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Abstract—Heterogeneous information network (HIN) summa-
rizes rich structural information in real-world datasets and plays
an important role in many big data applications. Recently,
graph neural networks have been extended to the represen-
tation learning of HIN. One very recent advancement is the
hierarchical attention mechanism which incorporates both node-
wise and semantic-wise attention. However, since HIN is more
likely to be densely connected given its diverse types of edges,
repeatedly applying graph convolutional layers can make the
node embeddings indistinguishable very quickly. In order to avoid
oversmoothness, existing graph neural networks targeting HIN
generally suffer from a shallow structure. Consequently, those
approaches ignore information beyond the local neighborhood.
This design flaw violates the concept of non-local learning, which
emphasizes the importance of capturing long-range dependen-
cies. To properly address this limitation, we propose a novel
framework of non-local attention in heterogeneous information
networks (NLAH). Our framework utilizes a non-local attention
structure to complement the hierarchical attention mechanism.
In this way, it leverages both local and non-local information
simultaneously. Moreover, a weighted sampling schema is de-
signed for NLAH to reduce the computation cost for large-
scale datasets. Extensive experiments on three different real-
world heterogeneous information networks illustrate that our
framework exhibits extraordinary scalability and outperforms
state-of-the-art baselines with significant margins.

I. INTRODUCTION

Graphs provide a natural way to represent many kinds of
data and information in the real world, such as social networks,
knowledge graphs, and the world wide web. Once represented
as graphs in the non-Euclidean space, the data can be analyzed
flexibly by using many powerful graph mining algorithms.

Heterogeneous information network (HIN) [1], [2] refers
to graphs with multiple types of nodes and edges. In Figure
1, the DBLP dataset can be constructed into a heterogeneous
information network. The network consists of three types of
nodes: author (A), paper (P) and conference (C), and two
kinds of edges: authoredBy (between paper and author) and
publishedIn (between paper and conference). As illustrated
by this example, many real-world relational datasets can be
naturally summarized by the HIN framework, thus developing
effective models, especially general models, for analyzing HIN
has broad impacts in many big data application domains [1].
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Fig. 1: An example of heterogeneous information network in
DBLP dataset. (a) DBLP heterogeneous information network
contains three types of nodes and two types of edges. (b) Two
meta-paths APA and APCPA. (c) Meta-path based neighbors.

In order to better capture the rich semantic information
in graphs, the graph representation learning algorithms em-
bed graphs in lower-dimensional spaces and benefit various
downstream tasks [3]–[7]. In particular, graph neural networks
(GNNs) [8]–[10] introduce the neural convolution framework
into the graph mining domain and evoke great research inter-
ests in recent years.

However, most existing GNN-based graph embedding meth-
ods can only deal with homogeneous networks and how to
extend them to heterogeneous information networks has not
been fully explored. The diverse types of nodes and edges in
HIN pose a unique challenge for this task, where traditional
GNN-based methods cannot be directly applied. Different
types of nodes and edges in HIN typically carry different kinds
of information, and hence, should be treated separately.

One of the latest heterogeneous information network em-
bedding methods, HAN [11] attempts to mitigate this chal-
lenge by leveraging the attention mechanism to distinguish
the importance of different neighbors during embedding ag-
gregation, but its hierarchical attention mechanism has several
shortcomings. (1) Lack of non-local learning: Since GNN
is a special form of Laplacian smoothing [12], stacking
multiple GNN layers may oversmooth features of nodes from
different clusters and reduce the discriminative power of graph
embedding. This phenomenon is even more concerning when
GNN is applied to the embedding of HIN. Since HIN is more
likely to be densely connected given its diverse types of edges,
Laplacian smoothing [13] can happen even more quickly. As a
result, GNN-based models for HIN embedding typically have a978-1-7281-0858-2/19/$31.00 © 2019 IEEE



shallow structure, which limits the models’ effective receptive
fields to the local neighborhood. On the other hand, as argued
in [14], capturing long-range dependencies is the key to deep
neural networks. Therefore, the study of non-local learning in
HIN embedding is a pressing issue. (2) Scalability concern:
Another limitation of the hierarchical attention mechanism is
that the calculation of the node-wise attention involves all the
neighbor pairs. This is computationally infeasible when the
mechanism is applied to large dense networks.

In this paper, we address both limitations of HAN and
propose a novel framework of non-local attention in heteroge-
neous networks (NLAH). Instead of adding more neural layers,
we design a non-local attention structure to capture long-range
latent relationships. More specifically, NLAH first computes
non-local features with respect to each target node using
properly designed non-local measures. It then creates a virtual
neighbor for the target node to represent the generated non-
local features. This virtual neighbor is fed into the hierarchical
attention mechanism together with other real neighbors of the
target node. In this way, the introduction of non-local features
to the local neighborhood allows nodes to attend to both local
and non-local information at the same time. In addition to
that, we also investigate the requirements for proper non-
local measures, and subsequently present three different non-
local measures that significantly boost the performance of our
framework. To address the scalability concern, we carry out
node-wise sampling in NLAH based on the relative amount
of information contained in each edge and each meta-path
based sub-graph. This action reduces the training variance and
computation cost.

To summarize, we make the following contributions:
• To our best knowledge, this is the first attempt to study

the concept of non-local learning in HIN embedding.
We propose a novel framework of non-local attention
in heterogeneous information networks (NLAH) which
leverages a non-local attention structure to complement
the hierarchical attention mechanism.

