
Open Visual Knowledge Extraction via
Relation-Oriented Multimodality Model Prompting

Hejie Cui1∗ Xinyu Fang2∗ Zihan Zhang2 Ran Xu1 Xuan Kan1 Xin Liu3

Yue Yu4 Manling Li5 Yangqiu Song3 Carl Yang1†
1Emory University 2Tongji University 3 The Hong Kong University of Science and Technology

4 Georgia Institute of Technology 5 Northwestern University

Abstract

Images contain rich relational knowledge that can help machines understand the
world. Existing methods on visual knowledge extraction often rely on the pre-
defined format (e.g., sub-verb-obj tuples) or vocabulary (e.g., relation types),
restricting the expressiveness of the extracted knowledge. In this work, we take
a first exploration to a new paradigm of open visual knowledge extraction. To
achieve this, we present OpenVik which consists of an open relational region
detector to detect regions potentially containing relational knowledge and a visual
knowledge generator that generates format-free knowledge by prompting the large
multimodality model with the detected region of interest. We also explore two
data enhancement techniques for diversifying the generated format-free visual
knowledge. Extensive knowledge quality evaluations highlight the correctness and
uniqueness of the extracted open visual knowledge by OpenVik. Moreover, inte-
grating our extracted knowledge across various visual reasoning applications shows
consistent improvements, indicating the real-world applicability of OpenVik.

1 Introduction

Knowledge extraction has been widely studied on texts [8, 1, 13, 9] for enhancing logical reason-
ing [45, 14, 6] and explainable AI [18, 57, 5, 55], and recent studies have explored open knowledge
extraction through categorizing seed relations [64, 40] and eliciting from language models [47].
Visual knowledge extraction, on the other hand, captures intricate details like tools, sizes, and
positional relationships, which are often difficult to express exhaustively in texts [39, 28, 48, 7].
Yet existing approaches of visual knowledge extraction are either restricted by a fixed knowledge
format [52, 63, 20, 22] or the predefined sets of objects/relations [52, 63, 21]. While efficient at
capturing interactions between objects, the produced visual knowledge is often limited in richness
and confined to a single format, falling short in representing the diverse real-world information that
can be complemented by visual data.

In this endeavor, we propose to further explore a new paradigm of open visual knowledge extraction
(OpenVik). Specifically, we propose to generate relation-oriented, but format-free knowledge that
includes a wider variety of elements, such as descriptions, insertions, and attributes, among others.
Drawing inspiration from the wealth of knowledge encapsulated in large models [49, 61, 46], we
propose to leverage pre-trained large multimodality models by eliciting open visual knowledge
through relation-oriented visual prompting. This approach allows for a more nuanced understanding
of visual data, mirroring how humans naturally emphasize certain aspects of visual scenes when
perceiving and describing visual information, leading to more flexible visual knowledge extraction.
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Our proposed OpenVik framework consists of two modules, an open relational region detector and
a format-free visual knowledge generator. It is a unique challenge to detect the regions potentially
containing relational knowledge, since traditional region detectors primarily focus on learning
predefined object classes. To learn the regression of relational regions, we propose to use free-form
knowledge descriptions as supervision and leverage knowledge generation as a training objective.
With the detected regions, the remaining question is how to interpret these regions into free-form
knowledge. We propose a visual knowledge generator by harnessing the power of language variety
enhancement in large pre-trained multimodality models. Specifically, we prompt them to generate
knowledge descriptions of any formats and condition the generation on the detected relational regions.

However, establishing a new paradigm of open visual knowledge extraction is challenging due to
the absence of comprehensive and diverse training data. Existing datasets sources such as scene
graphs [51, 24], dense captions [20], and dense relational subsets [22] often exhibit a long-tail
distribution biased to more prevalent relations and entities [44]. Brute-force merging of these datasets
could exacerbate the distribution bias inherent in the data. To alleviate the bias, we propose two
diversity-driven data enhancement strategies based on an adapted TF-IDF+ score, involving random
dropping and data augmentation with external knowledge resources. These strategies optimize data
distributions and richness, thus fostering diverse open visual knowledge extraction.

We implement extensive evaluations to assess the quality and utility of the open visual knowledge ex-
tracted by OpenVik, encompassing: 1) directly evaluating the performance of knowledge generation;
2) engaging human evaluators for a multi-faceted assessment of in-depth knowledge quality; and 3)
comparing the open visual knowledge extracted with OpenVik with existing knowledge sources, such
as non-parametric knowledge from the ConceptNet knowledge graph, and parametric knowledge from
the GPT-3.5 large language model. Furthermore, the utility of the extracted open visual knowledge is
validated through its integration with several common applications that require visual understanding,
including text-to-image retrieval, grounded situation recognition, and visual commonsense reasoning.
These applications demonstrate consistent improvements, affirming the practical utility of OpenVik.

2 Related Work

Visual knowledge extraction. Recent advancements in knowledge extraction have extended from
being purely text-driven to incorporating images [11, 29]. VisKE [39] is designed to verify relations
between pairs of entities, e.g., eat(horse, hay). Scene graphs, which locate objects in the image and
identify visual predicates between subjects and objects in a triple format, e.g., (man, on, chair), are
extensively studied for vision understanding [52, 63, 60]. A recent work OpenSGG [17] extends SGG
to open-vocabulary objects, enabling the relation prediction for unseen objects. Other studies have
explored caption-like formats, like dense captioning [20] with a set of object-centric descriptions
across regions, and relational captioning [22] focusing on relational information between objects.
Despite these advancements, existing methods either adhere to a pre-defined format and vocabulary
or are constrained by the biased distribution of training sets. This highlights the pressing need for a
format-free approach in visual knowledge extraction with knowledge diversity.

Large model prompting. Recently, large language and multimodality models have exhibited re-
markable successes in capturing commonsense knowledge across various tasks, especially facilitating
few-shot [15, 53, 25, 58] and zero-shot learning [23, 66, 59]. The potential of prompt-based learning
for pre-trained vision-language models [2, 37, 42] has been explored for handling diverse data types
across multiple modalities, such as images and texts, with improved performance in tasks including
image classification [33, 67], segmentation [32] and visual question answering [16]. Leveraging
the substantial information encapsulated within these pre-trained multimodality models to extract
explicit knowledge can enrich existing resources, potentially laying the groundwork for advances in
interpretability research and mitigating the hallucination issue associated with large models [19, 10].

3 Method

In this section, we introduce our new paradigm and two key model design novelty featuring OpenVik,
relation-oriented multimodality model prompting and diversity-driven data enhancement.
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Figure 1: The overview of OpenVik. The left orange and purple panels illustrate key components of
relation-oriented multimodality model prompting: open relational region detector and format-free
visual knowledge generator. The right green one depicts diversity-driven data enhancement strategy.
OpenVik is designed to extract relation-oriented format-free open visual knowledge with novel
entities , diverse relations , and nuanced descriptive details .

3.1 Open Visual Knowledge Extraction

Given a dataset D = {(Ii,Ti,Ui)}Mi=1 consisting of M samples, Ii is the i-th image (such as the
input image in Figure 1), Ti = {Tj}ni

j=1 is a set of ni region descriptions (such as “the boat on
water” in Figure 1), Ui = {Uj}ni

j=1 is the set of ni relation-oriented visual regions, where each
Tj corresponds to a visual region Uj ∈ Ui in image Ii. The goal of our open visual knowledge
discovery is to train a model M capable of producing a set of format-free knowledge descriptions
(such as “large boat docked at pier” in Figure 1) given any image Ik during the inference stage.

