates flexibility in zero-shot learning across
heterogeneous graph datasets, like when trained on IMDB
and tested on DBLP [10]. However, it shows significant
performance drops on homogeneous datasets such as Cora
(shown in Table V), which highlights its limited adaptability to
different graph structures. Additionally, HiGPT struggles with
Link Prediction tasks due to a lack of task-specific training
corpus, often yielding incorrect “Yes” responses.

TABLE VIII
ABLATION STUDY RESULTS FOR HETEROGENEOUS NODE CLASSIFICATION
(NC) ON IMDB UNDER DIFFERENT SETTINGS OF FINE-TUNING. “NC PKG
W/O. COT” EXCLUDES CHAIN OF THOUGHT (COT)-BASED INSTRUCTIONS,

WHILE “NC PKG”, “NC PKG + LP PKG (1:1)”, AND “NC PKG + LP PKG
(3:1)” INCLUDE THEM. NOTABLY, “NC PKG + LP PKG (1:1)” AND “NC PKG
+ LP PKG (3:1)” INTEGRATE LINK PREDICTION (LP) TASKS SPECIFICALLY
TAILORED FOR THE IMDB DATASET. THE ALLOCATION RATIO 3:1 DENOTES
THAT FOR EVERY FOUR COT-BASED INSTRUCTION PACKAGES USED, THREE
ARE FROM THE NC TASK AND ONE IS FROM THE LP TASK. IN CONTRAST,
OUR MUSEGRAPH (LLAMA3-8B) EMPLOYS COT-BASED INSTRUCTIONS

DRIVEN BY MULTIPLE DATASETS AND TASKS, NOT LIMITED TO IMDB.
PERFORMANCE IS MEASURED IN MICRO-F1 AND MACRO-F1 SCORES,

WITH THE AVERAGE TOKEN COUNT ON IMDB PROVIDED.

Setting Micro-F1 Macro-F1 Avg. token
NC pkg w/o. CoT 71.23 70.62 317.87
NC pkg 73.03 71.45 339.73
NC pkg + LP pkg (1:1) 72.81 71.07 346.09
NC pkg + LP pkg (3:1) 74.86 72.13 354.12
MuseGraph (LLaMA3-8B) 76.57 73.78 354.12

These issues underline the critical need for GNN+LLM-
based methods to incorporate task-specific training, boost
computational efficiency, and achieve generalization across
diverse graph structures. In contrast, MuseGraph introduces
a compact graph description without specific GNNs to gen-
erate fewer diverse and high-quality instruction data under
limited language tokens for fine-tuning. Our proposed approach
effectively alleviates the content truncation problem while
facilitating efficiency and adaptability across various graph
tasks and datasets.

C. Ablation Studies (RQ2)

To demonstrate the impact of various model components, we
conduct a series of ablation studies, including (1) Variations
in Foundation Models, (2) Variations in Compact Graph
Descriptions, (3) Variations in CoT-based Instruction Packages,
and (4) Variations in Dynamic Instruction Package Allocation
Strategies. We have the following observations.

1) Variations in Foundation Models: We explore several
foundation models, including Qwen2-7B-Instruct, LLaMA1-7B,
LLaMA2-7B, and LLaMA3-8B, across various graph-related
tasks and datasets.

According to Table V, Table VI, and Table VII, MuseGraph
(LLaMA3-8B) outperforms other variations of MuseGraph
across most tasks and datasets, with performance improvements
ranging from 0.96% in Macro-F1 on IMDB to 15.61% in
BLEU-4 under 100 training instances on AGENDA. This
indicates that a foundation model with larger parameters and
extensive training can achieve better and more stable results
with our graph-aware instruction tuning. Moreover, MuseG-
raph (Qwen2-7B-Instruct) also achieves remarkable results on
MIMIC-III and WebNLG, underscoring the adaptability of our
framework to harness the distinct capabilities of various LLMs,
enhancing their robust understanding of graph data. Through
the above results, MuseGraph proves to be cost-effective, by
utilizing fine-tuning of diverse LLMs rather than relying on
extensive new data and training from scratch.

2) Variations in Compact Graph Descriptions: We assess
various compact graph descriptions on Heterogeneous Node
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GPT-4: Answer: [Thriller, Drama, Science Fiction]; Reasoning: Analyzing the compact graph 
description for “Echo Dr.”, the presence of keywords such as “Artificial Intelligence”, “Tech Noir”, 
and “Android” strongly suggest a setting focused on technology and its implications, typical of sci- 
fiction. The keyword “Home Invasion” aligns with the Thriller genre, as it involves … in thriller 
movies. The keyword “Human Android Relationship” also suggests elements of Drama, exploring …. 

HiGPT: Answer: [Romance, Thriller, Comedy, Action, Drama]; Reasoning: Based on the provided 
compact graph description, this MOVIE “Echo Dr.” has an actor named Claire Gordon-Harper, who 
is known for her roles in romantic and dramatic movies. Additionally, it has the keywords “Home 
Invasion” and “Android”, which is a common element in thriller and action movies. Finally, this 
MOVIE has an actor named Johnathan Hurley, who has been in comedic roles in the past.