• We conduct node-wise sampling according to the infor-
mation density of each edge and each meta-path based
sub-graph. Besides, our model can be efficiently im-
plemented via parallelization. This further reduces the
computation cost when the model is applied to real-world
large-scale datasets.

• We examine the performance of our framework based
on three different types of real-world heterogeneous in-
formation networks. The extensive experimental results
demonstrate the superior effectiveness and efficiency of
our model through comparison with various state-of-the-
art baselines.

II. RELATED WORK

Our framework draws inspiration from the area of heteroge-
neous information network, the concept of non-local learning
and the recent advancements in applying neural network to
semi-supervised learning over graphs. In what follows, we
would like to give a brief overview of these fields.

Graph Neural Network. Graph-based semi-supervised
learning has been a popular research area for decades. [9],
[15], [16] utilize the spectral graph convolutions to aggregate
local structural features and node attributes. GAT [10] intro-
duces the attention mechanism into feature aggregation by im-
plicitly learning different weights to different node neighbors.
Graph Attention Model [17], instead, leverages the attention
mechanism on the power series of the transition matrix to
optimize an upstream objective. Jumping Knowledge Network
[18] proposes to aggregate embedding features across stacked
neural layers to enable better structure-aware representation.
GraphSAGE [8] implements node-wise sampling to get a
fixed number of neighbors for node embedding. Self-paced
learning [19] samples negative context nodes in terms of their
informativeness. FastGCN [20] directly samples nodes via
importance sampling. Our framework can be regarded as an
extension of GNN to the field of HIN which poses special
challenges for representation learning.

Non-local Learning. This concept emphasizes the inclusion
of non-local information to capture long-range dependencies.
Non-local Neural Network [14] proposes a non-local block in
the neural network architecture in computer vision domain.
Some graph neural network frameworks also consider non-
local influence in their graph embedding tasks. LINE [21]
employs the second-order proximity to preserve global struc-
ture of graphs. [12] relieves GCN’s problem of localization
with the use of self-training and co-training. DGCN [22]
regularizes local consistency with global consistency during
the training process of GCN. APPNP [23] propagates neural
network predictions by adopting a personalized PageRank
scheme. Different from these previous works, we focus on
applying the concept of non-local learning to the new task of
HIN embedding.

Heterogeneous Information Network. Heterogeneous in-
formation network (HIN) contains different types of nodes and
edges, which better reflects the real scenario. PathSim [24]
raises the concept of meta-path that defines different semantic
meaning through sequences of relations. ESim [25] incorpo-
rates users’ guidance on multiple meta-paths in their embed-
ding framework. Metapath2vec [26] is a random walk based
approach and utilizes skip-gram to perform heterogeneous
information network embedding. HIN2Vec [27] is designed
to capture the rich semantics embedded in HINs by exploiting
different types of relationships among nodes. GraphInception
[28] focuses on the extraction of a hierarchy of relational
features in HIN by introducing the Graph Inception module.
HAN [11] proposes a hierarchical attention mechanism, which
consists of two stages: node-wise attention and semantic-wise
attention. Our work attempts to resolve HAN’s problem of
localization by applying the concept of non-local learning.

III. HIERARCHICAL ATTENTION IN HIN

HAN [11] is one of the latest advancements in the area
of heterogeneous information network representation learning.
As our framework is an extension of HAN, we first provide



an overview of this previous work and discuss its drawbacks
that we aim to address.

A. Problem Definition

In real world scenario, data objects of different types and
various interactions between them can be formed into a
heterogeneous information network [1].

Definition 1: Heterogeneous information network (HIN) is
defined as G = (V, E ,X) where V represents a node set
of multiple types, E ⊆ V × V represents an edge set of
multiple types, and X ∈ R|V|×d represents a node attribute
matrix. Moreover, V consists of m types of nodes: V1 =
{v11, · · · , v1n1

}, · · · , Vm = {vm1, · · · , vmnm
}, where vij

represents the j-th instance of type i.
In this paper, we target on the semi-supervised classification

task of nodes in type V1 without loss of generality. Suppose
the node type V1 contains n nodes of C classes. For each
node v1i ∈ V1, we have an associated d-dimensional feature
vector ~xi ∈ Rd and a class label variable yi ∈ {1, · · · , C}.
We would like to infer the labels yi for a subset of v1i ∈ V1.

B. Hierarchical Attention Mechanism

The hierarchical attention mechanism proposed by HAN
[11] gives a good interpretation of the semantic information
at both the node level and the meta-path level. It consists of
the following stages.

1) Meta-path Expansion:
Definition 2: Meta-path Φ is a path defined as A1

R1−−→
A2

R2−−→ . . .
Rm−1−−−−→ Am, abbreviated as A1A2 . . . Am. The

relation R between A1 and Am is a composite relation
R = R1 ◦ R2 ◦ . . . Rm where ◦ denotes the composition
operator on relations.

Meta-path expansion, which finds meta-path based neigh-
bors for each node of the target type, transforms the original
heterogeneous information network into several homogeneous
sub-graphs containing the target type only.

2) Node-wise Attention: Within the meta-path based neigh-
borhood, each node plays a distinct role and exhibits varying
degrees of importance in learning the embedding of the target
node. Therefore, a self-attention mechanism is adopted here
to learn the node-wise attention between the target node and
its meta-path based neighbors.

