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Abstract—Online taxicab platforms like DiDi and Uber have
impacted hundreds of millions of users on their choices of
traveling, but how do users feel about the ride-sharing services,
and how to improve their experience? While current ride-sharing
services have collected massive travel data, it remains challenging
to develop data-driven techniques for modeling and predict-
ing user ride experience. In this work, we aim to accurately
predict passenger satisfaction over their rides and understand
the key factors that lead to good/bad experiences. Based on
in-depth analysis of large-scale travel data from a popular
taxicab platform in China, we develop PHINE (Pattern-aware
Heterogeneous Information Network Embedding) for data-driven
user experience modeling. Our PHINE framework is novel in that
it is composed of spatial-temporal node binding and grouping for
addressing the inherent data variation, and pattern preservation
based joint training for modeling the interactions among drivers,
passengers, locations, and time. Extensive experiments on 12 real-
world travel datasets demonstrate the effectiveness of PHINE
over strong baseline methods. We have deployed PHINE in the
DiDi Big Data Center, delivering high-quality predictions for
passenger satisfaction on a daily basis.

I. INTRODUCTION

Nowadays, the way of traveling for hundreds of millions of
users has been reshaped by online taxicab platforms like DiDi1

and Uber2[1]. Take DiDi for example, in the year of 2017, it
generates over 20 million orders every day, effectively employ-
ing 20 million drivers and allocating 10% of all vehicles in
China to serve over 400 million passengers, influencing about
30% of China’s total population. Taxi-sharing platforms have
collected an unprecedentedly large amount of travel data. Such
data are not only invaluable for transportation science, but
also critical to various socioeconomic tasks, such as smart city
planning [2], [3], traffic congestion resolving [4], air pollution
control [5], and driverless car developing [6].

However, the current research community has not paid
sufficient attention to mining such travel data, and the power of
such data has not been fully leveraged. How much do people
enjoy traveling with the new taxi hailing platforms, and what

1https://www.xiaojukeji.com/
2https://www.uber.com/

Fig. 1. An illustration of the rich travel data represented as an HIN.

can be done to further improve their travel experience? In this
work, we aim to model drivers, passengers, locations, times
and their complex interactions to accurately predict passenger
experience towards their rides and understand the important
factors that lead to good/bad experiences.

Taxi-sharing data are typically structured records. Table I
showcases three simplified anonymous records from a typical
travel database, which include the pick-up and drop-off lo-
cations of three rides, as well as multi-dimensional attributes
for the drivers and passengers. Given any one such record,
we want to automatically predict what ratings the involved
passengers will give. Furthermore, we aim to evaluate what
components make a ride satisfactory (or not), based on which
we can adjust ride dispatch strategies to improve the future
user experience.

The user experience modeling problem for taxi-sharing data
is not a trivial problem. There are two major challenges that
we need to address:

Challenge 1: Alleviating Data Sparsity. While there are
large amounts of travel data, considering each entity (e.g.,
location, driver, passenger) as independent could lead to severe
data sparsity because many entities are involved in a limited
number of rides. For example, Figure 2 shows the frequencies



driver passenger location time
avg star orders car level avg star cancels complaints start finish start finish
4.89 620 500 5 3 0 116.3104, 39.9258 116.3105, 39.9392 2017-06-01 17:45:38 2017-06-01 17:57:03
5 24 700 4.43 2 1 116.0799, 39.7122 116.1603, 39.7567 2017-06-01 11:15:25 2017-06-01 11:40:22
4.62 5856 500 0 0 0 116.4552, 39.9338 116.3976, 39.9699 2017-06-01 21:22:51 2017-06-01 21:41:38

TABLE I
THREE TYPICAL ANONYMOUS TRAVEL RECORDS INCLUDING MULTI-DIMENSIONAL INFORMATION OF SPECIFIC RIDES.

of locations and timestamps recorded at the starting points and
finishing points of rides. The frequency of visited locations
follow the long-tail distribution, and the frequency of visits
changes along time. To predict the quality of rides, we should
consider not only the involved entities but also the semantic
similarities among them. For example, nearby locations in
geographical distance may share similar traffic conditions at
particular times, and passengers with similar personalities
might evaluate situations in similar ways. Moreover, while user
experience in terms of explicit ratings reflects how satisfactory
the user is, the rating data are quite sparse– it is observed
that no more than 20% rides receive explicit ratings from
passengers.

Challenge 2: Integrating Heterogeneous Knowledge. The
interactions among drivers, passengers, locations, and times-
tamps are highly complex and heterogeneous. It is challeng-
ing to jointly consider such heterogeneous interactions for
user experience prediction. Furthermore, we often have prior
knowledge about what entities should be similar (e.g., nearby
locations, passengers sharing similar trajectories, etc.). It is
important yet nontrivial to incorporate such prior knowledge
into the modeling process.

(a) #Visits vs. Locations (b) #Visits vs. Timestamps

Fig. 2. Motivating spatiotemporal analysis of rides.

Approach: PHINE (Pattern-aware Heterogeneous Informa-
tion Network Embedding). To address the above challenges,
we propose PHINE, which is a neural framework for user
experience prediction. PHINE uses heterogeneous information
networks (HINs) to encode rich context information and per-
forms pattern-aware embedding to deliver accurate passenger
satisfaction prediction and insights into good/bad rides. As the
travel data are highly structured, it is natural to use HIN [7] as
the data model for such data. For example, given the records
in Table I, Figure 1 illustrates a HIN that encodes the entities
and the interactions among them.

Now given a ride represented by a subset of a rich HIN as
illustrated in Figure 3 (a), we want to automatically predict
what ratings the involved passengers will give. For this task,
we adopt a neural network embedding framework, which

has been shown advantageous in modeling structured data
for various tasks [8], [9], [10]. However, to address the
aforementioned challenges, the network embedding process in
PHINE has two unique characteristics.

(a) HIN with location and times (b) Spatial-temporal binding

Fig. 3. Rides modeled as subsets of a transportation HIN.

First, spatial-temporal spot binding and grouping. A ride
can be naturally modeled as a HIN such as the one illustrated
in Figure 3 (a). However, locations usually have changing
functions at different times and thus different visitor behaviors
and traffic conditions. For example, a busy shopping area dur-
ing the daytime might become a quiet block with few visitors
at night, and a cozy bar during the afternoon may turn into a
center of nightlife activities after dark. Therefore, instead of
modeling location and time as separate node types, we bind
location and time into spatiotemporal nodes like the one in
Figure 3 (b). Such binding can effectively model the dynamics
and traffic conditions of the same location at different times.
Moreover, to address the spatiotemporal sparsity and variation,
we further develop a grid-based grouping method, such that the
spatiotemporal units that are close to each other are grouped
together, and rich data around typical spots can be leveraged
to profile the properties of nearby ones.