Compact Graph Description: The compact graph description of this MOVIE is listed as follows: 
Title: {𝑣𝑣∗} Ego Graph Nodes: {𝑣𝑣∗, 𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣6, ... , 𝑣𝑣18, 𝑣𝑣19} One-hop Neighbors: {𝑣𝑣4, 𝑣𝑣1, 𝑣𝑣9, 𝑣𝑣3, 
𝑣𝑣10, 𝑣𝑣6} Random Walks: {A. 𝑣𝑣∗ → 𝑣𝑣1 → 𝑣𝑣12 → 𝑣𝑣13 → 𝑣𝑣14 → 𝑣𝑣15; B. 𝑣𝑣∗ → 𝑣𝑣4 → 𝑣𝑣16 → 𝑣𝑣17; C. …}

Compact Graph of 𝑣𝑣∗ Categories of 𝑣𝑣∗

Thriller, Action, 
Drama

Name H

𝑣𝑣∗
𝑣𝑣1𝑣𝑣2

𝑣𝑣3
𝑣𝑣4
𝑣𝑣5 𝑣𝑣6

𝑣𝑣7
𝑣𝑣8

𝑣𝑣9
𝑣𝑣10

𝑣𝑣11𝑣𝑣12
𝑣𝑣13𝑣𝑣14𝑣𝑣15

𝑣𝑣16
𝑣𝑣17 𝑣𝑣18

𝑣𝑣19

Type

𝑣𝑣∗: Echo Dr. 15MOVIE

𝑣𝑣1: Artificial Intelligence 17KEYWORD

𝑣𝑣2: Hugh Mun 4ACTOR

𝑣𝑣3: Security System 15KEYWORD

𝑣𝑣4: Patrick Ryan Sims 20DIRECTOR

······ ···

𝑣𝑣5: Family Relationships 12KEYWORD

Qwen2-7B-Instruct: Answer: [Thriller, Action, Drama]; Reasoning: The MOVIE “Echo Dr.” is 
associated with keywords such as “Artificial Intelligence”, “Home Invasion”, “Tech noir”, …. These 
keywords suggest a futuristic setting with elements of technology and human-robot relationships, 
which are common in genres like Drama and Action. The “Home Invasion” keyword indicates a 
thriller aspect, as it often …. The “Android” keyword also points towards a Sci-Fi or Action genre.

MuseGraph: Answer: [Thriller, Action, Drama]; Reasoning: (1) Ego Graph Nodes: The MOVIE 
“Echo Dr.” is connected to other movies like “Blade Runner” and “Impostor”, which are known for 
their elements of action, thriller, and drama, such as …. (2) One-hop Neighbors: The one-hop 
neighbors include elements like “Tech Noir”, “Home Invasion”, …, These are characteristic of the 
Thriller and Action genres. The “Human Android Relationship” also add a dramatic element to the 
movie, reinforcing the Drama genre. (3) Random Walks: Walk A: This suggests a storyline that is 
likely dark, …, typical of a Thriller. Walk B: connects “Echo Dr.” with …. Walk C: …. 

𝑣𝑣6: Tech Noir 18KEYWORD

𝑣𝑣7: Dane Bowman 9ACTOR

𝑣𝑣8: John Pirkis 5ACTOR

Fig. 8. Heterogeneous Node Classification Results on IMDB from HiGPT, GPT-4, Qwen2-7B-Instruct, and MuseGraph, all utilizing our compact graph
description as input. These models, selected for their generation and reasoning capabilities of LLMs, are compared based on their ability to analyze graphs.
Best viewed in color.

Classification on the IMDB dataset, exploring models with
different levels of neighborhood and walk integration. The
simplest model (I) uses only central node attributes. Models (II)
through (IV) gradually integrate more extensive neighborhood
attributes, enhancing the model’s context-awareness. Our
advanced model (V) uniquely merges one-hop neighbors with
random walks, striking an optimal balance between richness
of information and token efficiency, as shown in Fig. 7.

Specifically, compared with description (I), which only
has attribute information of the central node, description (II)
integrates all one-hop neighbor attributes to achieve up to
13.34% improvements in Macro-F1. However, when extending
the neighborhood to two-hop or multi-hop without sampling
decreases effectiveness (i.e., (III) and (IV)), the performance
significantly deteriorates due to an overload of input tokens.
Conversely, model (V) effectively combines one-hop neighbors
with random walks within a controlled token budget by
calculating the node energy (cf., Eq. 1). This ensures a rich
information intake and maintains token efficiency, significantly
improving performance on complex graph structures.

3) Variations in CoT-based Instruction Packages: In the
ablation study detailed in Table VIII, we investigate the
impact of different variations in Chain of Thought (CoT)-
based instruction packages on the IMDB dataset for the
Heterogeneous Node Classification task.