To examine the similarity between nodes, a meta-path Φi
specific linear transformation WΦi,l ∈ RF ′×F of neural layer
l is used to project the input node features ~hΦi,l ∈ RF to
the same embedding space. Then a single feedforward neural
layer attΦi,l : RF ′ × RF ′ → R is shared in computing the
attention coefficient as follows:

αΦi,l
v,v′ = softmaxv′(attΦi,l(WΦi,l~hΦi,l

v ,WΦi,l~hΦi,l
v′ )) (1)

which indicates the importance of the meta-path based neigh-
bor v′ ∈ NΦi(v) to the target node v [10]. After that, the
meta-path specific embedding of node v in the next neural
layer l+ 1 can be computed through the linear aggregation of

the products of v’s attention to v′ and v′’s projected features.
A nonlinear activation function is applied here.

~hΦi,l+1
v = σ

( ∑
v′∈NΦi (v)

αΦi,l
v,v′W

Φi,l~hΦi,l
v′

)
(2)

3) Semantic-wise Attention: Different meta-path based sub-
graphs represent distinct semantic relationships. To obtain
v’s final embedding in the entire heterogeneous information
network, we need to ensemble v’s semantic information across
meta-paths. Each node should value each semantic relationship
in a disparate way when learning the final embedding. Hence,
the semantic-wise attention should be calculated separately for
each node.

To learn the importance of each meta-path specific to each
node, we compute the dot-product similarity between the
attention vector ~WΦi

β ∈ RF ′ for meta-path Φi and node v’s
final embedding ~HΦi

v ∈ RF ′ in the corresponding meta-path
based sub-graph:

βΦi
v = softmaxΦi

(
~WΦi

β · ~H
Φi
v

)
(3)

Here, ~βΦi
v represents the semantic contribution of meta-path

Φi to the final embedding of node v in the entire heterogeneous
information network. With the learned semantic-wise attention
~βΦi
v as coefficients, linear fusion is carried out by aggregating

node v’s semantic specific embedding ~HΦi
v so as to generate

its final embedding ~Zv .

~Zv =

I∑
i=1

~βΦi
v · ~HΦi

v (4)

For semi-supervised node classification, we aim to minimize
the cross-entropy loss over labeled nodes V ′:

L = −
∑
v∈V′

~Yv ln(Q · ~Zv) (5)

where ~Yv is the one-hot vector indicating node v’s label, and
Q is the classifier parameter.

C. Drawbacks

1) Localized Nature: As proved in [12], Graph Neural Net-
work is a special form of Laplacian smoothing, which aligns
the attributes of a node with its neighbors. Repeatedly applying
Laplacian smoothing may mix the features of nodes from
different clusters and make them indistinguishable. This draw-
back is aggravated in the case of HIN. Meta-path expansion
can cause the number of edges in the meta-path based homo-
geneous sub-graph to increase exponentially. When nodes are
densely connected, the mixing happens dramatically fast as we
stack more neural layers. Therefore, the number of node-wise
attention layers used in the hierarchical attention mechanism
is limited. However, since a shallow neural network cannot
sufficiently propagate the label information from the training
set to the entire graph, the hierarchical attention mechanism
suffers from the localized nature of the node-wise attention.



Notation Description
I Number of meta-paths

Φi Meta-path i
L Number of node-wise attention layers

WΦi,l Projection matrix in layer l for meta-path i
α
Φi,l
v,v′ Attention to neighbor v′ in layer l for meta-path i

~h
Φi,l
v Node v’s embedding in layer l for meta-path i
~W

Φi
β Attention vector of meta-path i

β
Φi
v Node v’s attention to meta-path i

HΦi Embedding matrix for meta-path i
UΦi Virtual non-local node set for meta-path i
X̂Φi Non-local feature matrix for meta-path i
NΦi (v) Meta-path i based neighbors of node v
w

Φi
v,v′ Edge weight between v and v′ for meta-path i
BΦi,l Sampled node set in layer l for meta-path i
Z Final embedding matrix

TABLE I: Notation table

Nonetheless, [14] points out that capturing long-range de-
pendencies is of primary importance in deep neural net-
works. Apparently, each node-wise attention layer in HAN
only allows nodes to aggregate information from their direct
neighbors. The generally shallow structure of the node-wise
attention mechanism limits the model’s ability to attend to
long-range dependencies in the graph.

2) Computational Inefficiency: The edge density of each
meta-path based sub-graph is associated with that of the
original heterogeneous information network and the property
of the corresponding meta-path. If the original HIN is densely
connected or the selected meta-path is relatively long, meta-
path expansion can give rise to a dramatic increase in edge
density.

As shown in Table II, the number of authors is 14K in
the DBLP dataset and most of the authors only connect to
a few number of papers. The original graph is relatively
sparsely connected. However, with the expansion based on
meta-path APCPA which represents a more composite relation,
the number of edges in the resulting sub-graph increases to
around 19M in total. Since the calculation of the node-wise
attention examines all neighbor pairs in the meta-path based
sub-graph, a huge increase in edge density due to meta-path
expansion in datasets like DBLP can make the calculation
computationally infeasible.

IV. LARGE-SCALE NON-LOCAL LEARNING IN HIN
To address the drawbacks discussed in Section III-C, we

propose to extend the hierarchical attention mechanism to
large-scale non-local learning in HIN. More specifically, we
handle the localized nature of the mechanism via a non-
local attention structure in Section IV-A and IV-B. Then the
node-wise weighted sampling schema and jumping knowledge
aggregation are used to reduce the computational inefficiency
in Section IV-C and IV-D.