Second, pattern preservation-based joint embedding. Recent
successful network representation learning methods usually
attempt to capture the interactions among nodes through path
sampling [8], [11], [12], [13] or neighborhood preserving
[9], [14], [15], [16]. However, existing network embedding
techniques are not designed to leverage any particular types of
interactions. In particular, sampling random paths or preserv-
ing local neighborhoods do not necessarily lead to meaningful
objectives in a HIN like our transportation network shown
in Figure 1, where the interactions follow regular semantic
patterns, and we have useful prior knowledge about which ones
might be useful. To accurately predict passenger experience,
we design an end-to-end joint training neural framework
composed of two objectives– one is a supervised loss for
passenger rating prediction, and the other is an unsupervised
loss for semantic pattern preservation. We further develop a
pattern sampling process based on the idea of path sampling



[8], which effectively utilizes available rating data while
naturally incorporating various prior knowledge about useful
HIN semantic patterns.

The main contributions of this work are summarized as
follows:

1) We conduct various data analysis on real travel data to
provide insights into the passenger experience prediction
problem and motivate proper modeling techniques.

2) We develop a novel HIN embedding algorithm, which
utilizes spatial-temporal spot binding and grouping for
alleviating data sparsity, and meanwhile effectively
leverages prior knowledge about useful semantic pat-
terns.

3) We deploy the framework in DiDi Big Data Center
and perform extensive evaluations on 12 travel datasets
to deliver high-quality passenger experience predictions
with interpretable insights.

While our framework fits well with the particular passenger
experience prediction problem, it is also a general HIN embed-
ding technique that can be easily applied to various learning
problems over HINs.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminaries about the problem. Section 3
will present our PHINE neural framework in details. We will
cover our extensive experimental results on real travel datasets
in Section 4. Related works are discussed in Section 5, and a
quick summary is provided in Section 6.

II. PRELIMINARIES

In this section, we introduce some key concepts in the
context of our framework, followed by a formal description
of our passenger experience learning problem.

A. Key Concept Definition

1) Heterogeneous Information Networks: Due to advanced
data warehousing techniques [17] and the much effort put
into knowledge acquisition [18], [19], lots of data nowadays
are stored in structures. They are usually of multiple types,
interconnected, forming complex, heterogeneous information
networks [7], [20]. An information network represents an
abstract of the real world, focusing on the entities and the
interactions among them. Formally, information networks and
HIN are defined as follows.

Definition II.1. Information Network [7]. An information
network is defined as a directed graph N = {V, E} with an
entity type mapping function φ : V → A and a link type
mapping function ψ : E → R. Each entity v ∈ V belongs to
one particular entity type in the entity type set A : φ(v) ∈ A,
and each link e ∈ E belongs to a particular relation type in
the relation type set R : ψ(e) ∈ R. If two links belong to
the same relation type, the two links share the same starting
entity type as well as the ending entity type.

Definition II.2. Heterogeneous Information Network (HIN)
[7]. The information network is called an HIN if the types of
entities |A| > 1 or the types of relations |R| > 1.

Our travel data naturally reside in an HIN N = {V, E}
where A = {D,P,L, T }, corresponding to entity types of
driver, passenger, location and timestamp, respectively.

2) Spatial and Temporal Hotspot: Unlike drivers and pas-
sengers that are basic natural units for embedding, space and
time are usually continuous, and it is infeasible to embed
every location and timestamp. To address the spatiotemporal
continuities, variations and data sparsity, [21], [22] propose
to group locations and timestamps separately based on spatial
and temporal hotspot detection. They define hotspot based on
kernel density maximization as follows.

Definition II.3. Spatial and Temporal Hotspot [21]. Given a
transportation HIN N , let L(V) be the collection of locations
in N , a spatial hotspot is a local maximum of the kernel
density function estimated from L(V). Similarly, let T (V) be
the collection of timestamps in N , a temporal hotspot is a
local maximum of the kernel density in T (V).

As we want to carefully capture the different visitor dis-
tributions and traffic conditions of locations during differ-
ent times of the day, we apply novel spatial-temporal spot
binding. Moreover, since we need to consider both bursting
locations/times as well as vacant or remote ones, we apply
grid-based grouping instead of hotspot-based grouping.

3) Semantic Pattern: Unlike homogeneous networks where
entities and links are of the same type, links in a HIN may
carry rather different semantic meanings across entities of dif-
ferent types. Therefore, embedding entity proximities based on
sampling random paths [8] or preserving local neighborhoods
[9] is often meaningless. In this work, we propose to capture
the semantic proximities among entities based on sampling
semantic patterns, which are defined as follows.

Definition II.4. Semantic Pattern. Given an HIN N with
the object type mapping φ : V → A and the link mapping
ψ : E → R, a semantic pattern, denoted as m = {Am,Rm},
is a directed graph defined over a subset of object types
Am ⊂ A, with edges as relations from Rm ⊂ R. ω
should be formed w.r.t. prior knowledge about certain semantic
proximities among entities of types in Am.

Note that the definition of semantic patterns is different
from meta-path or meta-graph as in [7], whose exact shapes
and sizes are fixed. Semantic patterns define a way to sample
or grow subgraph instances. Instead of acting as a distance
measure, it captures semantic proximities among all entities
on the particular sampled subgraphs. We will introduce some
intuitive semantic patterns composed over our transportation
HIN in Sec III.4 and study the impact of different semantic
patterns for passenger experience prediction in Sec IV.2.

B. Problem Description

In this work, we aim at understanding passenger experience
via predicting and gaining insight into the star-level ratings
passengers make about their rides. While there are many
metrics that can be used to describe user experience (e.g.,
NPS [23], satisfaction [24], etc.), they are often hard to collect



through surveys and suffer from biased sampling because only
highly motivated users tend to take part in the surveys. In our
scenario, we have the first-hand information of passenger sat-
isfaction, i.e. star-level ratings, of which the data are enormous
and less biased. The problem is also important in production,
because we observe that less than 20% rides receive star-level
ratings from passengers, and it is desirable that the unrated
rides can get properly understood with unhappy experiences
timely detected and remedied.

