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Abstract—Personalized diagnosis prediction based on elec-
tronic health records (EHR) of patients is a promising yet
challenging task for AI in healthcare. Existing studies typically
ignore the heterogeneity of diseases across different patients.
For example, diabetes can have different complications across
different patients (e.g., hyperlipidemia and circulatory disorder),
which requires personalized diagnoses and treatments. Specif-
ically, existing models fail to consider 1) varying severity of
the same diseases for different patients, 2) complex interactions
among syndromic diseases, and 3) dynamic progression of chronic
diseases. In this work, we propose to perform personalized
diagnosis prediction based on EHR data via capturing dis-
ease severity, interaction, and progression. In particular, we
enable personalized disease representations via severity-driven
embeddings at the disease level. Then, at the visit level, we
propose to capture higher-order interactions among diseases that
can collectively affect patients’ health status via hypergraph-
based aggregation; at the patient level, we devise a personalized
generative model based on neural ordinary differential equations
to capture the continuous-time disease progressions underlying
discrete and incomplete visits. Extensive experiments on two real-
world EHR datasets show significant performance gains brought
by our approach, yielding average improvements of 10.70% for
diagnosis prediction over state-of-the-art competitors.

I. INTRODUCTION

Electronic health records (EHR) containing patients’ hos-
pital visit information have been widely analyzed to help
researchers and doctors build predictive models for clinical
decision-making [3], [10]. Among them, diagnosis prediction
has been successfully deployed on many industrial platforms
to assist doctors in improving diagnostic efficiency (e.g.,
Medical AI of Tencent1, and Microsoft Cloud for Healthcare2).
Many of them leverage deep learning methods to model
the hospital visits, such as recurrent neural networks [3],
[12], attention-based mechanisms [3], [14], and graph neural
networks [4], [22].

*The corresponding author is Carl Yang.
1https://healthcare.tencent.com/
2https://www.microsoft.com/en-us/industry/health/microsoft-cloud-for-
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Fig. 1: A toy example of two diabetic patients, each modeled
as a sequence of multiple hospital visits, where each visit is
modeled as a set of diagnosed diseases.

Although deep learning models have shown great success
in diagnosis predictions, they do not fully consider the het-
erogeneity of diseases, where one disease can have different
phenotypes and should be treated in different ways [26]. As
shown in Figure 1, when Jack and Lisa are first diagnosed
with diabetes (DM), they can have different complications with
different severities, namely hyperlipidemia (HL) for Jack and
polyneuropathy in diabetes (PD) for Lisa. Moreover, both the
interactions among syndromic diseases diagnosed in one visit
and the progression of chronic diseases across multiple visits
can imply different disease phenotypes and adverse reactions.
For example, the disease interactions among {DM, HL, LUI,
. . .} can affect the disease progression of DM, and lead to
comorbidities in the genitourinary system (e.g., CKD) for Jack,
while the interactions among {DM, PD, . . .} can result in
different comorbidities in the endocrine glands (e.g, DCD) for
Lisa. To provide personalized treatment for patients according
to different disease phenotypes, an ideal model should consider
heterogeneous disease severity, interaction, and progression
based on available EHR data.

In this work, we consider a personalized diagnosis predic-
tion task. The key challenges can boil down to the appropriate
representation learning of diseases, visits, and patients.