A. Non-local Attention Structure

To capture non-local dependencies in HIN, we propose
to inject those dependencies into the shallow structure of

the hierarchical attention mechanism. On the one hand, this
will not cause oversmoothness due to the stacking of neural
layers. On the other hand, our framework can still attend to
information beyond local neighborhood even with a shallow
structure. In this way, both local and non-local features can be
captured at the same time.

In comparison to [14], we compute long-range dependencies
in the graph by calculating structural similarities between any
two nodes in the graph, regardless of their positional distance.
Besides, in order to maintain the semantic integrity of each
meta-path, we only carry out non-local operation within each
meta-path based sub-graph.

The generic non-local information calculation is defined as

~̂xΦi
v =

1

C(~xv)

∑
v′∈VΦi

f(v, v′)g(~xv′) (6)

where ~xv and ~̂xΦi
v are the target node v’s input features and

generated meta-path Φi based non-local features, respectively.
v′ enumerates all nodes in the same sub-graph. f is a non-local
measure used to compute a scalar similarity between v and v′,
g gives a task specific transformation of ~xv , and C(~xΦi

v ) is the
normalization factor.

Then we create a virtual node uΦi
v to contain non-local

features ~̂xΦi
v and set it as a neighbor to the target node v in the

meta-path Φi based sub-graph. This virtual node uΦi
v connects

to the target node v only. The node-wise attention learns the
importance of uΦi

v and v’s meta-path Φi based neighborhood
together.

~hΦi,l+1
v = σ

( ∑
v′∈NΦi (v)∪{uΦi

v }

αΦi,l
v,v′W

Φi,l~hΦi,l
v′

)
(7)

Here, v′ enumerates over the union of v’s meta-path Φi based
neighborhood NΦi(v) and the virtual neighbor uΦi

v . When
v′ = uΦi

v , we set ~hΦi,l
v′ = ~̂xΦi,l

v . This process allows v to
attend to both local and non-local information at the same time
and determine the usefulness of each piece of information via
training.

At the stage of node-wise attention, we do not wish to mix
the non-local information with local information. Hence, the
virtual node uΦi

v ’s features ~̂xΦi,l
v in Layer l are transformed

to the next embedding space only via the projection matrix
WΦi,l:

~̂xΦi,l+1
v = σ

(
WΦi,l · ~̂xΦi,l

v

)
(8)

To have a deeper insight into this non-local attention struc-
ture, we give an illustration in Figure 3. By isolating the virtual
node uΦi

v ’s contribution to the target node v’s embedding ~hΦi

v′ ,
we have

αΦi

v,u
Φi
v

WΦi ~̂xΦi
v = αΦi

v,u
Φi
v

WΦi

∑
v′∈VΦi

f(v, v′)g(~xv′)

=
∑

v′∈VΦi

αΦi

v,u
Φi
v

f(v, v′)WΦig(~xv′)
(9)

Therefore, by attending to the non-local features contained in
the virtual neighbor uΦi

v , the target node v essentially attends
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(a) Heterogeneous graph (b) Meta-path expansion (c) Non-local feature
aggregation

(d) Node-wise attention
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(e) Semantic-wise
Attention
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Fig. 2: The overall framework. (a) The original heterogeneous information networks. (b) Homogeneous sub-graphs after meta-
path expansion using two different meta-paths. (c) Non-local feature aggregation for the target node to create virtual neighbors.
(d) Node-wise attention with sampling. A thicker edge represents a higher attention. (e) Semantic-wise attention to generate
final embedding.

to all nodes within the meta-path Φi based sub-graph. This
serves the purpose of capturing long-range dependencies. The
non-local attention between the target node v and any node
v′ ∈ VΦi is the product of the attention αΦi

v,u
Φi
v

between v and

uΦi
v and the precomputed similarity f between v and v′.

αΦi

v,v′ = αΦi

v,u
Φi
v

· f(v, v′) , ∀v′ ∈ VΦi (10)

In this way, the non-local attention between v and any node
v′ is an approximation of the true attention that v would
pay to v′ if there was a real edge between them. However,
it is computationally infeasible to allow each node to really
pay attention to all other nodes during training. This kind of
approximation, therefore, saves a lot of computation power
as the similarity f(v, v′) is precomputed only once before
training. Each node can then determine the balance between
local and non-local information via the node-wise attention
mechanism.

Since the non-local attention between v and any node v′

simulates the case that there was a real edge between them, the
receptive field of v essentially exceeds the scope of v’s direct
neighborhood even with a limited number of attention layers.
Meanwhile, this kind of simulation also enriches the semantic
meaning and densifies the original graph. This is especially
important to those relatively sparsely connected sub-graphs.

B. Non-local Measures

Based on Equation 10, αΦi

v,u
Φi
v

is shared by all nodes in

the computation of the non-local attention αΦi

v,v′ . Hence, the
similarity generated by the non-local measure f(v, v′) should
be approximately proportional to the true attention that v
would pay to v′ if there was a real edge between them. In other
words, f(v, v′) must capture the latent semantic relationships
beyond local neighborhood. We propose three different non-
local measures f(v, v′) that can fulfill this requirement and
fit our non-local attention structure. Here, f(v, v′) is defined
within each meta-path based sub-graph.
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Fig. 3: An illustration of non-local structure.