When CoT-based instructions are incorporated with task-
specific instructions (i.e., NC pkg w/o. CoT vs. NC pkg), there
is a notable improvement in both Micro-F1 and Macro-F1
scores with only a 21.86 increase in the average number of
tokens, indicating enhanced model understanding and reasoning

capabilities with minimal impact on computational efficiency.
Note that appropriately integrating CoT-instruction packages for
Link Prediction tasks on IMDB (e.g., NC pkg + LP pkg (3:1))
demonstrates a compounded beneficial effect in Heterogeneous
Node Classification, as further analyzed in Section IV-C4.
This not only further improves the model’s adaptability across
various graph tasks, but also underscores the synergistic effect
of diverse yet balanced CoT-based instruction packages on
comprehension capabilities for generic graphs.

4) Variations in Dynamic Instruction Package Allocation
Strategies: As shown in Table VIII, we assess the impact of
varying CoT-based instruction package compositions, incorpo-
rating instruction packages from multiple tasks and datasets,
and applying them to perform graph-aware instruction tuning.

By adjusting the allocation ratios of Link Prediction CoT-
based instructions (e.g., a 3:1 ratio compared to a 1:1 ratio)
within the NC pkg + LP pkg, we observed performance
gains for Heterogeneous Node Classification, with Micro-F1
rising from 72.81 to 74.86. This demonstrates the critical
need for carefully balancing instruction packages based on the
complexity and requirements of each task, enabling LLMs to
accurately understand and adapt to diverse graph-based tasks.
Furthermore, when we diversify the instruction set with various
graph tasks and datasets, our MuseGraph (LLaMA3-8B) can
surpass NC pkg + LP pkg (3:1) with a superior performance
improvement of 2.29% on average. This strongly indicates
that the strategic dynamic instruction package allocation
with different task complexities and dataset complexities can
enhance model adaptability across different graph tasks and
datasets while mitigating the risk of catastrophic forgetting.
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D. Case Studies (RQ3)

To evaluate the effectiveness of compact graph descriptions
in enhancing LLMs’ comprehension of graph structures, we
provide a Heterogeneous Node Classification scenario on the
IMDB dataset. Fig. 8 contrasts the responses from HiGPT, GPT-
4, Qwen2-7B-Instruct, and MuseGraph, which all interpret the
same compact graph description but exhibit varying analytical
abilities due to distinct LLM architectures.

Overall, the utilization of compact graph descriptions facil-
itates a deeper and more accurate analysis by encapsulating
key graph data into a more manageable and interpretable
format. This not only preserves critical information but also
enhances the models’ understanding and reasoning capabilities
to generate relevant and context-aware responses, allowing
models to focus on the pertinent details without the noise
commonly associated with extensive graph data. As shown in
the blue responses of Fig. 8, both Qwen2-7B-Instruct and
MuseGraph benefit from this compact graph description,
achieving correct predictions and analyses that reflect the
insightful understanding of graph data.

Note that, HiGPT and GPT-4 perform wrong predictions
and provide the additional categories for v∗ (shown in the red
responses of Fig. 8). HiGPT struggles with the compact graph
description due to the absence of specific learned graph tokens
for input. This limitation causes HiGPT to revert to its existing
knowledge base for category analysis, leading to irrelevant
and misleading suggestions, such as attributing the category
“Comedy” to Johnathan Hurley based on his past roles, which
does not align with v∗’s actual categories. GPT-4, with its
extensive parameters and knowledge, excels in studying the
semantic information of keywords presented in v∗’s compact
graph description to predict the categories. However, this makes
it ignore graph structures and leads to hallucinations, resulting
in erroneous predictions like “Science Fiction”. Although
Qwen2-7B-Instruct shows remarkable performances on IMDB,
it is hard to adapt to different tasks and datasets without further
fine-tuning (depicted in Table V, Table VI, and Table VII).

In contrast, MuseGraph can accurately understand graph
structures via compact graph description. For example, the one-
hop neighbor “Home Invasion” and the walk “A” suggest a
strong thriller element of node “v∗”. These elements collectively
enable MuseGraph to provide a detailed and contextually
enriched genre prediction, showcasing its ability to synthesize
complex graph structures into coherent and accurate analyses.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce MuseGraph, an effective and
generic approach for graph mining, which can enable the
accurate understanding abilities of graph data across various
tasks and datasets. Through the innovative design of compact
graph descriptions with adaptive generation procedure, the
generation of diverse task-specific Chain-of-Thought (CoT)-
based instruction packages, and the implementation of graph-
aware instruction tuning, our MuseGraph integrates the
strengths of Graph Neural Networks (GNNs) and Large Lan-
guage Models (LLMs) into one single foundation model. Our
comprehensive experimental results demonstrate MuseGraph’s

superior performance against state-of-the-art baselines in five
graph tasks and ten datasets, illustrating its ability not only to
improve the precision of graph-related downstream tasks but
also to enhance the generation capabilities of LLMs, which is
further consolidated with our real case study results.

The primary limitation of our MuseGraph lies in the reliance
on input graphs with rich semantic information and the careful
selection of training datasets. Looking ahead, it is interesting
to broaden the scope of MuseGraph by incorporating it with
a wider range of graph types and exploring its applications
in more diverse tasks. For instance, applying MuseGraph
to biological graphs could be intriguing, where integrating
domain-specific knowledge and expert feedback is crucial.
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