Challenge I (Disease level): How to properly obtain per-
sonalized initial disease representations? The effects of the
disease can be different due to patients’ own health status
(e.g., different ages and lifestyles). However, to protect the
privacy of patients, it is not always possible to directly obtain
patients’ personal information. In the example of Figure 1,
after first diagnosed with DM, the subsequent visit of Jack
is 3.5 months while that of Lisa is 6 months, which can
indicate different disease severities, but the signal is noisy and
it remains unknown as how to leverage such weak signals to
enhance personalized disease modeling.
Challenge II (Visit level): How to comprehensively model
complex disease interactions inside one visit? Visits contain
variable numbers of diagnosed diseases and diseases in a visit
can have complex syndromic interactions, which can result in
complicated adverse reactions. As shown in Figure 1, both the
first-order interactions (e.g., DM → CKD) and higher-order
interactions (e.g., DM × HL → CKD) are potential combina-
tions that can lead to Jack’s next diagnosed CKD. However,
it is computationally inhibitive to traverse all combinations of
diseases, and it is unclear how to provide an accurate visit
representation based on the set of diseases in each visit.
Challenge III (Patient level): How to continuously model
visits with discrete timestamps and irregular intervals for
patients? Most progressions of diseases and changes in patient
body status are continuous in nature, but the observed clini-
cal records are discrete and incomplete due to the patients’
irregular visits. Existing algorithms [9], [10] only consider
the order of discrete visits and ignore informative diagnosed
timestamps, and thus fail to accurately capture latent disease
dynamics over time. How to fully leverage partially observed
patient visits with irregular intervals for continuous modeling
of disease progression remains unknown.

To address the above challenges, we propose ProCare in
Section III, which includes three pivotal levels: (i) disease
level, we combine ontology-aware and frequency-aware en-
codings to enhance the severity information in disease repre-
sentations; (ii) visit level, we design a hypergraph convolution
mechanism to model first- and higher-order combinatorial
disease interactions inside each single visit; (iii) patient level,
we leverage neural ordinary differential equations to continu-
ously model disease progression under discrete and incomplete
observations of patients’ irregular visits.

Extensive experiments on real benchmark EHR datasets
towards personalized diagnosis prediction tasks demonstrate
the superiority of ProCare against state-of-the-art approaches
(e.g., with up to 16.24% relative improvements in Recall@10
on MIMIC-III over the best baseline). More comprehensive
results and discussion as well as ablation studies, and hyper-
parameter studies are presented and analyzed in Section IV.

II. RELATED WORK

A. Modeling Interactions for Diagnosis Prediction

Since there exist syndromic relations among diseases that
can cause adverse patient reactions, many studies propose

to capture disease interactions for accurate diagnosis predic-
tion [5], [24]. For example, Marble et al. [5] based on tensor
factorization for high throughput phenotyping to model disease
interactions. To effectively capture disease relations based on
sparse interactive data, recent studies leverage deep learning
methods for modeling structural information [4], [10], [25].
For example, GRAM [4] constructed a disease graph from
ontological medical knowledge to represent medical concepts
as combinations of their ancestors. CGL [10] utilized a hierar-
chical structure of medical domain knowledge and introduced
an ontology weight to capture hidden disease interactions.
However, they rely on pre-given graph structures that have
to be constructed manually and cannot work when there are
no explicit pair-wise relations between diseases in a visit.

Besides modeling pair-wise (first-order) relations, existing
studies also capture the higher-order relations. For example,
Cache [23] proposed to provide clinical predictions based
on hypergraph representation learning. These methods do not
consider the progression of diseases.

B. Modeling Dynamics for Diagnosis Prediction

Most EHR data can be formed as a sequence of patient
examination records at hospital visits for diagnosis predic-
tion. [8], [27]. For example, Liu et al. [8] utilized a temporal
graph to capture temporal relations of the medical events
in each clinical sequence. Recently, deep learning has been
widely adopted to model the dynamics in EHR data for
diagnosis prediction. For example, RETAIN [3] employed
an attention process on recurrent neural networks (RNNs)
to model the order of visits for the disease prediction task.
Dipole [12] applied bidirectional long-short-term memory net-
works and attention mechanisms to predict patient visit infor-
mation. Timeline [1] utilized time-aware attention mechanisms
in RNNs for health event predictions. Chet [9] designed a
context-aware dynamic graph learning method to learn disease
combinations and disease development schemes. However,
they ignore the timestamps of the visits and the irregular
gaps between them, thus failing to capture the real continuous
dynamics of disease progression.