Second-order Proximity. The second-order proximity
makes an assumption that nodes with similar distributions
over the context tend to have similar semantic roles in the
graph [21]. Let ~Sv = (wv,1, . . . , wv,|V|) define the first-order
proximity between v and all other nodes, where wv,v′ is the
weight of the edge (v, v′). Then the second-order proximity
between v and v′ is determined by the similarity between ~Sv
and ~Sv′ . Softmax is used for normalization.

f(v, v′) = softmaxv′(~S>v · ~Sv′) (11)

Personalized PageRank. Personalized PageRank [29] mea-
sures the importance of other nodes v′ relative to the root node
v based on the underlying assumption that more important
nodes are likely to receive more edges from other nodes.
Using the symmetrically normalized adjacency matrix ˆ̃A =
D̃−

1
2 ÃD̃−

1
2 , where A is the adjacency matrix, Ã = A + I

and D̃ii =
∑
j Ãij , we have:

f(v, v′) =
[
α(I− (1− α) ˆ̃A)−1

]
v,v′

(12)

where [·]v,v′ represents the (v, v′) entry of the matrix · and
α ∈ (0, 1] is the restart probability.



Positive Pointwise Mutual Information. Positive point-
wise mutual information encodes the estimated probability that
node v occurs in context v′ [22], [30]. If there is a semantic
relation between v and v′, then f(v, v′) is expected to be
greater than if v and v′ are independent. We first use random
walk to generate a co-occurence frequency matrix F, then
calculate the non-local measure as:

f(v, v′) = max{log(
Fv,v′

Fv,∗F∗,v′
), 0} (13)

where Fv,∗ and F∗,v′ are the sum of row v and column v′ in
F, respectively.

(a) Ajacency matrix (b) 2nd order proximity

(c) PPMI (d) Personalized PageRank
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Fig. 4: Heatmap of normalized matrices.

Figure 4 visualizes the matrices constructed by running
the above three different non-local measures on a sub-graph
of the DBLP network. Compared with the adjacency matrix
of the same sub-graph, there are two obvious differences:
the effect of the hub nodes is reduced; more latent long-
range dependencies are captured via the non-local measures.
This suggests that the proposed non-local measures meet the
requirement raised at the beginning of this section.

In this section, we propose three possibilities, but the choice
of non-local measures used in NLAH framework is not limited
to them. Any measures that can capture latent long-range
dependencies in the graph can be applied here. To make a
more complete evaluation, we compare the performance of the
proposed three non-local measures and investigate the reasons
why certain measures perform better in certain datasets in
Section V-C1.

C. Weighted Sampling Schema

As discussed in Section III-C2, meta-path expansion typi-
cally gives rise to a huge increase in edge density. Since the
computation cost of the node-wise attention is proportional
to the number of edges in the meta-path based sub-graph,
a high edge density can cause an unaffordable computation
cost. Hence, we propose a novel sampling method which is
specially designed for large-scale heterogeneous information

Algorithm 1: NLAH Algorithm
Input : Heterogeneous information network

G = (V, E ,X),
Meta-path set Φ, Target node set B,
Number of layers L

Output: Trained model, Final embeddings Z
for Φi ∈ Φ do

Generate meta-path based sub-graph
GΦi = (VΦi , EΦi);

Generate virtual neighbors UΦi with non-local
features X̂Φi using Equation 6;
BΦi,L ← B;
for l← L− 1 to 0 do
BΦi,l ← BΦi,l+1;
for v ∈ BΦi,l do

Weighted sampling NΦi,l(v) from NΦi(v)
using Equation 15;
BΦi,l ← BΦi,l ∪NΦi,l(v);

end
end
~hΦi,0
v ← ~xv where v ∈ BΦi,0 and ~xv ∈ X;
~̂xΦi,0
v ← ~̂xΦi

v where v ∈ BΦi,0 and ~̂xΦi
v ∈ X̂Φi ;

for l← 0 to L − 1 do
for v ∈ BΦi,l+1 do

Learn the attention αΦi,l
v,v′ using Equation 1

where v′ ∈ NΦi,l(v) ∪ {uΦi
v };

Learn embedding ~hΦi,l+1
v using Equation 7;

Get ~̂xΦi,l+1
v using Equation 8;

end
end
Get HΦi from {HΦi,1,HΦi,2 . . .HΦi,L} using

Equation 16;
end
Learn the weight βΦi of meta-path Φi using Equation

3;
Fuse the semantic embeddings to generate final

embeddings Z using Equation 4;
Calculate the task-specific loss using Equation 5 and

back propagate to update parameters;

networks. Existing works [8], [20], [31] target on homoge-
neous networks and sample nodes based on the graph structure.
However, we wish to leverage the rich semantic information
in heterogeneous information networks, and therefore, sample
nodes based on the information density of each edge and each
meta-path based sub-graph.

The number of neighbors sampled for each node in a meta-
path based sub-graph is formulated as

max
(

ln (dΦi), n
)

(14)

Here, dΦi is the average node degree for the meta-path Φi
based sub-graph and n is a hyperparameter. The general idea
is that a higher average node degree suggests richer semantic
information, hence more neighbors are needed to capture the



information. But to avoid an extreme degree, we normalize all
degrees by natural log. The n is the lower bound in case that
the graph is too sparse.