3.2 Relation-Oriented Multimodality Model Prompting

The overall architecture of OpenVik is shown in Figure 1. It comprises two modules: an open
relational region detector Mv and a format-free visual knowledge generator Mt. The two modules
are learned separately during training with our diversity-enhanced data (Section 3.3) and combined
to produce format-free visual knowledge at inference. Specifically, the relational region detector
Mv takes an image Ii as the input and learns to select a flexible number of relational regions
Ui = {(Uj)}ni

j=1 that captures object interactions, each corresponding to a description Tj in Ti; the
visual knowledge generator Mt generates format-free knowledge descriptions by prompting and
fine-tuning the multimodality model with the guidance of detected visual region Uj . All notations for
the region detector and knowledge generator are detailed in Table 9 and Table 10, respectively.

Table 1: Notations for open region detector.
Notation Meaning

Ii input image of the relational region detector
Uj relation-centric box label
Ui set of relation-centric boxes of an image
Tj region description of a box
Ti set of region descriptions of the an image
LRD region regression loss supervised by union regional boxes
LK knowledge generation loss supervised by GT relational knowledge
Lv the overall objective of the relational region detector

Table 2: Notations for knowledge generator.
Notation Meaning

Ii the input image of the knowledge generator
Ta, Tb two regional knowledge descriptions of one same image
Ni the number of generated knowledge descriptions of an image
ϕ hyper-parameter controlling the penalty slightly different sequences

LMLE the language modeling loss of the generation decoder
LV inter-sequence information variety regularizer
α weight hyper-parameter balancing generation accuracy and variety
Ll the overall objective of the knowledge generator

Open relational region detector. Although existing object detection algorithms have been widely
recognized for their efficiency in object detection, they are usually restricted to object-centric visual
regions in a predefined set, and thus cannot directly capture open relational information with a single
box. Detecting regions containing relational knowledge remains to be a challenge. We make two
adaptions on the object detection FasterRCNN [38] to train the open relational region detector:

• Region Regression: we change the original object-centric region labels to our newly created relation-
centric box labels, denoted as Uj . The foreground of each relation-centric region label Uj is created
by taking the union of the object-level bounding boxes of the entities, i.e., boat, water, contained in
a ground truth region knowledge description Tj . This forms the region regression loss LRD.
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• Knowledge Supervision: To assist with the refinement of the bounding box, we replaced the
object-centric label classification in traditional object detectors with knowledge supervision. A
pre-trained generator is finetuned to create the regional description grounded to the given region.
This is supervised by the cross-entropy loss LK with region description Tj .

The training objective Ll of the relational region detector is formulated as below, where LRD is the
regional regression loss and LK is the knowledge supervision loss,

Lv = LRD + LK. (1)

Format-free visual knowledge generator. OpenVik provides better knowledge grounding by
conditioning the generator on the detected relational region, leading to a reasoning-driven generation.
Specifically, the detected bounding box (such as the box containing “boat” and “pier” on the far left)
is utilized as a visual prompt when fine-tuning the visual knowledge generator. The model architecture
of the knowledge generator is built upon a combined large multimodality model, which composes a
pre-trained vision transformer ViT-B [12] and the image-grounded text decoder of BLIP [27]. The
two modules are jointly trained on a generic image-text paired dataset comprising over 14 million
entries and fine-tuned on the image captioning task, which delivered state-of-the-art performance.

In our visual knowledge generator, the decoder takes the ViT visual representation of the entire image
as input and leverages the detected regional mask as a binary visual prompt. This prompt aids in
filtering out the background and directing attention toward the relational foreground. The generation
of format-free knowledge from the decoder is supervised by the language modeling loss LMLE, which
further refines visual attention during the knowledge generation process. As a result, our approach
facilitates the production of format-free outcomes that extend beyond the conventional sub-verb-obj
form. Besides, to improve information variety, we introduce an amplifying penalty factor for highly
similar knowledge generation. For any two generated sequences Ta and Tb describing image Ii,

LV =
1

Ni

∑
Ni

ReLU (− log (1− (s (Ta, Tb)− ϕ))) , (2)

where Ni is the number of generated knowledge of image Ii, s (Ta, Tb) indicates the semantic cosine
similarity, and ϕ is a hyper-parameter set as 0.01 controlling the penalty on sequences with only
slight difference (e.g. “dog chasing the man” and “dog licking the man”) to be relatively small.

The training objective Ll of the format-free visual knowledge generator is formulated as

Ll = α× LMLE + (1− α)× LV, (3)

where α is a weighting hyper-parameter we set as 0.7. The trained relational region detector and visual
knowledge generator are combined during inference. Given any image I, the open relational region
detector first detects a flexible number of open relations regions of interest, then each detected region
R is passed to the format-free visual knowledge generator, where a relation-oriented format-free
knowledge phrase (such as “flying jet leaving behind smoke” in Figure 1) is generated to describe the
given visual focus subarea R of the image. To further encourage within-sequence language variety
during inference, we leverage the contrastive decoding strategy from [43], which improves over
nucleus sampling and beam search.

3.3 Diversity-driven Data Enhancement

The training data for relational knowledge extraction usually exhibits a long-tail distribution, where
more prevalent but simple relations such as in, on, and wear dominate the training set [44]. Conse-
quently, the model trained with such a biased dataset may render limited, and repetitive knowledge.
As a remedy, we propose two data enhancement techniques to optimize the data distribution. As the
foundational measure for given relation r’s importance, we design a grid TF-IDF+ score Sr [34, 54]:

Sr = (log(
N

1 + fr ∗ α1
))α2 , (4)

where N is the total number of knowledge phrases in the datasets, fr is the number of occurrences of
the relation r, α1 and α2 are the grid scales whose values are selected based on fr.

Random dropping on low-quality data. We first remove repeated knowledge descriptions in the
same image and then randomly drop descriptions that contain frequently occurring yet meaningless
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relations with a low Sr (e.g., “people on ground”) from the original dataset. Specifically, if the Sr of
the relation in a description is relatively low, i.e., 0.4, we remove it at a random dropping rate of 0.5.
This process repeats for all descriptions in an image until the remaining set is 0.6 times the size of the
original training set. Consequently, the training data bias is mitigated by removing low-quality data.

Data augmentation with external knowledge resources. For the relations with high TF-IDF+ scores,
we leverage external knowledge resources from both non-parametric (i.e., ConceptNet [41]) and
parametric (i.e., COMET [4]) knowledge resources to promote diverse knowledge generation [56].
✔ Enhance Relation Recognition: For each training description with a high TF-IDF+ score, we
perform semantic parsing to get all the objects and complement additional relations (e.g., “rest” in
Figure 1) between each pair of them by mapping the nodes and retrieving edges from the ConceptNet.
Each retrieved knowledge triplet is converted to a knowledge phrase and added to the training set
for generator training. With this introduced external knowledge, the knowledge generator ultimately
yields a more robust and detailed representation of the underlying visual information of objects. This,
in turn, bolsters the relation recognition of the visual knowledge generator. ✔ Boost Entity Perception:
For the description with the highest-scored TF-IDF+ relation given each image, we also leverage
ConceptNet to enrich similar objects (e.g., “jet”) to the original object (e.g., “plane”). Additionally,
we further introduce new entities (e.g., “smoke” in Figure 1) and attribute descriptions (e.g., “blue”) by
prompting the pre-trained attribute commonsense branch of the COMET model (Refer to Appendix
A for more details). The entity-based enrichment potentially helps in boosting entity understanding
and at the same time enhances the occurrence of important but rare relations in the training set.