To better leverage diagnosis timestamps for diagnosis pre-
dictions, recent studies [11], [15] proposed to capture temporal
dependencies via learning time embeddings. HiTANet [11]
designed time interval vectors to model irregular time gaps
between successive visits. As closest to us, [16] used ordinary
differential equations to describe the continuous dynamics of
disease progression. However, they do not consider complex
interactions among syndromic diseases.

III. THE PROCARE FRAMEWORK

A. Problem Statement

Our goal is to provide personalized diagnosis predictions
based on EHR via modeling disease severity, interaction, and
progression in an end-to-end framework (shown in Figure 2).

We first denote the disease dataset as D = {d1, d2, . . . , dN},
where N denotes the number of diseases. For a patient ui ∈ U ,
we denote a sequence of historical visits with timestamps as
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Fig. 2: The overall framework of ProCare.

τi = {V i,a, Ti,a}Mi−1
a=0 , where Mi denotes the number of

visits of ui. V i,a ∈ {0, 1}N is a multi-hot column vector
for the diagnoses in the a-th visit and Ti,a is the diagnosed
timestamp. The task of personalized healthcare prediction for
each patient ui is to predict the last diagnosed diseases in
V i,j at Ti,j based on previous clinical visits of ui, i.e.,
{(V i,0, Ti,0), (V i,1, Ti,1), . . . , (V i,j−1, Ti,j−1)}.

B. Disease Level

The disease severity is determined by disease subtypes and
patient status. Our idea here is to combine the information
about disease subtypes from known disease ontology and
weak signals of patient status regarding visiting frequency
to provide informative bases in disease initial representation,
which can be further leveraged by the subsequent model to
learn personalized disease severity.

Since the official ICD-9 disease ontology provides hier-
archical classifications of medical codes into different types
of (sub)diseases, it can be naturally adopted to learn the
embedding of each disease [10], [18]. To fully capture the
hierarchical relations among diseases, we propose to initialize
our personalized disease embedding Xi,d via recursively
concatenating the embedding of each sub-disease to its parent
from the leaf level of the hierarchy. Thus, we define the
ontology-aware encoding XG

d ∈ RD×1 as follows:
XG

d = XG,1
d ||XG,2

d || . . . ||XG,k
d || . . . ||XG,K

d , (1)

where || denotes the concatenation operation and XG,k
d denotes

the ontology-aware representation in the k-th level. K is a
hyperparameter that we empirically set to 4 by default. D is
the embedding dimension.

Without risking the exposure of patients’ privacy, we pro-
pose to leverage the visit times of each patient and compute
a frequency-aware encoding. The insight is: the shorter the
average time of revisit, the more help the patient needs from
the doctor, and the worse status the patient might have. As
shown in Figure 1, to measure different severities of DM for
Lisa and Jack, we propose to extract their visits that include

DM in their historical visits. Since Jack was diagnosed two
times with DM (i.e., 05/29/2017 and 02/12/2017) while Lisa
has three times (i.e., 04/11/2018, 07/12/2017, and 01/10/2017
for Lisa), δi,d for Jack’s DM is 106 days and the one for Lisa
is 228 days.

With the definition of average revisit time δi,d, we can
obtain the frequency-aware encoding ST (δi,d) as follows:

ST (δi,d)k = sin

(
δi,d ∗ k
Ti,m ∗D

)
, ST (δi,d)k+D = cos

(
δi,d ∗ k
Ti,m ∗D

)
,

(2)
where 0 ≤ k < D denotes the k-th order of dimension. By
mapping each average revisit time value into a vector, we
obtain the embedding of δi,d, which can reflect patient ui’s
personalized health status, and ensure similar values (average
time of revisit) can be embedded into similar embeddings.

Based on the ontology-aware encoding XG
d and the

frequency-aware encoding ST (δi,d), we can integrate them
to obtain Xi,d, which denotes the personalized initial repre-
sentation of disease d on patient ui as follows:

Xi,d = σ
(
W t

[
XG

d ∥ST (δi,d)
])

∈ RD×1, (3)

where Wt ∈ RD×3D is a learnable weight matrix.