If multiple instances of the same meta-path exist between
two nodes, there is a high chance that these two nodes share
a high semantic similarity. Then we assign the number of
meta-path instances to the weight of the edge between these
two nodes. The probability of sampling the neighbor v′ for v
should be proportional to the edge weight wΦi

v,v′ :

p(v′|v,Φi) =
wΦi

v,v′∑
v′′∈NΦi (v) w

Φi

v,v′′

(15)

Since there is a higher probability of sampling semantically
similar nodes, the weighted sampling schema helps to reduce
the sampling variance as shown in Figure 8. In this way, our
framework can be more effectively and efficiently applied to
many big data applications.

D. Jumping Knowledge Aggregation

The weighted sampling schema discussed in the last sec-
tion samples a fixed number of neighbors for each node.
However, this limits the ability of our model in capturing
the diverse local structure of sub-graphs. As a result, we
adopt the jumping-connection idea [18] to combine a node’s
intermediate representations from each node-wise attention
layer.

~HΦi
v = max

(
~hΦi,1
v ,~hΦi,2

v , . . .~hΦi,L
v

)
(16)

We conduct element-wise max pooling over node v’s interme-
diate embeddings ~hΦi,l

v from layer l. This approach ensembles
information across layers and better captures the diverse local
structure.

E. Analysis of Proposed Model

The overall process is summarized in Algorithm 1. We give
an illustration of our framework in Figure 2 and analyze it as
follows:
• The proposed framework of non-local attention in het-

erogeneous information networks (NLAH) captures long-
range dependencies in HIN through the non-local at-
tention structure, which aids the local semantic features
learned by the hierarchical attention mechanism. The
learned attention is highly interpretable and benefits graph
analysis.

• The overall attention structure can be efficiently im-
plemented through parallelization. Weighted sampling
schema makes the computation more efficient in real-
world large-scale datasets. The time complexity of one
node-wise attention layer is O(V FF ′ + UF ) and that
of the semantic-wise attention layer is O(V F ′I), where
V and U are the number of nodes and sampled nodes,
respectively.

V. EXPERIMENTS

The goal of our experiments is to examine the effectiveness
and efficiency of the proposed NLAH framework.

Dataset #Node Meta-path #Meta instance Feature Label

DBLP 14K APA 40K 300 4APCPA 19M

ACM 3K PAP 13K 1870 3PSP 1M

SLAP 20K

GTG 303K

2695 15
GDG 7K
GPG 416K
GG 172K

GDCDG 18K

TABLE II: Summary of dataset statistics.

A. Experiment Settings
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Fig. 5: Dataset schema.

1) Datasets: We apply our framework to 3 different types
of heterogeneous information networks [2], and the statistics
are summarized in Table II.

1) DBLP: We use the bibliographic information network
extracted from DBLP dataset, which forms a bipartite
network. It includes 3 types of nodes: Author, Paper and
Conference, connected via 2 types of edges: AuthoredBy
and PublishedIn. We choose Author as the target in-
stance and the network schema is shown in Figure 5.
We extract a bag-of-words representation (300 words)
of all the paper abstracts published by an author as his
or her input features and assign each author to a research
area.

2) ACM: We extract papers from different conferences in
the ACM dataset and construct a star schema network
accordingly. It consists of 3 types of nodes: Paper,
Author and Subject, and 2 types of edges: AuthoredBy
and TopicOf. We choose Paper as the target instance
and demonstrate the network schema in Figure 5. Each
paper’s bag-of-words representation (1870 words) and
research area are used as instance attributes and labels,
respectively.

3) SLAP: We use the multiple-hub network in a bioinfor-
matic dataset SLAP [32]. It contains node types such
as chemical compound, gene, disease, and pathway etc.
We choose gene as the target instance and use 15
gene families as instance labels. The network schema
is shown in Figure 5. 3000 gene ontology terms (GO
terms) are extracted for each gene as instance features.

2) Baselines: We compare our framework NLAH with
some state-of-the-art baselines, including GNN-based methods
and random walk based methods. For methods [10], [22], [23]



targeting homogeneous networks, we test them on each meta-
path based sub-graph and report the best performance.

1) GAT [10]: A GNN-based method which utilizes the
attention mechanism in homogeneous networks.

2) APPNP [23]: A GNN-based method which constructs
a personalized propagation of neural predictions in ho-
mogeneous networks.

3) DGCN [22]: A GNN-based method which uses two
convolutional networks to jointly consider local and
global consistency in homogeneous networks.

4) metapath2vec [26]: A random walk based method
which performs meta-path based random walks in HIN.

5) ESim [33]: A random walk based method which uses
user guidance to capture semantic information from
multiple meta-paths in HIN.

6) HAN [11]: A GNN-based method which considers hi-
erarchical local attention in HIN.

7) NLAH2ndprox: The proposed framework which uses both
the hierarchical attention mechanism and the non-local
attention structure. Here we use the second-order prox-
imity as the non-local measure.

8) NLAHppr: The proposed framework which uses the
personalized PageRank as the non-local measure.

9) NLAHppmi: The proposed framework which uses the
positive point-wise mutual information as the non-local
measure.