3.4 Implementation Details

Our training data are built based on Visual Genome [24] and its relation-enhanced version Dense
Relational Captioning [22]. Each sample includes an image identified by a unique ID and a set of
relational descriptors describing interactions among objects in the image. Specifically, each relational
descriptor includes the full description text, the subject and object names contained in the description
text, the relation between them, as well as the bounding box coordinates of the subject and object.
The dataset statistic information is summarized in Table 8 in the Appendix B.

Our model is implemented in PyTorch [35] and trained on two Quadro RTX 8000 GPUs. The open
relational region detector is initialized from the ResNet50-FPN backbone, then finetuned for another
20 epochs with the relational bounding box. The model detects a maximum of 30 bounding boxes for
each image with the highest confidence to avoid misleading noises. The format-free visual knowledge
generator is initialized from BLIPbase with the basic ViT-B/16 and finetuned for 20 epochs. Full
details on learning parameters can be referred to in Appendix C.

4 Evaluation

In this section, we directly evaluate the extracted open visual knowledge from OpenVik from two
perspectives: (1) knowledge generation performance with traditional generative metrics and in-depth
knowledge quality assessment; (2) comparison with existing knowledge sources. Besides, ablation
studies are conducted to study the influence of diversity design on the generated knowledge and data.

4.1 Evaluation on Generated Knowledge

Generation performance. To directly evaluate the visual knowledge generator, we compare the
knowledge generated by OpenVik with a variety of baselines, including scene graph generation [52,
63, 44, 17] (of which Ov-SGG employs an open vocabulary), dense relational captioning [22], and
region captioning [20, 65, 27, 26]. Evaluation metrics are traditional language generation measures
such as BLEU, ROUGE-L, and METEOR. The results, displayed in the left side of Table 3, reveal
that OpenVik outperforms captioning-based approaches and yields results on par with the best scene
graph generation baseline. These findings underscore the effectiveness of the format-free visual
knowledge generator through relation-oriented prompting of the large multimodality model.

In-depth knowledge quality. To more thoroughly evaluate the quality and richness of the format-
free visual knowledge extraction, beyond simply evaluating it as a language generation model with the
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Table 3: Knowledge comparison of OpenVik and baselines on performance and in-depth quality (%).

Method
Generation Performance In-Depth Knowledge Quality

BLEU↑ ROUGE-L↑ METEOR↑ Validity↑ Conformity↑ Freshness↑ Diversity↑
Closed/Open Scene Graph Generation
IMP [52] 0.075 0.123 0.118 0.800 0.823 0.676 0.316
Neural Motifs [63] 0.229 0.283 0.273 0.822 0.767 0.667 0.349
UnbiasSGG [44] 0.217 0.258 0.194 0.739 0.733 0.666 0.357
Ov-SGG [17] 0.167 0.210 0.183 0.712 0.633 0.693 0.413

Dense Relational Captioning
MTTSNet+REM [22] 0.240 0.226 0.228 0.897 0.852 0.754 0.375

Region Captioning
DenseCap [20] 0.248 0.245 0.196 0.883 0.843 0.790 0.543
Sub-GC [65] 0.272 0.263 0.221 0.892 0.871 0.795 0.547
BLIP [27] 0.264 0.266 0.252 0.886 0.855 0.760 0.531
BLIP2 [26] 0.275 0.285 0.257 0.892 0.871 0.766 0.535

Open Visual Knowledge Extraction
OpenVik 0.280 0.283 0.250 0.907 0.883 0.809 0.619

limitation of training data, we incorporate four additional metrics [31], which delve into an in-depth
quality evaluation of the extracted visual knowledge from four distinct perspectives:

• Validity (↑): whether the generated visual knowledge is valid to human.
• Conformity (↑): whether the generated knowledge faithfully depicts the scenarios in the images.
• Freshness (↑): the novelty of the knowledge, i.e., the proportion not present in the training set.
• Diversity (↑): the language variance between a randomly sampled pair of knowledge pieces.

Among the four metrics, both the validity and conformity metrics involve human annotators. We
randomly selected 100 images as the evaluative subset. Details regarding the scoring guidance and
the interface provided to the annotators can be found in Appendix D. The remaining metrics, i.e.,
freshness and diversity, are calculated automatically. The in-depth knowledge quality evaluation
results are displayed in the right part of Table 3, where the average pairwise Cohen’s κ on human
evaluation results is 0.76 (good agreement). The findings demonstrate that trained with the diversity-
enhanced datasets, the format-free visual knowledge extracted by OpenVik significantly outperforms
other types of baselines in terms of all four metrics. The improvement of diversity, in particular,
reaches 14% relatively compared with the inference results from the second runner DenseCap,
indicating the advantage of OpenVik in generating rich and comprehensive visual knowledge.

4.2 Comparison with Existing Knowledge Sources

Spatial Details,
Motion Dynamics,
Scene Insights

Attributes,
Belongings

Non-parametric 
Knowledge

Parametric 
Knowledge

OpenViK

Descriptive
Elements

Abstract InsightsLogical Relations

ExamplesKnowledge Source
dog IsA animal (ConceptNet); conceptnet IsA knowledge graph (ConceptNet);Non-parametric Knowledge
dog HasProperty black (ConceptNet); dog and brown fur covering black (OpenVik)

computer HasA keyboard (ConceptNet); keyboard with computer (OpenVik)

people using light bulbs to illuminate the room; (LLM)Parametric Knowledge
yellow sign in corner (both); black seat attached to bike (both);

three layer cake on table; blue trash can full of garbage next to brown dresser; blue 
box sitting beside a sneaky garage; (OpenVik)

Open Visual Knowledge
(OpenViK)

people wearing fashionable black hats are skiing; baby elephants walking around 
adventurous wood; (OpenVik)

the light shining from bright black background; hanging fan are above tall shelf;  
brown chair in the background of the room; (OpenVik)

Figure 2: The Venn diagram of knowledge comparison between the open visual knowledge from
OpenVik with the non-parametric knowledge from existing knowledge graph (i.e., ConceptNet) and
parametric knowledge from large language model (i.e., COMET).

We compare the extracted visual knowledge with the non-parametric knowledge in the existing
knowledge graph (KG) and the parametric knowledge from the large language model (LLM). The
comparison insights from the three knowledge resources are shown in the Venn Diagram in Figure 2.

Compare with non-parametric knowledge. We take ConceptNet [41] as the representative in
the comparison with non-parametric knowledge. To map the knowledge generated by OpenVik to
ConceptNet, we parse the knowledge into triplets and associate the endpoints of these triplets with
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nodes in ConceptNet. Then we calculate the similarity of embeddings3 between the parsed relation
and all the edge relations among the mapped nodes in ConceptNet. If the similarity score exceeds a
predetermined threshold, i.e., 0.75, we consider the mapping successful. As illustrated in Figure 2,
we observe that compared with the non-parametric knowledge in KG, the extracted visual knowledge
captures richer and more meaningful spatial details, e.g., “three layer cake on table”, and motion
dynamics, e.g., “baby elephants walking around adventurous wood”.

Compare with parametric knowledge. We compare with parametric knowledge contained in LLM
by prompting the gpt-3.5-turbo4 model with the object information in the image. The prompt template
used is detailed in Appendix E. The mapping process follows the approach mentioned earlier. It is
found that compared with the parametric knowledge in LLM, the extracted visual knowledge exhibits
unique fine-grained visual details, e.g., “red sticker on fence”, and provides precise scene information,
e.g., “the light shining from bright black background”.

4.3 Ablation Study
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Figure 3: The influence of information variety regularization
and diversity-driven data enhancement strategies.