C. Visit Level

Past clinical studies [13], [25] have mainly focused on
repeated interaction with a single disease, where they select
one disease to observe across patients with different health
status, and the task is to predict this disease. However, since
a visit can contain multiple diseases and disease can interact
with several diseases simultaneously, the above interactions
are insufficient to characterize the complex relations within
a diagnosis. As shown in Figure 1, the disease CKD can be
affected by the first-order interaction from other diseases (e.g.,
DM → CKD and DR → CKD), the second-order interaction
(e.g., DM × HL → CKD), as well as the third-order interaction
(e.g., DM × HL × LUI → CKD). The possible number of
higher-order interactions grows exponentially as the size of a
visit increases, leading to large computational burdens.



To properly model the disease interaction inside one visit,
we propose to regard each patient as a hypergraph (each visit
as a hyperedge) and adopt hypergraph convolutional networks
(HyperGCN) to obtain visit representations. Specifically, we
define a two-stage aggregation transformation upon the hyper-
graph structure, where each hyperedge denotes the patient’s
visit and each node denotes the diagnosed diseases. The
processes of the HyperGCN at the l-th layer are formulated
as follows:
El

i,j = fD→E({Xl−1
i,d }d∈ei,j ),X

l
i,d = fE→D({El

i,j}ei,j∈Ed
).
(4)

Here Ei,j and Xi,d stand for patient ui’s embeddings of hy-
peredge j and node d, respectively. {Xi,d}d∈ei,j is the hidden
representation of node that is contained in the hyperedge ei,j ,
and {Ei,j}ei,j∈Ed

is the hidden representations of hyperedges
that contain the node d.

To ensure expressive representations of sets and identify
the most relevant elements within the set for message passing,
we adopt the self-attention function [9], [20], [21] for both
fD→E(·) and fE→D(·). Thus, we have

fD→E(S) = fE→D(S) = Self-Att(S), (5)
where S is the embedding of the input set. In this way,
we can obtain the visit representation El

i,j by setting S =

{Xl−1
i,d }d∈ei,j and obtain the disease embedding Xl

i,d by
setting S = {Xl−1

i,d }d∈ei,j , so as to perform different stages
of aggregation, respectively. The mathematical formulation of
self-attention Self-Att is written as
Self-Att(S) = softmax

(
(SWQ)(SWK)T /

√
D
)
SWV ,

(6)
where the matrices WQ, WK , and WV are learnable.

D. Patient Level

With the visit representations E learned, it is important to
obtain accurate patient representation via further aggregating
the visit information. However, two challenges remain when
modeling a patient’s latent disease progression. 1) Discrete-
ness: Although the disease progressions should be contin-
uous in nature [16], we can only observe patients’ visits
at discrete timestamps with irregular intervals in real EHR
data. 2) Incompleteness: Patients can have multiple diagnosed
diseases at each visit, and some diseases can be missed since
they are not in the primary diagnosis recorded by doctors.
Therefore, existing algorithms that only consider discrete visits
and assume all diagnoses are recorded can even backfire in
personalized diagnosis predictions.

To address the above two challenges, we propose a person-
alized generative model based on neural ordinary differential
equations for capturing patients’ continuous-time trajectories
of disease progression. As shown in the bottom right of
Figure 2, rather than modeling Jack via aggregating three blue
marks, we can represent his health status through zi,j at Ti,j

on the smooth blue trajectory and predict the V i,j for Jack.
Specifically, we fisrt propose to initialize them via ag-

gregating patient’s historical visit embeddings (i.e., Ei =
(Ei,0,Ei,1, . . . ,Ei,j−1)) via a widely adopted self-attention

TABLE I: Statistics of the datasets used in our experiments.