3) Implementation Details: For all GNN-based models
(GAT, APPNP, DGCN, HAN, NLAH), we experiment with 1
to 5 layers and report the best performance. During training,
we practice the train-validation-test split with a ratio of 3:1:1
for each dataset and use early stopping with a patience of 50.
Each model is optimized with Adam with a learning rate of
0.005, a regularization parameter of 0.0005 and a dropout rate
of 0.4. More specifically, for the proposed NLAH framework,
we set g(~xv′) in Equation 6 as the identity function and n = 1
in Equation 14. For GAT and HAN, we use 8 attention heads.
For APPNP, we set restart probability α = 0.1. For random
walk based methods (metapath2vec, ESim), we set window
size to 5, walk length to 50, walks per node to 50, the number
of negative samples to 5. To ensure fairness, an embedding
dimension of 64 is adopted for all the above algorithms.

B. Evaluation

To thoroughly examine the effectiveness of the proposed
method, we evaluate NLAH against other state-of-the-art
baselines on two representative tasks: node classification and
embedding visualization.

1) Node Classification: We first want to see how the
proposed NLAH framework performs in comparison to the
existing state-of-the-art methods. Here we employ linear SVM
classifiers for the node classification task. Each model is tested
under the same experiment setting 10 times and the average
results are summarized in Table III. NLAH achieves the best
performance in all three datasets. More specifically, NLAH
using the second order proximity as the non-local measure
obtains the highest results in DBLP and SLAP datasets,

while the one using the positive pointwise mutual information
outperforms the rest in ACM dataset. We can also observe that
the performance of methods targeting homogeneous networks
(GAT, APPNP, DGCN) is largely affected by the edge density
of meta-path based sub-graphs. Hence, their node classification
results vary across datasets. In particular, NLAH is ranked
the top using all metrics since the incorporation of non-
local features include additional knowledge which cannot be
captured by stacking more local attention layers (GAT, HAN).

Dataset DBLP ACM SLAP
Metrics Acc F1 Acc F1 Acc F1

GAT 93.73 92.51 85.55 85.45 17.47 21.18
APPNP 73.92 61.36 85.60 85.50 30.91 23.99
DGCN 75.40 68.55 84.56 84.39 18.62 20.56

metapath2vec 87.33 84.64 74.96 75.74 33.61 6.29
ESim 92.37 91.11 73.48 74.73 31.78 6.10
HAN 91.02 89.70 84.09 84.87 32.15 26.57

NLAH2ndprox 96.92 96.48 88.09 88.09 34.84 28.80
NLAHppr 96.56 95.95 87.86 87.90 34.00 28.51

NLAHppmi 96.43 95.91 88.33 88.33 34.16 29.10

TABLE III: Node classification results (%).

2) Layer Experiment: Since the proposed NLAH frame-
work aims to resolve the problems caused by the localized
nature of HAN, we conduct a layer experiment on NLAH
and HAN by gradually increasing the number of node-wise
attention layers used for the node classification task in ACM
and SLAP datasets. The setting in Section V-B1 is adopted
and the results are drawn in Figure 6. Both models’ per-
formances peak at two or three layers. When more layers
are added, the classification accuracy is impaired significantly
by oversmoothness. In addition, we also notice that NLAH
with one layer, regardless of the non-local measures used,
always beats the best performance achieved by HAN. This
phenomenon coincides with our analysis in Section III-C1.
Even though HAN can attend to information beyond the direct
neighborhood by stacking more attention layers, the drawback
of oversmoothness associated with an increasing number of
layers offsets the performance boost brought by extra infor-
mation. In contrast, when only one layer is used in NLAH, the
problem of oversmoothness is negligible. Nonetheless, NLAH
can still inject non-local information into its shallow structure
to achieve a higher accuracy.
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Fig. 6: Layer experiment.

3) Embedding Visualization: To give a more intuitive com-
parison, we visualize the learned node embeddings on a 2-



dimensional space using t-SNE [34]. 4 different models are
used to embed author nodes in DBLP test set and the results
are given in Figure 7. Since GAT is designed for homogeneous
networks, it cannot well separate nodes with different labels.
Due to the nature of random walk, ESim is more likely to mix
the embeddings of nearby nodes even if they are from different
clusters. HAN performs better as its separate treatment of
each meta-path preserves the semantic integrity. NLAH clearly
achieves the best performance by forming distinct groups for
nodes with different labels. It not only ensembles semantic
meanings carried by each meta-path, but also attend to non-
local features simultaneously. As a result, node embedding
learned by NLAH exhibits high intra-class similarity and inter-
class difference.
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Fig. 7: Node embedding visualization for DBLP test set using
t-SNE. Different colors indicate different labels.

C. Analysis

1) Comparison of the Proposed Non-local Measures: We
aim to compare the three proposed non-local measures in terms
of their performance in different datasets. By cross-referencing
the results in Table III and the heatmaps in Figure 4, we can
see that the personalized PageRank is the least capable of
capturing latent long-range dependencies, thus its performance
is relatively lower than the other two non-local measures. The
performance of positive pointwise mutual information is often
affected by the hyperparameters of the random walk used in
the generation process. It is relatively harder to fully explore a
large graph with only a few steps of random walk. As a result,
it performs better in a smaller dataset like ACM. On the other
hand, the performance of the second order proximity is not
affected by the graph size. Hence, it gives the highest results
in both DBLP and SLAP datasets.