Input. The basic input is the set of rides Υ. To describe a ride
r ∈ Υ, we should consider the involved driver d (φ(d) = D),
passengers p (φ(p) = P), locations l (φ(l) = L) and
timestamps t (φ(t) = T ) . We denote it as w = {~d, ~p,~l,~t, y},
where ~d usually only includes a single driver that operates the
vehicle, ~p often includes a single passenger but can be multiple
for shared rides, ~l and ~t are lists of visited and recorded
locations and timestamps along the ride, and y is a ground-
truth 5-level star rating, which is available in the training set
and to be predicted in the testing one.

However, as illustrated in Table I, any of these entities
alone does not have many relevant features. Moreover, their
historical interactions are too complex to be modeled by
classic recommendation algorithms like matrix factorization
[25], [26]. Since the rich travel data we have are highly
structured and entities interact in certain ways, we model them
in a transportation HIN N = {V, E}, take it as additional
input, and leverage E , the set of heterogeneous edges that
models the interactions among different entities, through novel
pattern-aware HIN embedding.

Output. The basic output of our framework is the predicted
star-level rating y for each ride r. To provide deeper insight
into the rides and key factors of different travel experiences,
we also output the embeddings x(·) for every entity in N .
Ideally, these embeddings should capture the inherent rela-
tionships among different entities, such as the geographical
distances among locations, the temporal distances among
timestamps, the similarity in preferences and personalities
among drivers and passengers, etc. Such embedding vectors
can be further leveraged in other systems like user profiling,
personalized route planning, and place recommendation.

Objective. We design two types of objectives to 1) preserve
passenger ratings over their rides in Υ and 2) capture the
semantic proximities among different entities in N . Therefore,
we have the overall loss function

J = J1 + λJ2, (1)

where J1 is a supervised loss on passenger ratings and J2
is an unsupervised loss on entity similarities. λ controls the
trade-off between the two objectives.

III. PHINE
A. Framework Overview

Figure 4 illustrates the overall neural embedding framework
of PHINE. The goal of PHINE is to simultaneously learn

the embeddings of all involved entities in rides (i.e., drivers,
passengers, locations, times) to predict passenger experience in
terms of explicit ratings. It captures the historical interactions
and semantic proximities among different entities through
jointly preserving passengers’ ratings over past rides and
entities’ contexts based on semantic patterns.

Driver Embedding

Passenger Embedding

Location-Time Embedding

Merging

Location-Time Embedding

Location-Time Embedding

Passenger Embedding LSTM

LSTM

Hidden Layers

Sigmoid Prediction

Unsupervised 
Loss J2

Supervised 
Loss J1

Fig. 4. The neural embedding framework of PHINE.

As discussed in Sec II, the input of PHINE is a set of rides Υ
and a transportation HIN N . To consider the original features
describing a ride, we preprocess driver features (e.g., age, sex,
average rating, number of finished orders), passenger features
(e.g., average rating, number of finished orders, number of
complaints, number of canceling) and spatiotemporal spot
features (e.g., longitude, latitude, timestamp) via binning (for
numerical features) and one-hot encoding (for categorical
features). After such preprocessing, we insert a fully connected
feedforward neural network to explore the high-dimensional
sparse entity features and produce a low-dimensional dense
embedding vector for each entity, i.e., x(d) for a driver, x(p)
for a passenger, and x(s) for a spatiotemporal spot. These
embeddings are further constrained by a supervised loss J1 to
recover ground-truth ratings as well as an unsupervised loss
J2 to preserve semantic similarities among entities. The two
losses are iteratively optimized in a joint training framework
that runs efficiently in parallel on CPUs or GPUs.

B. Heterogeneous Network Construction

We construct a novel transportation HIN to encode the
multi-type multi-dimensional proximities among different enti-
ties extracted from travel data. In the HIN, there are originally
four types of entities: drivers, passengers, locations, and times-
tamps. To account for the changing visitor behaviors and traffic
conditions of locations during different times, and address the
challenge of sparse variational spatiotemporal data, we apply
spatial-temporal spot binding and grid-based spot grouping
before actually constructing the heterogeneous graph.

1) Spatial-Temporal Spot Binding: Existing HIN repre-
sentation learning methods like [21] embed locations and
timestamps separately. They then preserve the location-time
co-occurrences and the neighborhood structures in the spatial
and temporal spaces. In this way, locations close in spatial
distances and visited during similar times will be embedded as
close. However, we stress that locations usually have changing



functions at different times and thus different visitor behaviors
and traffic conditions. For example, a busy shopping area
during the daytime might become a quiet block with few
visitors at night, but a cozy bar during the afternoon may
turn into a center of nightlife activities after dark. Therefore,
computing a single embedding for each location and each
timestamp is insufficient to reflect such dynamics. Instead, it
is intuitive to allow each location to have multiple embed-
dings w.r.t. different times of the day while requiring these
embeddings to be close in certain ways to reflect the location
identities and spatial closeness.

Therefore, we propose a novel spatial-temporal spot binding
process, to combine locations with timestamps at which they
receive considerable visits. Specifically, for each location l
visited at timestamp t, we replace l and t with a single
spatiotemporal spot s = {l, t}. To capture the spatial-temporal
proximities among spots that belong to nearby locations or
have similar timestamps, we later require them to share similar
(but not the same) embeddings.

However, this process, while effectively differentiates lo-
cations with multiple functions at different times, indeed
introduces a blow-up of the number of nodes. We deal with this
overhead through a novel grid-based spot grouping technique.

2) Grid-Based Spot Grouping: Although we have rich
travel history data, visits to most individual spatiotemporal
spot are sparse, as we can see from Figure 2. Besides,
spatiotemporal data are also variational, because visits around
the same location for the same event might well be recorded
with slightly different longitudes, latitudes, and timestamps.
Moreover, it is infeasible to compute an embedding for every
spatiotemporal spot.

To address the issues of sparsity, variation, and scalability,
we design a novel grid-based spot grouping technique, to
group spatiotemporal spots belonging to nearby locations with
similar timestamps. Specifically, we design a 3-dimensional
grid with tunable granularities of [α × β × γ]. E.g., we can
group spatiotemporal spots based on [0.001×0.001×10] grids,
where the first two dimensions, α and β, are the longitude and
latitude in degree, and the third, γ, is the timestamp in minute.
0.001 degree in longitude and latitude is about 110 meters and
time of day can be divided into 24×60

γ bins. Therefore, such
a gridding schema effectively groups the spatiotemporal spots
in the core area of a gigantic city like Beijing into about 10
billion bins. This amount of bins, while manageable by current
systems, is inefficient in computation and heavy in memory.