Dataset MIMIC-III NELL
# of patients 2,371 3,907
# of visits 7,279 68,969
Avg. visits per patient 3.07 17.65
# of unique ICD9 codes 4,880 5,630
Avg. # of diagnosis codes per visit 13.39 2.25
Max # of diagnosis codes per visit 39.0 34.0

mechanism. In this way, the visit-driven representation zi,0 of
patient i is calculated through:

zi,0 = Self-Att(Ei), (7)
where the calculation of Self-Att(S) can be referred in Eq. 6
in Section III-C and we can simple replace S by Ei.

Furthermore, to capture the patient’s latest health status and
consider the latent disease progress, we propose to infer the
patient ui’s representation zi,j at time Ti,j by solving the
neural ordinary differential equations:

zi,j = zi,0 +

∫ Ti,j

t=Ti,0

gi (zi,t) dt

= ODESolveη (gi, zi,0, [Ti,0, Ti,1, . . . , Ti,j ]) ,

(8)

where gi is a learnable neural network for each patient ui

and we adopt the fourth-order Runge–Kutta for an accurate
and efficient approximation [2], [7]. η is a hyperparameter to
control the step size of the network gi.

Since personalized diagnosis prediction is a multi-label
classification task, we use a dense layer with a softmax
function to calculate the predicted probability. Specifically, the
prediction V̂i,j is based on the inferred patient status zi,j and
Vi,j is the ground-truth of patient ui’s (j+1)-th diagnosis. The
predictive objective function LP are listed as follows:

p(V̂i,j |τi, zi,0) = softmax(MLP(zi,j)), (9)
Finally, the overall objective function of ProCare is:

max

N∑
i=1

Vi,j log
(
V̂i,j

)
+ (1−Vi,j) log

(
1− V̂i,j

)
. (10)

IV. EXPERIMENT

In this section, we evaluate our proposed ProCare frame-
work focusing on the following three research questions:
• RQ1: How does ProCare perform in comparison to state-

of-the-art diagnosis prediction methods?
• RQ2: What are the effects of different model components?
• RQ3: How do the hyperparameters affect the prediction

performance and how to choose optimal values?

A. Experimental Setup
1) Datasets and Evaluation Protocols.: We use two real-

world EHR datasets to verify the effectiveness of compared
methods, i.e., MIMIC-III [6] and NELL. NELL is a large-
scale real-world clinical data collected by the Nell Hodg-
son Woodruff School of Nursing at Emory University. Both
datasets are fully anonymized and carefully sanitized before
our access. We chose patients who made at least three visits
for both datasets. Both datasets have K=4 levels in the ICD-
9 hierarchy. The statistics are summarized in Table I. For
evaluation metrics, we use Recall@k and NDCG@k that are
consistent with [9], [10], [22].



TABLE II: Experimental results on two benchmark EHR datasets. The best performances are highlighted in boldface and the
second runners are underlined, where * denotes significant improvements based on the Wilcoxon signed-rank test.