2) Non-local Attention Structure as a Form of Graph
Densification: As discussed in Section IV-A, since the non-
local attention structure allows each node to attend to all
other nodes, this process can be viewed as a form of graph
densification. To prove this point, we gradually remove certain

Edges Removed 0% 20% 40% 60%
GAT 85.55 84.99 84.38 83.48

APPNP 85.60 85.08 84.32 83.85
DGCN 84.56 82.92 83.48 81.88

metapath2vec 74.96 74.27 74.10 72.75
ESim 73.48 72.12 67.88 65.62
HAN 84.09 82.86 82.41 81.95

NLAH2ndprox 88.09 87.23 86.34 86.80
NLAHppr 87.86 87.62 87.39 86.85

NLAHppmi 88.33 87.91 87.09 86.87

TABLE IV: Node classification accuracy (%) after removing
certain percent of edges in ACM dataset.

percentage of edges in ACM dataset and run NLAH against
other baselines on the resulting datasets. We stop at removing
60% of edges since removing any more edges can give
rise to isolated nodes and render the node classification task
meaningless. The setting in Section V-B1 is adopted and the
results are summarized in Table IV.

NLAH outperforms the rest on all the resulting datasets.
In particular, NLAH using the positive pointwise mutual
information achieves the highest accuracy in most cases. More
importantly, the performance of NLAH using all three types of
non-local measures is more resistant to the removal of edges.
Since GNN-based methods suffer from localization, when
more edges are removed, each node can only attend to less
neighbors. Consequently, the model extracts less features from
the local neighborhood and gives deteriorated performance. In
contrast, the non-local attention structure in NLAH captures
latent semantic relationships even if two nodes are not directly
linked. The incorporation of non-local information alleviates
the negative effects caused by the drop in the amount of
local information. This suggests that the improvement in
performance by NLAH is more significant in sparse graphs.
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Fig. 8: Performance curves of the model trained using two
different sampling schemas.

3) Variance Reduction due to Weighted Sampling Schema:
A further analysis is conducted to examine if weighted sam-
pling of meta-path based neighbors can truly reduce the
variance during the training process. We run the NLAH model
on the DBLP dataset using weighted and random sampling.
The training curves based on the node classification results of
the validation set are drawn in Figure 8. The model trained



using weighted sampling presents a more smooth performance
curve as compared with the one using random sampling.
The reduction in training variance is significant, especially
at around Epoch 20, where the drop in accuracy is largely
regularized by weighted sampling.

VI. CONCLUSION

In this paper, we propose a novel framework of non-local
attention in heterogeneous information networks (NLAH) for
semi-supervised HIN representation learning. The framework
utilizes the non-local attention structure to complement the
hierarchical attention mechanism. In this way, it allows each
node in the graph to simultaneously leverage both local
semantic information and long-range dependencies. A properly
designed weighted sampling schema is deployed to improve
computational efficiency. Empirical studies on three different
types of heterogeneous information networks demonstrate the
effectiveness of the NLAH framework. Although we focus
on studying its impacts on node-related tasks, the proposed
technique is very general and can be applied to many other
tasks such as link-related tasks (e.g. link prediction) and
application-related tasks (e.g. social recommendation). Explo-
ration of those other tasks will be an interesting direction
for future research. Meanwhile, we also seek to investigate
how other types of non-local measures can fit our framework
and how other types of heterogeneous information network
embedding methods can be generalized under our framework
in the future.

REFERENCES

[1] Y. Sun and J. Han, “Mining heterogeneous information networks:
principles and methodologies,” Synthesis Lectures on Data Mining and
Knowledge Discovery, vol. 3, no. 2, pp. 1–159, 2012.

[2] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2017.

[3] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social network data analytics. Springer, 2011, pp.
115–148.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[5] Z. Liu, V. W. Zheng, Z. Zhao, F. Zhu, K. C.-C. Chang, M. Wu,
and J. Ying, “Semantic proximity search on heterogeneous graph by
proximity embedding,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[6] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu, “Pathselclus:
Integrating meta-path selection with user-guided object clustering in
heterogeneous information networks,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 7, no. 3, p. 11, 2013.

[7] C. Yang, C. Zhang, X. Chen, J. Ye, and J. Han, “Did you enjoy the
ride? understanding passenger experience via heterogeneous network
embedding,” in 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 2018, pp. 1392–1403.

[8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
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Graph neural networks meet personalized pagerank,” 2018.

[24] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 992–1003,
2011.

[25] C. Shi, X. Kong, P. S. Yu, S. Xie, and B. Wu, “Relevance search
in heterogeneous networks,” in Proceedings of the 15th international
conference on extending database technology. ACM, 2012, pp. 180–
191.

[26] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, 2017, pp. 135–144.

[27] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,” in
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. ACM, 2017, pp. 1797–1806.

[28] Y. Zhang, Y. Xiong, X. Kong, S. Li, J. Mi, and Y. Zhu, “Deep collective
classification in heterogeneous information networks,” in Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2018, pp. 399–408.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[30] K. W. Church and P. Hanks, “Word association norms, mutual informa-
tion, and lexicography,” Computational linguistics, vol. 16, no. 1, pp.
22–29, 1990.

[31] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 4558–4567.

[32] B. Chen, Y. Ding, and D. J. Wild, “Assessing drug target association
using semantic linked data,” PLoS computational biology, vol. 8, no. 7,
p. e1002574, 2012.

[33] J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and J. Peng, “Meta-
path guided embedding for similarity search in large-scale heterogeneous
information networks,” arXiv preprint arXiv:1610.09769, 2016.

[34] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.