The influence on knowledge quality
with information variety regulariza-
tion and data strategies. We con-
ducted ablation studies to evaluate the
effectiveness of the information vari-
ety regularizer, LV, and our diversity-
driven data enhancement strategies.
This involves an in-depth assessment
of knowledge quality on the same eval-
uation subset. The results are presented in Figure 3. It is evident from the results that our proposed
information variety design primarily impacts freshness and diversity, without compromising validity
and conformity. For the freshness, the omission of data augmentation for entities and relations results
in the most significant performance degradation. This implies the crucial role these strategies play in
infusing novel knowledge into the generation process. As for diversity, the most notable changes in
metrics are observed when the LV and random dropping are removed. The strategy for augmenting
entities and relations also plays a valuable role in enriching diversity.

Ablation of the pre-training for the open relational region detector. We conducted a comparison
of the outcomes when loading a pre-trained detector backbone versus training the detector from
scratch, as shown by the yellow bar in Figure 3. Results demonstrate a noticeable decrease in both
knowledge diversity and freshness, which indicates the importance of loading the pre-trained model
for region detection. This may be because omitting the pre-training step of the FasterRCNN model
tends to result in the detection of more overlapping regions, which in turn causes the drop.

The influence on dataset diversity with data strategies. We conduct a direct analysis of the
knowledge diversity of the existing datasets and our diversity-enhanced one, compared with the
visual knowledge generated from OpenVik. The findings, presented in Table 4, show that the
diversity-driven data enhancement strategies significantly boost knowledge diversity. Trained with
this enhanced data, OpenVik can extract visual knowledge that exhibits greater diversity than that
found in the Visual Genome and Relational Caps, indicating the advantage of OpenVik to format-free
visual knowledge generation and its ability to yield richer knowledge diversity.

Table 4: Diversity of existing and enhanced datasets and generated knowledge from OpenVik.

Metrics
Training Dataset Generate Knowledge

Visual Genome [24] Relational Caps [22] Diversity Enhanced (Ours) OpenVik (Ours)

Diversity 0.589 0.604 0.632 0.619

4.4 Case Study

We present two case studies in Figure 4 (See Appendix F for more) to showcase the format-free
visual knowledge generated by OpenVik, in comparison to Visual Genome (Scene Graph and Region
Description) and Relational Caps. Contrary to the rigidity of scene graphs, which strictly adhere to a

3Embeddings are produced by ConceptNet API: https://github.com/commonsense/conceptnet-numberbatch.
4https://platform.openai.com/docs/models/gpt-3-5
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predefined format, OpenVik can generate knowledge with a flexible semantic structure, not strictly
bound to the sub-verb-obj format (e.g., “blue post attached to wall with white letter”). Examples of
this adaptability are highlighted in red. When compared to dense region descriptions, the relational
knowledge extracted by OpenVik offers a deeper understanding of the multiple entity interactions
within an image. In comparison to Relational Caps, which mainly focus on interactions between two
objects, OpenVik significantly broadens the diversity of relation with vivid verbs (e.g., “attached to”,
“adorning”). Moreover, it introduces novel entities (e.g., “post”, “mane”) and enriches the knowledge
representation with nuanced details (e.g., “full of ”, “striped”) that are missed by Relational Caps.

Visual Genome-Scene Graph:

<drink, in, cooler>

<orange, in, box>

<banner, on, building>

<item, on, table>

Visual Genome-Region Descriptions:

oranges in a wood thing

green leaves on oranges

red writing on a white sign

drink in red cooler

Relational Caps:

snow-covered oranges in wood thing

the frost on snow-covered oranges

green leaves on snow-covered oranges

red writing on white sign

OpenVik: 

blue post attached to wall with white letter    

the open window to snowy ground

wood box full of different size of orange

white banner on a building with letter o

blue box sitting beside a sneaky garage

a orange covered with ice and green leaves

Visual Genome-Scene Graph:

<hair, on, head>

<zebra, eat, grass>

<eye, on, zebra>

<grass, on, ground>

Visual Genome-Region Descriptions:

black and white striped leg

light shining on the zebra

thin line of black hair 

two zebras grazing in the grassOpenVik: 

striped mane belongs to grazing zebra   

zebra with striped ears eating green grass 

white stripe adorning leg                        

dark brown mane growing behind head

grass everywhere surround standing zebra        

black nose above green lively grass

Relational Caps:

sticking up ear of grazing zebra

black eye of eating zebra

grazing zebra in green grass

the muzzle of grazing zebra

Figure 4: Case study on the extracted open visual knowledge from OpenVik. Examples of format-free
knowledge are highlighted in red. Compared with VG and Relational Caps, OpenVik performs better
at capturing novel entities , broadening object interactions with diverse relations , and enriching the
knowledge representation with nuanced descriptive details .

Note that we observe the unbalanced and noisy distributions within the training data can lead to
errors in the knowledge produced. Viewing hallucinations as erroneous inferences based on input,
the inaccuracies observed in OpenVik and similar baselines often stem from detection errors. These
errors are typically caused by data biases that incorrectly associate features with a specific class
or label. We further two illustrative failure cases in Figure 5. For example, a “black speaker by
flat tv” is generated, although the speaker is not present in the image—possibly reflecting common
co-occurrences within the dataset. Similarly, a ladder in the right figure has been misidentified as a
towel, leading to the erroneous description of a “blue towel hanging from dry shower”. The key to
mitigating such incorrect inference is identifying the cofounder feature of class labeling.

Visual Genome-Scene Graph:

<window, in, screen>

<eye, of, cat>

<keyboard, on, laptop>

<cat, beside, laptop>

Visual Genome-Region Descriptions:

laptop key board

cat beside the laptop

pictures on wall behind cat

the cat is brown

Relational Caps:

white cat beside black laptop

the window in screen

the wall behind cat

OpenVik: 

white cat sitting near computer

black speaker by flat tv

black wire plugged into computer

the picture in screen

OpenVik: 

framed picture hanging on wall

recessed lighting in ceiling

blue towel hanging from dry shower

the sunlight coming through window

Visual Genome-Scene Graph:

<paint, in, frame>

<picture, on, wall>

<window, in, bathroom>

<curtain, over, window>

Visual Genome-Region Descriptions:

leg of an elephant

baby elephant in grass

Grass within the enclosure

A big rock on the ground

Relational Caps:

blue painting in metal frame

the shampoo bottle on rack

blue jar in window

Figure 5: Examples of incorrectly knowledge resulting from distribution bias are highlighted .

5 Application
This section explores whether the extracted open visual knowledge from OpenVik can bolster
reasoning and inference capabilities in multimodality downstream tasks by augmenting a baseline in
the challenging zero-shot setting.

5.1 Text-to-Image Retrieval

Task Setting. In the text-to-image retrieval task, a given caption is matched to a large set of candidate
images, with the most relevant image returned as the result. Adopting the challenging zero-shot
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setting, we generate the visual representation v and textual representation t of the given image I
and caption T using a pre-trained clip-retrieval model [3]. The baseline involves the image and text
embedding similarly based on zero-shot CLIP Retrieval [3] and the fine-tuned model from BLIP [26].

To explore the potential of the extracted visual knowledge from OpenVik, we enrich the given caption
T with related contexts derived from the extracted visual knowledge. Specifically, for each query
caption, we parse the caption to extract all subject-object pairs (s, o) with the NLTK parser. Then
s and o are mapped to the open visual knowledge, where knowledge phrases that contain relations
occurring more than 30% of the time between s and o are enriched to the original caption T .

Original text: A little room and dining room area 
with furniture. A living room with a big table next 
to a book shelf. A living room decorated with a 
modern theme. A living room with wooden floors 
and furniture. The large room has a wooden table 
with chairs and a couch. 