Method Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10
MIMIC-III NELL

RATAIN 0.1510±0.18% 0.4188±0.16% 0.2134±0.13% 0.3537±0.12% 0.6272±0.21% 0.5974±0.16% 0.7535±0.16% 0.6227±0.13%
Dipole 0.1442±0.24% 0.3999±0.18% 0.2038±0.28% 0.3378±0.18% 0.5989±0.21% 0.5705±0.18% 0.7195±0.17% 0.5946±0.15%
GRAM 0.1429±0.13% 0.4059±0.10% 0.2112±0.14% 0.3510±0.12% 0.6394±0.15% 0.6118±0.12% 0.7277±0.16% 0.6325±0.13%
Timeline 0.1487±0.15% 0.4123±0.13% 0.2100±0.12% 0.3482±0.10% 0.6174±0.15% 0.5881±0.15% 0.7417±0.16% 0.6129±0.13%
KAME 0.1353±0.14% 0.3992±0.13% 0.2055±0.13% 0.3070±0.11% 0.5620±0.12% 0.5353±0.10% 0.6751±0.15% 0.5579±0.13%
MHM 0.1383±0.14% 0.4080±0.13% 0.2128±0.13% 0.3481±0.10% 0.5745±0.15% 0.5472±0.12% 0.6902±0.13% 0.5704±0.11%
TAdaNet 0.1433±0.19% 0.4114±0.15% 0.2172±0.17% 0.3568±0.13% 0.5952±0.16% 0.5669±0.15% 0.7150±0.12% 0.5909±0.10%
HiTANet 0.1502±0.21% 0.4166±0.17% 0.2122±0.18% 0.3518±0.16% 0.6446±0.18% 0.6186±0.15% 0.7701±0.15% 0.6502±0.12%
CGL 0.1538±0.22% 0.4265±0.19% 0.2173±0.26% 0.3602±0.21% 0.6387±0.18% 0.6084±0.15% 0.7673±0.13% 0.6341±0.10%
Chet 0.1636±0.13% 0.4403±0.08% 0.2312±0.12% 0.3719±0.10% 0.6182±0.15% 0.5913±0.12% 0.7381±0.13% 0.6181±0.13%
ProCare 0.1885±0.18%* 0.5004±0.16%* 0.2687±0.21%* 0.4271±0.18%* 0.6940±0.22%* 0.6632±0.21%* 0.8101±0.17%* 0.6863±0.16%*
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Fig. 3: Performance with different lengths of visit sequence.

2) Methods for Comparison: We adopt 10 representative
state-of-the-art methods as baselines for the performance
comparison with ProCare: (1) interaction modeling methods:
GRAM [4], KAME [14], MHM [17], TAdaNet [19], and
CGL [10]; (2) dynamic modeling methods: RETAIN [3],
Dipole [12], Timeline [1], HiTANet [11], and Chet [9].

3) Implementation Details: We split dataset randomly
according to patients into training/validation/test sets (i.e.,
2100/61/210 on MIMIC-III and 3125/391/391 on NELL),
which is consistent with [9], [10]. We optimize the compared
baselines with standard Adam and tune all hyperparameters
on training sets through grid search. In particular, L in {1,
2, 3, 4}, η in {0.001, 0.05, 0.1, 0.5}. We set the embedding
dimension D as 128 and the batch size as 128 for all compared
methods on MIMIC-III and NELL datasets. We carefully tune
the hyperparameters of baselines as suggested in the original
papers to achieve their best performance.

B. Overall Performance Comparison (RQ1)

We compare the personalized diagnosis prediction results
of the proposed ProCare framework to those of the baseline
models. Table II shows the Recall@k and NDCG@k on
MIMIC-III and NELL datasets with k={5, 10}. We have the
following observations.

In general, ProCare outperforms all 10 baselines across
all evaluation metrics on both datasets. It gains a substantial
lead over the second-best models, Chet and HiTANet, with
performance improvements ranging from 5.19% in Recall@10
on NELL to a significant 16.24% on MIMIC-III.

In particular, compared with Chet, ProCare exploits hyper-
graphs for better modeling the interactive disease data, which
can mine the joint impact of two or more diseases on patients.
Therefore, ProCare outperforms Chet by up to 16.24% in

TABLE III: Ablation analysis of our proposed ProCare.

Method Recall@5 NDCG@5 Recall@10 NDCG@10
MIMIC-III

ProCare w/o. DL 0.1868 0.4538 0.2660 0.4017
ProCare w/o. VL 0.1864 0.4646 0.2612 0.4003
ProCare w/o. PL 0.1810 0.4379 0.2607 0.3830
ProCare 0.1885 0.5004 0.2687 0.4271

NELL
ProCare w/o. DL 0.6907 0.6600 0.7948 0.6828
ProCare w/o. VL 0.6823 0.6570 0.7842 0.6731
ProCare w/o. PL 0.6619 0.6443 0.7632 0.6661
ProCare 0.6940 0.6632 0.8101 0.6863

Recall@10 on MIMIC-III and up to 12.26% in Recall@5 on
NELL. Compared with HiTAnet, ProCare can further capture
the continuous disease progression between irregular clinical
visits and complicated relations among syndromic diseases.
Therefore, ProCare can outperform HiTANet by up to 26.60%
in Recall@10 on MIMIC-III and up to 7.66% on NELL.