To deal with a large amount of bins, we further design a grid
merging technique, based on the observation that most grids
cover few and vacant spots if any, such as those within estates,
mountains, lakes and other traffic-light areas. Specifically, for
each grid cell, we recursively merge it with its nearby cells
if the merged cell receives fewer than θ visits each day on
average. θ is also tunable, while empirically setting it to 100
results in about 62 million bins for Beijing, which significantly
reduces the computational cost and further addresses data
sparsity and variation.

Note that, our grid-based spot grouping technique is novel

and different from existing urban modeling techniques like
[21], [22], because it is designed to consider not only the
popular locations and times but also the vacant ones, which is
crucial for the particular task of traffic modeling.

3) Heterogeneous Graph Construction: After binding and
grouping the spatiotemporal spots, we use three types of
nodes: driver, passenger and spatiotemporal spot in our trans-
portation HIN, where each spot node represents a merged
grid cell in the spatiotemporal space. To construct the edges
within our transportation HIN, we consider co-occurrence and
neighborhood relationships similarly as in [21]. First, as each
travel record contains driver, passenger and spot nodes, the
co-occurrence relationship induces three types of edges: (1)
driver-passenger edge; (2) driver-spot edges; (3) passenger-
spot edge. Within each edge type, we set the edge weight to the
normalized co-occurrence count. Second, the neighborhood
relationship in spatial and temporal spaces induces one more
type of edges: (4) spot-spot edge. For any spatiotemporal
spot, we connect it with its spatial and temporal neighbors
(each grid cell has eight neighbor cells in the 3-dimensional
spatiotemporal space before merging, and two merged cells
are connected if any pair of their member cells is connected).
We set all weights of this type of edges to 1.

C. Pattern-Aware Embedding

To capture the semantic proximities among the three types
of nodes in our transportation HIN, instead of preserving long
random paths or complete local neighborhoods, we propose
to leverage intuitive semantic patterns that match with prior
knowledge about the properties of the particular HIN.

1) Semantic Pattern Definition: According to its definition
in Sec II, HIN always contains multiple types of entities
and their various relations. Therefore, it is almost impossible
to enumerate every possible pattern on a HIN, and most of
the arbitrarily enumerated patterns are meaningless. On the
other hand, as we construct a HIN, we often have some prior
knowledge of the contained entities and relations. Specifically,
according to our prior knowledge about the transportation
HIN, we intuitively define the semantic proximities and their
corresponding semantic patterns as follows.

Definition III.1. (a) Spatial Proximity. Spots should be em-
bedded as close if the underlying locations are close in the
spatial space.

Definition III.2. (b) Temporal Proximity. Spots should be
embedded as close if the underlying timestamps are close in
the temporal space.

Definition III.3. (c) Trajectory Proximity. Spots should be
embedded as close if they lie close on the same passenger
trajectories because passengers often take taxies to spots
similar in certain ways (e.g., restaurants, and bars at night,
etc.).

Definition III.4. (d) Preference Proximity. Drivers and pas-
sengers should be embedded as close if they have been to the



same spots because they have similar spatiotemporal travel
preferences.

Definition III.5. (e) Compatibility Proximity. Drivers and
passengers should be embedded as close if they have been on
the same ride, because their travel objectives are compatible.

Figure 5 illustrates the five semantic patterns we derive for
preserving proximities among the three types of entities in
our transportation HIN. The first and second patterns look
alike and are shown together. While other patterns might also
be useful, these are the most significant based on our prior
knowledge and empirical study on the travel data.

Fig. 5. Intuitive semantic patterns on our travel HIN.

2) Pattern Sampling Algorithm: Algorithm 1 formally de-
scribes the distributed pattern sampling algorithm we design
to efficiently generate context data for the pattern preserving
objective. The algorithm takes the input of the HIN N , the
number of patterns to be sampled T , the entities to be sampled
on each pattern L, and a multinomial distribution to sample
different numbers of instances for the five semantic patterns.
The output M is a set of instances Ω, where each instance is
a set of sampled entities.

Algorithm 1 PHINE Pattern Sampling
1: procedure PHINESAMPLE
2: Input: N , [µa, µb, µc, µd, µe], T, L
3: Output: M
4: M← ∅
5: for t← 1 to T do
6: Ω← ∅
7: Sample a pattern Λ w.r.t. [µa, µb, µc, µd, µe]
8: repeat
9: Sample a node v1 ∈ V w.r.t. the uniform dist

10: until φ(v1) = S for pattern (a)(b)(d), P or D for
pattern (c) and P for pattern (e)

11: Ω← Ω + v1
12: repeat
13: Sample a node vc ∈ Ω w.r.t. the uniform dist
14: Sample a neighbor vi of vc w.r.t. the weights

of the edges selected by Λ and add vi to Ω
15: until |Ω| = L
16: M←M+ Ω
17: end for
18: end procedure

3) Pattern Preserving Objective: Based on the sampled
instances of semantic patterns, we design a pattern preserving
objective to capture the semantic proximities among different
types of entities in the HIN. To leverage the classic Skipgram
model for word embedding [27], within each pattern instance
Ω, we randomly sample pairs of entities into entity-context

pairs. Following the derivations in [8], we have

J2 = −
∑

(vi,vc)

log p(vc|vi)

= −
∑

(vi,vc)

log(wT
c ui − log

∑
u′
c∈C

exp(wT
c′ui)), (2)

where ui = x(vi) is the embedding of entity vi, W include
the parameters in the pattern preservation module, and C is
the set of all entity contexts.

To efficiently optimize this objective, we follow the popular
negative sampling approach [27] to approximate the intractable
normalization over the whole context space C. Specifically,
with probability ρ, we sample a positive pair of (vi, vc, π = 1)
from Ω, and with probability 1− ρ, we uniformly corrupt the
context vc to sample a negative pair (vi, vc, π = −1). There-
fore, for each sampled entity pair (vi, vc, π), we minimize the
cross entropy loss of classifying (vi, vc) to the binary label π:

J2 =− I(π = 1) log σ(wc
Tui)− I(π = −1) log σ(−wT

c ui)

=− E(vi,vc,π) log σ(πwT
c ui), (3)

where σ is the sigmoid function defined as σ(x) = 1/(1 +
e−x), I(·) is an indicator function and the expectation is
taken w.r.t. the distribution of p(vi, vc, π), which is conditioned
on the HIN and encodes the distributional information in the
semantic patterns.