Enriched text: big table in room. a decorated living room with wooden furniture. 
brown couch in room. book on table. wooden table with shelf. shelf next to couch. 
wooden bookshelf with books next to table.

Figure 6: An example of OpenVik enrichment on text-
to-image retrieval (See Appendix G.1 for more).

Method Recall@1 Recall@5 Recall@10 Avg

ZS-CLIP 36.16 65.47 78.66 60.10
OpenVik + ZS-CLIP 40.55 73.29 84.53 66.12
BLIP 63.11 86.30 91.10 80.17
OpenVik + BLIP 65.23 87.71 91.90 81.61

Table 5: Text-to-image retrieval results (%)
of OpenVik enrichment compared with
zero-shot baselines.

Qualitative examples. Figure 6 presents an example of OpenVik-based visual knowledge enrichment
on captions. By incorporating related contexts from the generated open visual knowledge, the enriched
captions convey more precise visual details, which enhances the alignment for text-image alignment.

Quantitative results. We curated a subset of 680 images from the testing set of the MS-COCO dataset
containing parsed knowledge with at least eight nouns. This ensures an adequate degree of enrichment
is achieved through the use of OpenVik. Standard image retrieval metrics, i.e., Recall@1/5/10/ and
Avg, are employed to evaluate the performance. The results are presented in Table 5. It is evident
that relational context enrichment leads to the average correction of more than 6.0% of the initial
zero-shot, highlighting the practical benefits of extracted visual knowledge in visual reasoning tasks.

5.2 Grounded Situation Recognition

Task setting. The event type prediction for the grounded situation recognition task is to predict the
best match from predefined 504 event types [36] based on the image. We convert each candidate
event verb into a description T : “An image of <verb>” for image description matching. Similarly to
text-to-image retrieval, we include zero-shot CLIP and the fine-tuned model from BLIP as baselines.

To enrich with contextual knowledge from OpenVik, for each given verb v, we find its nearest
synonym in the extracted open visual knowledge and enrich the text description with the most
common knowledge phrase containing it, regularized by the objects present in the image. Instead
of directly concatenating the retrieved knowledge triplets to the original textual description, we
employ an additive decomposition strategy: the similarity s(I, v) of the candidate verb v with respect
to the given image I is calculated as s(I, v) = 1

|D(v)|
∑

d∈D(v) ϕ(I, v), where D(v) is the set of
descriptors, including the original description and the enriched ones, and ϕ represents the single log
probability that descriptor d pertains to the image I.

Verb: talking
Original text: This is an image of talking. 
Enriched text: man talking on a small 
white telephone. adult male with white 
shirt talking on chatty cellphone. the man 
waving arms is talking on phone.

Figure 7: An example of OpenVik context enrichment
on task GSR (See Appendix G.2 for more).

Method Accuracy Precision Recall F1

ZS-CLIP 53.14 42.54 45.19 43.82
OpenVik + ZS-CLIP 75.16 61.63 62.75 62.18
BLIP 70.42 65.32 69.25 67.23
OpenVik + BLIP 80.25 72.55 70.61 71.57

Table 6: Grounded situation recognition
results (%) of OpenVik enrichment com-
pared with zero-shot baselines.

Qualitative examples. Figure 7 presents a qualitative example of OpenVik-based context enrichment
in the grounded situation recognition task. We observed that verbs like “shopping” and “talking”
were appropriately enriched with their frequently occurring contexts from the open visual knowledge,
leading to a reduced embedding distance between the description and its matching image.

Quantitative results. We assembled a test set of 900 samples from the testing set of GSR that
included verbs such as “talking”, “filming”, and “picking”, among others, from a list of 256 words

9



that can be accurately mapped to extracted visual knowledge, as well as 138 verbs that have a fuzzy
match through ConceptNet embedding comparison. The full lists of the exact and fuzzy-matched
verbs are detailed in Appendix H. The evaluated metrics include Accuracy, Precision, Recall, and
F1. The results are presented in Table 6. It can be observed that knowledge enrichment significantly
outperforms the zero-shot and BLIP baselines. This suggests that the verb-related contexts introduced
by OpenVik-generated knowledge are intuitive and greatly assist in understanding the semantics of
event verbs, bolstered by related visual information.

5.3 Visual Commonsense Reasoning

Task setting. The goal of visual commonsense reasoning is to predict an answer from four given
option candidates for a given image and question. For the baseline approach, we compare the
backbone model R2C from the VCR paper [62] and BLIP [27]. In the visual knowledge-enhanced
OpenVik Enriched approach, we perform two-level context augmentation, incorporating both entities
and relations: (1) we parse the question and options to obtain all (S, O) pairs and, for each entity
pair, apply the same relation augmentation as in the image retrieval task; (2) for the V in each option,
we enrich the visual context using the same method as illustrated in grounded situation recognition.

Question : Is  Person1 winning the game? the 
person engaged in a game.
A Yes, he is about to go for a run. the person 
engaged in a game. the person walking near runway.
B No, he is losing. the person engaged in a game. 
frustrated person lose game. 
C No, he’ s not really enjoying it. the person 
engaged in a game. person enjoy at celebration.
D Yes, he looks like he has a good hand. the person 
engaged in a game. the person is watching left hand.
Answer: D Yes, he looks like he has a good hand.

Figure 8: An example of OpenVik context enrichment on
the VCR task (See Appendix G.3 for more).

Method Accuracy Precision Recall F1

R2C 56.66 56.73 56.72 56.72
OpenVik + R2C 59.96 60.01 60.03 60.02
BLIP 62.50 62.50 62.45 62.47
OpenVik + BLIP 67.40 67.54 67.43 67.48

Table 7: Visual commonsense reasoning
results (%) of OpenVik context enrich-
ment compared with zero-shot baselines.

Qualitative examples. Figure 8 presents an example before and after applying the two-level visual
knowledge-based enrichment for visual commonsense reasoning. The results indicate that visual
knowledge enhances the correspondence between the correct answer and the image itself.

Quantitative results. We assembled a test set of 939 samples from the validation set of the VCR
dataset [62]. Each sample in this test set contains questions and answers with a minimum of five
nouns and two relations, guaranteeing an adequate level of information complexity for meaningful
engagement with open visual knowledge. The results can be found in Table 7. We observe that the
enriched visual knowledge helps especially when solving reasoning questions on humans and their
interactions with visually impressive entities, such as “game” in Figure 8. This enhancement results
in a performance improvement above 3.0% over the zero-shot baseline.

6 Conclusion, Limitations, and Future Work

This work is the first exploration of a new paradigm of open visual knowledge extraction, which
combines an open relational region detector to flexibly pinpoint relational regions and a format-free
visual knowledge generator that generates visual knowledge by prompting a multimodality model
conditioned on the region of interest. To further enhance the diversity of the generated knowledge, we
explore two distinct data enhancement techniques. Extensive knowledge evaluations underscore the
correctness and uniqueness of our extracted open visual knowledge, and the consistent improvements
observed across various visual reasoning tasks highlight the real-world applicability of OpenVik.

While our approach has been shown effective in various scenarios, its performance at larger scales
or on more diverse datasets remains to be studied. Future work could investigate its effectiveness
across a broader range of tasks and contexts. Also, the current model requires fine-tuning for the
visual knowledge extractor. Developing a model that can generalize well with prompt tuning or
demonstration augmentation could be another interesting direction for future work.
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A Details of Data Augmentation with External Knowledge Resources

✔ Enhance Relation Recognition: We enriched the relationships between objects parsed from the
original knowledge descriptions by leveraging the external resource of ConceptNet. ConceptNet
comprises commonly observed entities and their connections, where edge weights signify the re-
liability and frequency of these relationships. The typical value of edge weights in ConceptNet is
1. To prevent the redundancy of common information and to maintain the validity of the enriched
relations, we categorized the relationships based on their weights. Relationships with weights less
than 1 were deemed “weak” and those with a weight of 1 were labeled “average”. We refrained from
using these categories for relation enhancement. Instead, only relationships with weights greater than
1, indicative of high reliability, were employed for augmenting the relations.