Moreover, Figure 3 shows that ProCare consistently outper-
forms CGL and HiTANet across varying visit sequence lengths
on the NELL dataset. Notably, when the sequence length
exceeds 25, ProCare excels by up to 33.14% and 24.77% over
HiTANet and CGL respectively. This demonstrates ProCare’s
effectiveness in long-term clinical predictions, crucial for
tracking chronic disease progression.

C. Model Ablations (RQ2)

To better understand our proposed techniques, i.e., person-
alized disease representation learning (Disease Level), higher-
order interaction modeling of diseases (Visit Level), and
continuous patients’ latent health status learning with irregular
observed visits (Patient Level), we study ProCare from three
pivotal levels (shown in Table III) as follows:

Compared with ProCare w/o. DL, ProCare leads to per-
formance gains ranging from 0.48% (achieved in Recall@5
on NELL) to 10.26% (achieved in NDCG@5 on MIMIC-
III). Since different disease severity can cause heterogeneous
disease interaction and varied progression rates, ProCare w/o.
DL has a decrease in performance, especially the NDCG
metric on the MIMIC-III dataset.

Furthermore, the performance gains of ProCare over Pro-
Care w/o. VL ranges from 0.94% (with NDCG@5 on NELL)
to 7.71% (with NDCG@5 on MIMIC-III), where ProCare
explicitly models higher-order disease interaction among two



TABLE IV: Hyperparameter Studies.

Param. Recall@5 NDCG@5 Recall@5 NDCG@5
MIMIC-III NELL

L = 1 0.1871 0.4973 0.6732 0.6533
L = 2 0.1885 0.5004 0.6801 0.6561
L = 3 0.1869 0.4970 0.6940 0.6632
L = 4 0.1835 0.4790 0.6921 0.6615
η = 0.01 0.1845 0.4911 0.6912 0.6598
η = 0.05 0.1872 0.4896 0.6940 0.6632
η = 0.1 0.1885 0.5004 0.6887 0.6571
η = 0.5 0.1828 0.4864 0.6762 0.6517

or more diseases inside a visit and further improves the
performance of personalized diagnosis prediction.

The ProCare outperforms ProCare w/o. PL with gains
ranging from 2.93% to 14.27% in NDCG@5 on different
datasets. This is mainly because the PL module helps capture
latent continuous-time dynamics in patient data. The results
also affirm the effectiveness of our novel generative model for
handling incomplete patient visits.

D. Effect of Hyperparameters (RQ3)

As shown in Table IV, ProCare attains optimal performance
with L = 2 layers on MIMIC-III and L = 3 on NELL,
varying with the average number of visits in each dataset.
Exceeding these optimal layer counts causes over-smoothing
issues, leading to performance degradation on both datasets. η
controls the step size of the ordinary differential equations,
which denotes the sampling frequency of the personalized
ordinary differential equations generation model. The optimal
η value on MIMIC-III is about 0.1, and the optimal η value
on NELL is about 0.05. Since the average number of visits
is larger on NELL, it’s reasonable to use a smaller sampling
frequency for modeling the health status trajectory of patients.

V. CONCLUSION

In this paper, we propose to make personalized diagnosis
predictions based on the EHR data of patients. Specifically, we
propose a novel personalized diagnosis model (ProCare) with
three pivotal levels, which capture the higher-order disease
interactions and continuous-time disease progression based
on severity-driven disease encodings. Extensive quantitative
experiments demonstrate the clear advantages of our ProCare
over state-of-the-art towards diagnosis prediction, especially
for long visit sequences.
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