D. Joint Training

As we aim to capture both passenger past experience and the
semantic proximities among drivers, passengers, and spots, we
design a joint training framework to simultaneously optimize
the two losses in Eq. 1.

1) End-to-end Supervision: The entity embeddings should
reflect passengers’ ratings over existing rides. To achieve this,
we design the embedding framework with end-to-end rating
supervision. As illustrated in Figure 4, since each ride w can
involve multiple passengers (for shared rides) and multiple
spatiotemporal spots (along the ride), after the individual
embedding of entities, we further connect two LSTM layers to
the lists of passenger embeddings x(p) and spot embeddings
x(s), respectively. The LSTM cells model the sequential
information among passengers and spots in a ride, such as
distances among locations, travel times among timestamps,
differences in passengers’ personal preferences. So we have

g(~p) = g(x(~p)) = g(x(p1), . . . ,x(pm)), (4)
g(~s) = g(x(~s)) = g(x(s1), . . . ,x(sk)). (5)

Then we collect the driver embedding x(d), passenger list
embedding g(~p) and spot list embedding g(~s) through vector
concatenation x(r) = [x(d),g(~p),g(~s)] and connect multiple
(Q) layers of nonlinear feedforward neural networks to fully
explore the interactions among the three types of entities in a
ride. So we have

h(r) = hQ(. . .h1(h0(x(r))) . . .), (6)



where hq(r) = ReLU(Wh
qhq−1(r) + bh

q) and h0(r) =
x(r). The predicted rating is produced by adding a sigmoid
regression layer at the end of ride embedding as ŷ(r) =
5σ(h(r)), because ratings are continuous values in the range
of [0, 5]. Finally, we use MSE as the supervised loss and get

J1 =
1

|Υ|
∑
r

|ŷ(r)− y(r)|2. (7)

2) Joint Training Algorithm: Algorithm 2 describes the
joint training algorithm we design to simultaneously learn
all parameters Φ = {Φe,Φl,Φh,Φc} in the PHINE model.
Φe,Φl,Φh,Φc are the parameters in the entity embedding
layers, LSTM cells, rating prediction layers and pattern preser-
vation layers, respectively. The inputs T1 and T2 are number
of iterations used to approximate the weighting factor λ and
B is the batch size. We implement it with TensorFlow3 by
performing SGD with mini-batch Adam [28]. We deploy the
algorithm in DiDi Big Data Center to deliver high-quality
passenger experience predictions and perform extensive per-
formance comparison experiments.

Algorithm 2 PHINE Joint Training
1: procedure PHINETRAIN
2: Input: T1, T2, B
3: repeat
4: for t← 1 to T1 do
5: Sample a batch of r = (d, ~p,~s, y) of size B
6: J1 = 1

B

∑
r∈B1

|ŷ(r)− y(r)|2
7: Take a gradient step to optimize Φe,Φl,Φh
8: end for
9: for t← 1 to T2 do

10: Sample a batch of p = (vi, vc, π) of size B
11: J2 = 1

B

∑
(vi,vc,π∈B2

log σ(πwT
c ui)

12: Take a gradient step to optimize Φe,Φc
13: end for
14: until J converges or is sufficiently small
15: end procedure

IV. EXPERIMENTS

In this section, we evaluate PHINE for passenger experience
learning with extensive experiments on multiple real-world
travel datasets.

A. Experimental Setup

1) Datasets: We process and use 12 travel datasets of
travel orders in different cities and time ranges. The data are
generated on a popular online taxicab platform in China. The
basic statistics of the datasets are shown in Table II.

The 12 datasets include orders generated in three cities of
different scales in China, i.e., Beijing, Chengdu and Shen-
zhen. According to available public statistics, the populations
of the three cities are about 20 million, 15 million and 10
million, respectively, by the year of 2014. For each city, we
randomly sampled a certain percent of all orders generated

3https://www.tensorflow.org/

Dataset #orders #driver #passenger #spots
random day 1,178,478 79,486 712,210 253,371
random week 7,762,695 129,713 2,634,123 640,206
random month 39,252,188 184,221 6,286,167 1,319,718
driver day 962,688 49,844 612,128 187,228
driver week 6,680,968 88,805 2,346,616 485,584
driver month 29,536,359 130,671 5,237,177 955,376
passenger day 823,707 48,738 403,727 158,149
passenger week 5,750,024 76,482 1,721,320 434,964
passenger month 27,528,423 103,812 4,250,002 918,252
spot day 889,515 53,758 503,234 106,429
spot week 5,825,985 103,650 1,865,124 289,007
spot month 20,596,488 152,626 5,375,703 606,278

TABLE II
THE STATISTICS OF THE SAMPLED DATASETS. NOTE THAT THE
DATASETS ARE ALL SUBSETS RANDOMLY SAMPLED FROM REAL

TRANSACTION DATA. WE DO NOT REPORT THE EXACT SAMPLING AND
FILTERING PROCESS DUE TO CONFIDENTIAL REASONS, AND

THEREFORE THE REPORTED FIGURES HERE DO NOT INDICATE REAL
BUSINESS SCALES.

in one day, one week and one month, to generate the three
datasets with the random prefix. To comprehensively evaluate
the algorithm performance under difference scenarios, we
further generate three groups of datasets, by filtering out orders
generated around less active drivers (driver ), less active
passengers (passenger ), and less popular spots (spot ). Each
group of datasets also have different scales (day, week and
month). Note that we intentionally do not report the exact
sampling ratio and filtering thresholds, so the reported figures
here do not indicate real business scales and distributions.

Drivers, passengers, and spots are anonymous. Driver fea-
tures are 52-dimensional, including gender, age, type, car level,
finished order count, late order count and so on. Passenger
features are 51-dimensional, including gender, finished order
count, canceled order count, complaint count and etc. Spots are
associated with only three attributes, i.e., longitude, latitude,
and timestamp.

We partition each dataset into the training set and testing set.
For each user, we use the earliest 80% orders as the training
data, and the most recent 20% orders as the test data.