✔ Boost Entity Perception: On the entity side, we augment complement entities and descriptive
information with two external knowledge resources. On one hand, for descriptions with a high TF-
IDF+ score, we enrich related entities of the object from ConceptNet to create additional knowledge
descriptions. The relatedness is based on the between-word relatedness score provided by ConceptNet
and we take the threshold as 0.85. On the other hand, we employ the Commonsense Transformers
(COMET) [4] model to enrich related new objects and descriptive information. The COMET model is
a language model designed to generate commonsense knowledge and understand causal relationships
between descriptions. It is pretrained using the atomic dataset, which consists of structured, crowd-
sourced knowledge about everyday events and their associated causes and effects. The COMET
model can provide neighbor descriptions of the given input of nine different categories of relation. We
take the xAttr and oEffect relation categories and augmented the COMET model by formulating
the existing knowledge description texts as the input and choose the corresponding category branch
during generation for enriching objects and descriptions respectively.

B Dataset Information

Table 8: Dataset statistics.

split #image #descriptor #relation #subject & object
Train 75,456 832,351 30,241 302,735

Validation 4,871 64,137 5,164 34,177
Test 4,873 62,579 5,031 32,384

The statistic information of our augmented dataset is summarized in Table 8, where split specifies
the dataset split, #image indicates the number of images in the split, #descriptor indicates the total
number of relational descriptors of the images, #relation is the total number of unique relations in
the relational descriptors after deduplication, and #subject & object is the total number of subjects
and objects contained in the description text.

C Implementation Details

Hyperparameter Assignment
batch size 4

learning rate optimizer Adam
Adam epsilon 1e-8

Adam initial learning rate 1e-5
learning rate scheduler cosine scheduler

Adam decay weight 0.05

Table 9: Hyperparameters for training
open relational region detector.

Hyperparameter Assignment
batch size 4

learning rate optimizer Adam
Adam epsilon 1e-8

Adam initial learning rate 1e-5
learning rate scheduler cosine scheduler

Adam decay weight 0.05
α 0.7
ϕ 0.01

Table 10: Hyperparameters for training
format-free visual knowledge generator.

Open relational region detector. The visual feature extraction backbone is constructed upon a
pre-trained ResNet50-FPN. The detector head incorporates a BLIPbase equipped with the essential
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ViT-B/16 for text supervision, using multiple fully connected layers to derive region features. For
each candidate region, we engage a regressor to conduct boundary regression on these features. The
detector undergoes fine-tuning for 20 epochs using the relational region bounding box dataset and an
Adam optimizer [30]. The hyperparameters for training are detailed in Table 9.

Format-free visual knowledge generator. The format-free visual knowledge generator is initialized
from BLIPbase, which incorporates the basic ViT-B/16. We fine-tune the generator model for 20 epochs
using the same optimizer as the one employed for the region detector. Detailed hyperparameters for
the visual knowledge generator can be found in Table 10.

D Human Evaluation Guidance and Interface

We perform the human evaluation on two of the four in-depth knowledge quality assessment metrics.
We build an interface by referring to [50], where raters are presented with a given image and the
corresponding knowledge descriptions and are required to choose one from the multiple choice for
two questions on whether the knowledge is valid to humans and whether the knowledge description
depicts the image. The detailed scoring criteria for Validity and Conformity are provided below:

• Validity (↑): whether the generated visual knowledge is valid to humans.
– 0 (Invalid): The knowledge description does not conform to human cognition, rendering it

unreliable or misleading to humans.
– 1 (Valid): The knowledge description is valid and accurately conforms to human cognition,

providing reliable and meaningful knowledge to humans.
• Conformity (↑): whether the generated knowledge faithfully depicts the scenarios in the images.

– 0 (Inconsistent): The knowledge description does not faithfully depict the scenarios in the
images, showing significant deviations or discrepancies, making it difficult for users to relate
the textual information to the visual context.

– 1 (Partially Conforming): The knowledge description partially conforms to the scenarios in
the images, but there might be minor inconsistencies or missing relevant details.

– 2 (Moderately Conforming): The knowledge description exhibits a moderate level of con-
formity with the scenarios in the images, capturing the key aspects and providing coherent
descriptions.

– 3 (Highly Conforming): The knowledge description highly conforms to the scenarios in the
images, accurately capturing the details and faithfully representing the visual context.

Figure 9: The human evaluation interface for in-depth knowledge quality evaluation.

Agreement/validation We use Cohen’s κ as the agreement score to measure potential subjectivity
involved in ratings of knowledge quality. Cohen’s κ is a statistic that is used to measure inter-rater
reliability for qualitative items and is scaled from -1 (perfect systematic disagreement) to 1 (perfect
agreement), where values ≤ 0 as indicating no agreement and 0.01-0.20 as none to slight, 0.21-0.40
as fair, 0.41–0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect agreement.
Our calculated average pairwise Cohen’s κ on human evaluation results from three different raters is
0.76, which indicates a good agreement.
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E Parametric Knowledge Prompting Template

Given an image I and the corresponding extracted visual knowledge from it based on OpenVik, we
perform knowledge comparison with parametric knowledge contained in LLM by prompting the
gpt-3.5-turbo model with the object information contained in the I. The prompt format is shown in
the followings:

Suppose you are looking at an image that contains the following subject
and object entities:
Subject list: [Insert the subject names here]
Object list: [Insert the object names here]
Please extract 5-10 condensed descriptions that describe the interactions
and/or relations among those entities in the image. Try to elucidate the
associations and relationships with diverse language formats instead of
being restricted to sub-verb-obj tuples.

F More Case Studies of Open Visual Knowledge from OpenVik

Figure 10 shows some other cases on the extracted open visual knowledge from OpenVik. In
comparison to VG and Relational Caps, OpenVik exhibits superior performance at capturing novel
entities , expanding object interactions through diverse relations , and enriching knowledge repre-

sentation with nuanced descriptive details . For example for the bottom right image, OpenVik can

extract novel entities such as “ tracks ”, “ shoe ”, diverse relations such as “ sticking out of ”, and

nuanced descriptive details such as “ cold thick ”, “ with man feet on it ”, “ brave ”. The generated
knowledge with a more format-free semantic structure is highlighted in red.

Visual Genome-Scene Graph:

<kite, in, sky>

<people, in, water>

<board, with, person>

<shirt, on, person>

Visual Genome-Region Descriptions:

the person wearing white shirt

the woman on beach

the person standing on beach

the person in water

Relational Caps:

a blue board with a person

someone built a sand castle

the cloudy sky behind the kit

white clouds in blue sky

OpenVik: 

yellow tail of a red and yellow kite

the people enjoying fun beach playing sands

flying a long tail kite has orange appearance

the woman running to flying kite excitedly

flying kite in the open blue sky

the man looking at orange kite

OpenVik: 

white ground covered with cold thick snow

brown grass sticking out of snow-covered field

the tracks in fresh snow with man feet on it

the shadow cast by brave skier

skiing man wearing yellow shoe

young skier has red hat and smiling

Visual Genome-Scene Graph:

<tree, in, field>

<hat, on, head>

<grass, on, ground>

<shadow, of, skier>

Visual Genome-Region Descriptions:

snow divot in the hill

writing on the pants

lens on the sunglass

ski attached to right foot

Relational Caps:

downhill skier wearing jacket

the ski pole stuck in snow

red hat worn on head

the weeds in snow

Visual Genome-Scene Graph:

<woman, has, hair>

<person, wear, hat>

<leaf, on, plant>

<man, in, suit>

Visual Genome-Region Descriptions:

top of brown umbrella

man in a suit

man under an umbrella

the people are enjoying their day

Relational Caps:

the people close to building

the people are walking in a city

the woman wearing blue jeans

the woman has glasses

OpenVik: 

green shrubbery growing along sidewalk 

purple parasol in rain holding by people

green trees in distance growing aside

green bush on side of building

people are trying not to get wet

the woman look back in astonishment

OpenVik: 

white and brown egg inside cardboard box

the kale bunch wrapped using rope

green lettuce on crowded table

white table cloth has flowers decorated

purple onion next to oranges very bright

red polka dots on cloth

Visual Genome-Scene Graph:

<orange, on, table>

<egg, in, carton>

<pea, in, bag>

<onion, next to, limes>

Visual Genome-Region Descriptions:

a white colored egg

seven oranges on a table

green onion stalks that have been cut

bunch of kale on table 

Relational Caps:

the half dozen of white eggs

green vegetables on table

purple onion between orange

the eggs in carton

Figure 10: Case studies of open visual knowledge from OpenVik.
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G More Qualitative Examples on Applications

G.1 Text-to-Image Retrieval

Original text: A row of parked 
motorcycles sitting in front of a tall 
building. A stone street with 
bicycles and motor bikes parked on 
the side and people standing on the 
sidewalks in front of buildings. 
Cityscape of pedestrians enjoying 
an old European city. a row of bikes 
and mopeds is parked along the 
street. Motorcycles and mopeds line 
a side street during the day in a city.

Original text: Three young men 
playing Wii on a projection 
television. Three men laughing at 
some pictures from a projector. A 
group of gentleman playing video 
games in a dimly lit room. Some 
people chilling on the couch playing 
with a Nintendo Wii. A group of 
men playing a game with remote 
controllers.

Enriched text: men in group. men behind people. men playing. men in room playing 
video game. group of people. men in group are playing video game. people playing. 
people watching game. playing game. 

Enriched text: row made of stone leading into city. motor in row. row of people. 
street made of stone. wall made of stone next to side. stone wall behind people. 
people in line crossing street. street in city. motor on side. people riding motor in 
city. motor in line. people in line in city. day at city.

Original text: An elderly woman sitting on 
the bench resting. An old woman leans on 
her back while sitting on an ornate bench. A 
woman is sitting on a bench near a fence. 
Older woman in dress sitting on a park 
bench. An old woman sitting on a bench 
next to a fence.

Original text: A herd of cattle is 
feeding at the river's edge. Many 
cows next to a body of water in a 
field. A herd of cows grazes in a 
field near a river. A herd of cattle 
standing in grassy area next to 
water. A herd of cattle is near a 
flock of birds swimming in the 
water.Enriched text: woman sitting on bench 

with a ornate. woman behind fence. woman 
wearing dress. woman in park. bench by 
fence. bench in park. woman in ornate 
dress on the bench. fence behind park. Enriched text: herd of cattle crossing river. herd traveling by water. cattle 

crossing river. cattle in field. river across field in front of area. water near field. 
water near area. water next to flock. Birds inside of water. flock in field. 

Original text: A man is leaning 
over a fence offering food to an 
elephant. A man reaching out to 
an elephants trunk near a gate. 
A man is feeding an elephant 
over a fence. A man handing an 
elephant a stick in an enclosure 
at a zoo. A man reaches out to 
give the elephant something. 

Original text: A white refrigerator freezer 
sitting inside of a kitchen. A corner of a kitchen 
with a big fridge. A kitchen has a plain white 
fridge in the corner. A refrigerator in the corner 
of a kitchen just off the dining room a room 
showing a very big fridge and a dining table. 

Enriched text: refrigerator has freezer. 
refrigerator in corner. refrigerator in bright
kitchen. refrigerator in room. refrigerator 
next to table sitting in kitchen. freezer next 
to table. corner window in room. corner of 
table. fridge in kitchen. table in kitchen. 
fridge table next to table in room.

Enriched test: man behind fence. man next to trunk preparing food.  man 
holding stick in enclosure. man pointing at something. fence truck behind food. 
fence wrapped around trunk. fence behind elephant. fence made of stick. fence 
surrounds enclosure. trunk of elephant. elephant in enclosure. 

Figure 11: Qualitative examples of OpenVik context enrichment on text-to-image retrieval.

Figure 11 presents more qualitative examples of OpenVik-based visual knowledge enrichment on
captions. The enriched text is based on the objects present in the images themselves, supplemented
with additional relationships from our generated visual knowledge in OpenVik. It is shown that the
introduced relationships often provide new context information that aligns with the visual content of
the images. For example, in the image of an old woman sitting on a bench in a park, the enriched
context information includes the positional relationship between the “bench”, “fence”, and “park”,
which provides a more comprehensive description of the original image.

G.2 Grounded Situation Recognition

Figure 12 presents more qualitative examples of OpenVik-based context enrichment in the grounded
situation recognition (GSR) task. Our context enrichment setting for the GSR task is to perform
enrichment based on verbs like “shopping” and “carrying”. We further restrict the enriched context
with the objects contained in the image to avoid noisy enrichment. For example, for the image
showing people shopping at a market, the enriched knowledge contexts could be “the people shopping
at market”, “standing person shopping for fruit”. The idea is to enrich the original description T :
“An image of <verb>” with relevant actions and relations with the extracted visual knowledge from
OpenVik, which can potentially help in drawing-in the matched candidates.

G.3 Visual Commonsense Reasoning

Figure 13 presents more qualitative examples of OpenVik-based context enrichment in the visual
commonsense reasoning (VCR) task. The context enrichment on VCR is performed at two-level,
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Verb: shopping
Origin text: This is an image 
of shopping
Enrich text: the people 
shopping at market. standing 
person shopping for fruit.

Verb: spraying
Original text: This is an image of spraying.
Enriched text: the water spraying from 
fountain. the water spraying from spout. the 
water spraying in park. 

Verb: walking
Original text: 
This is an image 
of walking.
Enriched text: 
the person 
walking through 
forest. the people 
walking on 
sidewalk. 

Verb: typing
Original text:
This is an image 
of typing.
Enriched text:
sitting woman 
typing on smart 
open laptop. 

Verb: carving
Original text: This is 
an image of carving. 
Enriched text: wood 
carving in center. man 
carving wood. 

Verb: carrying
Original text:
This is an image 
of carrying.
Enriched text:
walking person 
carrying bag. man 
carrying hay in the 
field. 

Verb: licking
Original text: This is an image of licking. 
Enriched text: black dog licking food.

Figure 12: Qualitative examples of OpenVik context enrichment on task GSR.

incorporating both entities and relations: (1) we parse the question and options to obtain all (S, O)
pairs and, for each entity pair, apply the same relation augmentation as in the image retrieval task;
(2) for the V in each option, we enrich the visual context using the same method as illustrated in
GSR. It is shown that unrelated answers are usually enriched with contexts that are not relevant to
the image, thus enlarging the distance between incorrect answers and the question, e.g., the enriched
contexts “squating person fixing handy bathroom” for example 3 in Figure 13. At the same time, the
knowledge description of the correct answer is enhanced by incorporating information that aligns
with the image contents, e.g., the enriched knowledge contexts “sitting people on red ground” for
example 1 in Figure 13.