2) Evaluation Metrics: To quantitatively evaluate the per-
formances of PHINE and compare with baseline methods,
we compute the MSE (mean squared error) averaged over all
testing samples between the predicted ratings and ground-truth
ratings. Since more than 80% orders receive 5 stars and ratings
are highly unbalanced, we also compute MSE on all testing
samples that do not receive 5-star ratings, to highlight the
algorithms’ ability to capture unsatisfactory rides.

3) Compared Algorithms: We compare the following al-
gorithms to comprehensively study the impacts of different
learning and embedding schemas on our passenger experience
prediction problem with the rich travel data.
• NOBIND: It does not bind and group spatiotemporal

spots but uses the raw longitude, latitude and timestamps
as features and take every spot as a distinct entity. The
travel HIN cannot be constructed due to the vast amount
of spots.

• NONET: It only explores entity features to predict ratings



through a feedforward neural network, without construct-
ing a travel HIN to model the interactions among entities
(drivers, passengers, and spots).

• PATH [12]: Besides modeling entity features, it leverages
the travel HIN by jointly preserving ratings and entity
contexts based on path sampling [8].

• NEIGHBOR [14]: Besides modeling entity features, it
leverages the travel HIN by jointly preserving ratings the
first and second order proximities among entities [9].

• PHINE: Besides modeling entity features, it leverages
the travel HIN by jointly preserving ratings and entity
contexts based on sampled instances of some intuitively
composed patterns.

4) Parameter Settings: When comparing the algorithms, we
set the parameters of PHINE to the following default values:
For the loss function, we set the weighting factor λ = 0.1;
for the hidden layers under J1, we set the number of layers
to 3 and the sizes of the layers to 64 → 32 → 16; for the
context sampling process under J2, we set the pattern size to
8, the number of entity context pairs on each pattern to 10,
and the sampling ratio of five patterns to [1, 1, 1, 1, 1]; for the
entity embedding layer, we set the embedding size to 64; for
the joint training process, we sample 5 negative samples for
each positive label, and we set the batch size to 10,000 and
the learning rate to 0.001. In addition to these default values,
we also evaluate the effects of different parameters on the
performance of PHINE in Sec. IV.B.

To ensure fair comparisons, we use the same set of fea-
tures and the same neural embedding architecture for all
five compared algorithms. For NEIGHBOR and PATH, we
use the same HIN as for PHINE. For NOBIND, NONET
and NEIGHBOR, the size of entity embedding, number of
feedforward network layers and sizes of feedforward networks
are set as the same with PHINE, and no more parameters
remain to be set; for PATH, we further set the length of
sampled paths to 8 and the number of entity context pairs
on each path to 10.

B. Experimental Results

1) Embedding Visualization: A good network embedding
should be able to capture the intrinsic distribution and func-
tional roles of entities, so as to properly lay them out in
a low dimensional space. To empirically analyze the ability
of different HIN embedding schemas for our passenger ex-
perience learning objective, we visualize the embedding of
driver and passenger networks on a part of our random day
dataset. Laying out these subnetworks is very challenging
as the algorithm needs to capture the intrinsic features and
interactions in the rich HIN that lead to different ratings.
We first compute the low dimensional embeddings of drivers
and passengers in three joint training frameworks with dif-
ferent context preserving schemas and then map the entity
embeddings into a 2-dimensional space with the LargeVis
package [29], which has been shown to be more efficient than
traditional t-SNE [30].

Figure 6 compares the visualization results generated by
the different embedding algorithms, i.e., PATH, NEIGHBOR,
and PHINE. Entities in Figure 6 (a)(b)(d)(e) (generated by
PATH and NEIGHBOR) are uniformly distributed or highly
cluttered together in the embedding space. This is because they
consider general distance on the network regardless of entity
types, and random paths or complete neighborhoods usually
do not effectively capture meaningful semantic patterns in
HINs. On the other hand, PHINE performs quite well and
generates meaningful layouts of the subnetworks, as entities
in Figure 6 (c)(f) clearly reside on certain separable mani-
fold structures, likely characterizing users’ multi-dimensional
behavioral conventions. Such embeddings reflect the intrinsic
geometric distribution of drivers and passengers in the latent
space, which is captured by PHINE with the help of semanti-
cally meaningful HIN patterns. Such semantically meaningful
embeddings are also intuitively useful in other related services
or systems like user profiling, personalized route planning, and
place recommendation.

2) Quantitative Evaluation: We quantitatively evaluate
PHINE against the baselines on the passenger experience
prediction task. Table III shows the performance in terms of
MSE and runtime on the 12 travel datasets. PHINE constantly
outperforms the strongest baseline by a large margin of around
25% relative performance. The improvements of PHINE over
the compared algorithms all passed the paired t-tests with
significance value p < 0.001. Such consistent improvements
clearly demonstrate the advantage of PHINE.

Taking a closer look at the scores of different algorithms,
we observe that 1) NOBIND has the worst performance,
indicating that directly taking the features of entities involved
in the rides does not lead to satisfactory predictions. It is
worthwhile to develop more complicated, intuitive and pow-
erful models to leverage the interactions and distributions of
the entities. 2) NONET simply applies our specifically de-
signed spot binding and grouping method and achieves slightly
better performance than NOBIND on the random, driver,
passenger datasets. It indicates that binding and grouping
spatiotemporal spots are generally helpful, especially when
many spatiotemporal spots receive sparse visits. This method
also discretizes and reduces the number of spatiotemporal
spots, which enables the construction of the travel HIN and
further leverage of context preserving techniques like PATH,
NEIGHBOR, and PHINE. 3) Both PATH and NEIGHBOR
achieve significant improvements over NONET on all datasets,
which justifies our intuition of modeling the travel data in a
HIN and demonstrates the effectiveness of jointly preserving
passenger experience and entity structural contexts on the HIN.
NEIGHBOR generally performs better than PATH, probably
because randomly sampling long paths on the HIN breaks
down semantically meaningful structures and introduces more
noise than blindly preserving the complete neighborhoods.
4) PHINE further outperforms both PATH and NEIGHBOR
constantly on all datasets by large margins, indicating the
advantage of preserving HIN structures through pattern-aware
embedding.



(a) Driver embedding generated by PATH (b) Driver embedding generated by NEIGHBOR (c) Driver embedding generated by PHINE

(d) Passenger embedding generated by PATH (e) Passenger embedding by NEIGHBOR (f) Passenger embedding generated by PHINE

Fig. 6. Driver and passenger embeddings generated by different algorithms on part of our random day dataset.

random driver
Algorithm day week month Algorithm day week month
NOBIND 33.14(327s) 32.47(22.6m) 31.86(1.6h) NOBIND 33.68(287s) 32.58(19.8m) 32.05(1.4h)
NONET 32.94(325s) 32.26(22.5m) 31.78(1.6h) NONET 33.21(288s) 32.19(19.8m) 31.92(1.4h)
PATH 25.24(568s) 23.35(35.8m) 21.77(2.8h) PATH 24.60(529s) 23.14(31.6m) 21.49(2.6h)

NEIGHBOR 22.62(769s) 21.75(51.7m) 20.83(4.1h) NEIGHBOR 22.03(732s) 20.91(49.6m) 20.07(3.9h)
PHINE 15.36(482s) 15.01(30.8m) 14.81(2.3h) PHINE 14.92(430s) 14.54(28.4m) 14.28(2.1h)

passenger spot
Algorithm day week month Algorithm day week month
NOBIND 32.42(238s) 31.93(17.0m) 31.05(1.3h) NOBIND 32.96(297s) 32.14(17.2m) 31.88(1.1h)
NONET 32.00(235s) 31.48(17.0m) 30.89(1.3h) NONET 32.94(297s) 32.21(17.3m) 31.90(1.1h)
PATH 24.72(512s) 22.98(28.8m) 21.21(2.5h) PATH 23.56(489s) 22.15(26.4m) 20.97(2.2h)

NEIGHBOR 21.63(714s) 20.38(48.8m) 19.79(3.9h) NEIGHBOR 20.44(686s) 19.25(43.1m) 18.70(3.4h)
PHINE 14.26(398s) 13.56(25.4m) 13.13(2.0h) PHINE 14.48(329s) 13.31(20.6m) 12.81(1.8h)

TABLE III
PERFORMANCES OF PHINE IN TERMS OF MSE (×1000) AND RUNTIME COMPARED WITH BASELINE ALGORITHMS.

The performances across different datasets are also interest-
ing. All algorithms constantly perform better when the orders
are filtered by removing the ones around inactive drivers,
passengers, and spots, which indicates the challenge of data
sparsity and motivates the modeling of entity proximity. More-
over, the sparsity of spots seems to influence the overall perfor-
mance the most, followed by passengers and drivers, because
filtering out orders around the unpopular spots constantly leads
to the best performance of almost all algorithms. Finally,
while it is quite natural that richer historical data allows better
performance, the performance gaps among datasets of orders
generated within one day, one week and one month are not
so big compared with those among the results of different
algorithms, which is promising and implies the opportunity of
fast online prediction with less training data.

3) Runtime Comparison: We also record the runtime of
different algorithms to conduct comprehensive efficiency anal-

ysis. All algorithms are deployed on the servers in DiDi
Big Data Center. Each machine has 12 Intel Xeon E5-2620
2.40GHz CPU cores and 64GB memory. The algorithms are
implemented with TensorFlow using 10 threads. As can be
observed from Table III, algorithms with a sole embedding
module like NOBIND and NONET are faster, and adding
context preserving module leads to computation overhead. The
overhead mainly comes from the joint optimization process,
because the computations of sampling paths for PATH, com-
puting neighborhoods for NEIGHBOR and sampling patterns
for PHINE can be done offline with data preprocessing. The
overhead of PHINE is the smallest compared with PATH and
NEIGHBOR, both due to the highly parallelable context pre-
serving process based on sampled target-context pairs (similar
to PATH) and fast convergence (faster than PATH, probably
because the semantics captured by regular patterns are more
consistent).



4) Pattern Selection: Our PHINE framework leverages
intuitive HIN patterns constructed based on prior knowledge
about the data. We study how different patterns influence the
overall prediction performance and present the experimental
results in Figure 7. As can be seen in Figure 7(a), con-
sidering each single pattern alone generally results in much
better performance than considering no pattern at all, while
some patterns (e.g., a and b) are more significant than other
patterns (e.g., d and e). Since there are too many ways of
combining multiple patterns into consideration, we further
analyze the performance of PHINE w.r.t. different pattern sets
by additively adding the most significant single pattern. Figure
7(b) demonstrates that considering more useful patterns leads
better performance, and the performance converges as more
nonsignificant patterns are added.

Note that this evaluation process also implies a general
and efficient way to select useful patterns for effective HIN
embedding, i.e., 1) come up with a set of candidate patterns
based on prior knowledge about the data; 2) evaluate their
performance one by one; 3) greedily grow a set of multiple
patterns based on the performance of single patterns until the
overall performance does not increase. The effectiveness of
this pattern selection process has also been demonstrated in a
recent work that considers meta-path selection on HIN [31].
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Fig. 7. Pattern selection performance: The performance largely improves
as important patterns are added and converges as more nonsignificant
patterns are added.

5) Neural Architecture: Now we study the effects of dif-
ferent embedding architectures on the performance of PHINE,
through an in-depth analysis of the key components under
various parameter settings.

Since there is no previous work on travel data that uses
neural networks to model heterogeneous entities like drivers,
passengers, and spots, we are interested in how the deep
architectures can benefit the modeling of entity features and
interactions. To this end, we study the effectiveness of neural
architectures by applying different neural components for
entity combination and varying the number of hidden layers
for interaction exploration. The analysis is done on the ran-
dom day dataset.

For entity combination, since each order can involve various
numbers of passengers and spots, we use max pooling, sum-
mation and LSTM cells to combine the embedding of multiple
entities. For interaction exploration, we fix the size of the last
hidden layer to 16 and vary the number of hidden layers from
0 to 4. The sizes of hidden layers are doubled upwards, and
the size of entity embedding is half of the first hidden layer.

E.g., if the number of hidden layers is 3, the sizes of layers are
64→ 32→ 16, and the size of entity embeddings is 32. The
other model parameters are set to their defaults as described
in Sec. IV.A.

Table IV shows the model performance with different
neural architectures, which demonstrates the effectiveness of
applying the expressive neural networks for modeling the
features and interactions of HIN entities. Specifically, stacking
more nonlinear layers generally improves model performance,
while the improvements are more significant when there are
fewer layers. LSTM is the best model for the combination of
multiple passengers and spots, probably because it captures
the sequential order among involved passengers and spots.