H Full List of Filtered Verbs for GSR

We provide the full list of verbs out of the predefined 504 candidates of GSR [36] that can be
accurate-matched or fuzzy-matched to extracted visual knowledge in Table 11, based on which we
compose the testing subset for our evaluation on GSR application in Section 5.2.
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Question : What will  Person2 do next? 
A Person2 will speak angrily at  diningtable2, then walk off. 
B Person2 will sit down on  chair1. painting person near giant chair.
C Person2 will feed  bowl1. the person skate boarding in a athletic bowl.
D Person2 will open the box. the person holding a box full of oranges.
Answer: B Person2 will sit down on  chair1. 

Question: Why is  Person7 in motion? 
A Person14 is running desperately. 
B Person7 is climbing over the boat. the person standing inside white boat.
C Person7 is walking fast to the bathroom. squating person fixing handy bathroom.
D Person7 is going to try to protect  Person10 from a threat. Person7 is moving 
forward to challenge what ever could be there. 
Answer: B Person7 is climbing over the boat.

Question: Where is’ Person1 sitting?
A He is in a laboratory. 
B He is sitting at a bar. the person sitting behind sneaky barrier.
C In a fort in his house. the person walking by light house.
D He is sitting on the ground. sitting person on red ground.
Answer: D He is sitting on the ground. 

Question: Where is Person2 going?
A Person2 is going into the store. the person walking into store.
B Person2 is getting into a carriage. sitting person inside carriage. 
C Person1 is going to the bathroom. squating person fixing handy bathroom. 
D Person1 is going outside to play after the conversation with Person2 is over.
Answer: A Person2 is going into the store. 

Question: Where are Person1 and Person2?
A Person1 and Person2 are sitting outside of a general store. the person walking 
by store.
B Person1 and Person2 are standing on top of a train car. jumping person on top 
board. walking person next to white train. the person walking near active car.
yellow train sitting atop track. sliced carrot on top counter red car of old train.
C Person1 and Person2 are in an office. walking person outside office.
D Person1 and Person2 are in the kitchen. the person eating in hungry kitchen.
Answer: C Person1 and Person2 are in an office.

Question: What is  Person1 doing here? 
A He is in prison serving a prison sentence. person writing sentences.
B He is trying to get information. person gaining information.
C Person1 is a waiter. person talking with waiter in restaurant.
D He is existing a building. walking person near large building.
Answer: C Person1 is a waiter.

Figure 13: Qualitative examples of OpenVik context enrichment on task VCR.
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Table 11: The full list of filtered verbs for GSR.

Matching Type The Word List of Event Types

Accurate

putting, butting, bathing, dusting, rearing, turning, skating, placing,
carting, staring, biting, mashing, folding, wetting, sprinkling, branch-
ing, drying, standing, flaming, taxiing, performing, circling, molding,
parachuting, glowing, fishing, drinking, speaking, pawing, blocking,
milking, racing, stripping, potting, spinning, eating, making, kicking,
catching, lacing, urinating, sleeping, pressing, buttering, shearing, slid-
ing, hiking, glaring, dipping, swimming, shopping, slicing, shelling, wag-
ging, grilling, crafting, raining, clawing, splashing, rubbing, snowing,
breaking, guarding, clipping, sewing, braiding, telephoning, buttoning,
waiting, serving, picking, camping, leaning, working, kissing, wrapping,
trimming, tripping, pasting, soaring, driving, kneeling, pumping, col-
oring, lighting, training, ducking, bowing, arching, cooking, checking,
pushing, flipping, rocking, cresting, cleaning, reading, nailing, stitching,
building, climbing, covering, shelving, attaching, calming, selling, glu-
ing, dyeing, lapping, photographing, peeling, sprouting, licking, display-
ing, combing, stacking, planting, fastening, buying, mopping, burning,
erasing, measuring, dining, tattooing, gardening, decorating, clearing,
fixing, weeding, pulling, feeding, watering, crowning, shaking, dripping,
emptying, typing, chasing, poking, leaping, pouring, hanging, sniffing,
piloting, falling, overflowing, resting, crashing, carving, ballooning, wad-
ing, loading, shaving, boarding, pinning, rowing, juggling, shoveling,
hugging, throwing, calling, singing, carrying, walking, writing, crouch-
ing, floating, painting, opening, tying, riding, strapping, dialing, saying,
bubbling, signing, camouflaging, operating, leading, laughing, parading,
skiing, drawing, gnawing, celebrating, spreading, filling, giving, running,
smelling, plowing, helping, brushing, scooping, adjusting, wrinkling,
steering, biking, smiling, spraying, boating, paying, chewing, stuffing,
clinging, landing, wheeling, talking, scoring, teaching, jogging, pitching,
flapping, tipping, scrubbing, sitting, surfing, stirring, competing, drum-
ming, jumping, filming, dancing, waxing, hitting, recording, baking,
waving, washing, signaling, chopping, stretching, rafting, microwaving,
phoning, lifting, swinging, releasing, ramming, towing, packing, hauling,
frying (244 words)

Fuzzy

educating, marching, spanking, descending, smearing, heaving, cram-
ming, inflating, stooping, inserting, squeezing, tugging, tilting, moisten-
ing, swarming, subduing, waddling, winking, flexing, punching, attack-
ing, nuzzling, sprinting, sucking, puckering, sketching, rotting, video-
taping, complaining, tuning, locking, hurling, pricking, arranging, con-
structing, slapping, sweeping, restraining, dousing, frisking, twisting,
wringing, hoisting, immersing, shredding, blossoming, igniting, spying,
offering, pouting, confronting, docking, assembling, prying, grinning,
sharpening, pruning, disciplining, nipping, coaching, nagging, storming,
handcuffing, apprehending, bouncing, clenching, taping, distributing,
striking, studying, plunging, curling, aiming, sowing, grinding, rinsing,
punting, mowing, hitchhiking, skipping, leaking, providing, hunching,
spoiling, kneading, burying, foraging, lathering, vaulting, ejecting, mend-
ing, pinching, deflecting, ascending, peeing, bothering, repairing, ped-
aling, ailing, fueling, skidding, scraping, soaking, grimacing, scolding,
spitting, knocking, crushing, bandaging, saluting, fording, stumbling,
discussing, raking, launching, whirling, fetching, brawling, retrieving,
snuggling, exercising, colliding, stroking, whipping, tilling, betting,
farming, browsing, examining, dropping, barbecuing, ignoring, asking,
flinging, perspiring, embracing, slipping, flicking, smashing, arresting,
lecturing, tearing, gasping, applying, counting, spilling, dragging, recov-
ering, practicing, scratching, shooting, packaging, hunting, stinging (154
words)

21


	Introduction
	Related Work
	Method
	Open Visual Knowledge Extraction
	Relation-Oriented Multimodality Model Prompting
	Diversity-driven Data Enhancement
	Implementation Details

	Evaluation
	Evaluation on Generated Knowledge
	Comparison with Existing Knowledge Sources
	Ablation Study
	Case Study

	Application
	Text-to-Image Retrieval
	Grounded Situation Recognition
	Visual Commonsense Reasoning

	Conclusion, Limitations, and Future Work
	Acknowledgments
	Details of Data Augmentation with External Knowledge Resources
	Dataset Information
	Implementation Details
	Human Evaluation Guidance and Interface
	Parametric Knowledge Prompting Template
	More Case Studies of Open Visual Knowledge from OpenVik
	More Qualitative Examples on Applications
	Text-to-Image Retrieval
	Grounded Situation Recognition
	Visual Commonsense Reasoning

	Full List of Filtered Verbs for GSR