Architecture MaxPooling Summation LSTM
Concatenation 188.26 186.10 184.03

16 90.38 90.89 84.57
32→ 16 25.12 24.76 21.06

64→ 32→ 16 15.88 16.18 15.36
128→ 64→ 32→ 16 15.94 16.44 16.62

TABLE IV
PERFORMANCE WITH DIFFERENT NEURAL ARCHITECTURES.

6) Impact Analysis: Besides producing accurate passenger
satisfaction predictions, we aim to understand what factors
lead to good/bad rides. To this end, we borrow the idea of
sensitivity analysis [32]. To account for the various factors
(features) associated with drivers, passengers, and spots, we
adopt the OFAT (One-Factor-At-a-Time) approach described
in [33], [34]. Specifically, we leverage our learned PHINE
model by changing one input factor at a time while fixing
all other factors to their original values, and monitoring how
much the output prediction score changes. The way we change
the particular input factor is simply to introduce corruption to
the original data by randomly sampling a value for the factor
uniformly from its all feasible values. Then we rank the top
10 key factors we have found that by themselves mostly affect
passenger experience.

Table V shows the top 10 key factors we have found
significant and their corresponding sensitivity scores, which
are normalized among all factors. As we can observe, features
related to spots are generally more significant, followed by
a mixture of passenger and driver features, among which
driver features seem to win by a notch. The results are a bit
surprising, because conventional belief may attribute passenger
experience mostly to drivers as the service providers. However,
the results nonetheless make sense, because spots related fea-
tures are more likely to encode signals about traffic conditions
such as travel times, speeds and distances, which substantially
influence passengers’ experiences. Drivers’ historical service
quality (indicated by the number of complaints received from
passengers and the amounts of fees not paid by passengers)
certainly has a significant influence, but passengers also have
their own rating standards and conventions and their future
ratings can be predicted based on past behaviors (indicated by
number of complaints received from drivers and number of
phone complaints they make) to some extent.

We are aware that OFAT is unable to capture all interactions



Feature Name Related Entity Normalized Sensitivity
finish time spot 1

departure time spot 0.9826
starting lng spot 0.8357

passenger complaints driver 0.8131
dest lng spot 0.8069

starting lat spot 0.8048
dest lat spot 0.7874

7days no pay orders fee driver 0.6770
driver complaints passenger 0.6518

7days phone complaints passenger 0.6452

TABLE V
TOP 10 FACTORS INFLUENCING PHINE PREDICTIONS.

among factors because it fixes all but one input variable at
each time. However, our analysis is done on a large dataset
with over 1 billion transactions, which effectively explores
various combinations of corrupted data. It is also possible
to further study important combination of features through
screening based on our learned PHINE model, which we leave
as interesting future work.

V. RELATED WORK

On the application side, we review related work in trans-
portation data mining, which extensively analyzes transporta-
tion data for different prediction tasks. On the technique side,
we compare our framework with existing network embedding
methods, which also model data in networks to leverage their
proximity for downstream applications.

A. Transportation Data Mining

Transportation data mining has been attracting ever-
increasing attention over the past few years. The first related
line of work along this direction is urban activity modeling,
which explores transportation data and GPS records to model
people’s activities in different locations and time or discover
the functions of different geographical areas in the urban
space. Meanwhile, researchers have also integrated transporta-
tion data with external data sources (e.g., energy consumption,
air pollution) to model the behaviors of moving objects.

Along another line, there have been works on detecting
patterns from trajectory data [35]. Earlier works try to au-
tomatically discover locations and travel sequences that could
be of interest to users from GPS trajectories. Later, different
mobility patterns such as frequent sequential patterns [36],
[37] and periodic patterns [38] have been introduced and
mined to reveal the mobility regularities underlying people’s
movements. Finally, a considerable amount of research efforts
have been devoted to taxi sharing [39], where the goal is to
develop large-scale ride sharing algorithms that satisfy user
needs in dynamic environment settings.

None of the above studies have considered the problem of
estimating passenger experience. In contrast, we model our
rich structured travel data in a transportation HIN and capture
the semantic proximities among different entities based on
novel pattern-aware HIN embedding.

B. Network Embedding

Recently, extensive developments have been witnessed in
network embedding, most of which essentially adapt success-
ful neural models such as Skipgram [8], [11], CNN [40], [41],
[42] and RNN [43], [44] from word embedding [27], image
processing [45] and natural language processing [46]. Among
the popular ones, [8], [11], [13] recover pairwise distances
by sampling the network into random paths, while [9], [15],
[16] compute context distributions through preserving local
neighborhoods. Although they can both capture high-order
proximities to some extent, long random paths and complete
local neighborhoods do not necessarily utilize semantically
meaningful network patterns, especially under the HIN setting,
where links and some particular network structures carry rather
different semantic meanings [47], [7]. To deal with HIN, [31]
proposes an embedding method based on meta-paths, but the
framework only works for a particular task because it does
not jointly learn the representations of all related entities in
the HIN. Moreover, they do not consider semantic patterns
other than meta-paths.

Different from all of them, the exact problem setting of
supervised passenger experience prediction with rich context
in our unique travel data motivates us to come up with intuitive
semantic patterns, as well as the design of a novel and general
joint learning framework that can receive end-to-end training
w.r.t. the specific task while trivially take any semantic patterns
into consideration to boost the overall performance.

VI. CONCLUSION

In this paper, we study the problem of passenger experience
prediction and understanding. We model the various entities
involved in a ride and their multi-type multi-dimensional
interactions in a transportation HIN. To complement limited
entity features and address data scarcity, we leverage the
similarities among entities through PHINE, a novel HIN em-
bedding algorithm based on spatial-temporal node binding and
grouping, plus semantic pattern sampling and end-to-end joint
training. We deploy PHINE in DiDi Big Data Center to deliver
high-quality passenger experience predictions and provide
insightful interpretations into the key factors of good/bad rides.
Extensive experiments on various travel datasets demonstrate
the effectiveness of our approach.

As for future work, while PHINE fits well with our partic-
ular problem and unique data, it is a general HIN embedding
technique, and it is promising to apply it to other interesting
downstream applications. The ability of accurately modeling
user experience can facilitate advanced taxi allocation and
personalized route planning. The learned user embedding and
spot embedding can be further integrated with other systems
to allow better driver evaluation, customer profiling, place
recommendation, etc. The additional data in those systems,
such as labeled places of interest (i.e., restaurants, shopping
malls, parks, etc.) with longitudes and latitudes and users’
social connections, in turn, can enrich our HIN and improve
our PHINE model.
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