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Abstract

The human brain is the central hub of the neu-
robiological system, controlling behavior and
cognition in complex ways. Recent advances
in neuroscience and neuroimaging analysis have
shown a growing interest in the interactions be-
tween brain regions of interest (ROIs) and their
impact on neural development and disorder di-
agnosis. As a powerful deep model for analyz-
ing graph-structured data, Graph Neural Net-
works (GNNs) have been applied for brain net-
work analysis. However, training deep models
requires large amounts of labeled data, which
is often scarce in brain network datasets due to
the complexities of data acquisition and sharing
restrictions. To make the most out of available
training data, we propose PTGB, a GNN pre-
training framework that captures intrinsic brain
network structures, regardless of clinical out-
comes, and is easily adaptable to various down-
stream tasks. PTGB comprises two key com-
ponents: (1) an unsupervised pre-training tech-
nique designed specifically for brain networks,
which enables learning from large-scale datasets
without task-specific labels; (2) a data-driven
parcellation atlas mapping pipeline that facil-
itates knowledge transfer across datasets with
different ROI systems. Extensive evaluations
using various GNN models have demonstrated
the robust and superior performance of PTGB
compared to baseline methods.

Data and Code Availability The empirical
study in this work uses three real-world brain network
datasets: 1) the Bipolar Disorder (BP) dataset, 2)
the Human Immunodeficiency Virus Infection (HIV)
dataset, and 3) the Parkinson’s Progression Markers
Initiative (PPMI) dataset. The BP and HIV are local

datasets, while the large-scale PPMI dataset1 is pub-
licly available for authorized users. We followed the
data preprocessing pipelines provided by the open-
source BrainGB platform2 (Cui et al., 2022a) for the
construction of brain networks based on raw neu-
roimaging data. The full implementation of this
work is publicly available at https://github.com/

Owen-Yang-18/BrainNN-PreTrain.

Institutional Review Board (IRB) The study
has been approved by an Institutional Review Board
(IRB) to ensure the ethical and responsible use of
human subjects in research. The IRB reviewed and
approved the study protocols and consent forms, en-
suring that the rights and welfare of the participants
are protected. The study strictly adheres to the Good
Clinical Practice guidelines and U.S. 21 CFR Part 50
(Protection of Human Subjects) to ensure the safety
and privacy of the participants. All the data used
in this work is processed anonymously to protect the
privacy of participants, and no personally identifiable
information is used or disclosed.

1. Introduction

Brain network analysis has attracted considerable in-
terest in neuroscience studies in recent years. A brain
network is essentially a connected graph constructed
from different raw imaging modalities such as Diffu-
sion Tensor Imaging (DTI) and functional Magnetic
Resonance Imaging (fMRI), where nodes are com-
posed by the anatomical regions of interest (ROIs)
given predefined parcellation atlas, and connections
are usually formed with the correlations among ROIs.

1. https://www.ppmi-info.org/
2. https://braingb.us/
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E�ective brain network analysis plays a pivotal role in
understanding the biological structures and functions
of complex neural systems, which potentially helps
the early diagnosis of neurological disorders and facil-
itates neuroscience research (Martensson et al., 2018;
Yahata et al., 2016; Lindquist, 2008; Smith, 2012).

Graph Neural Networks (GNNs) have emerged
as a powerful tool for analyzing graph-structured
data, delivering impressive results on a wide range
of network datasets, including social networks, rec-
ommender systems, knowledge graphs, protein and
gene networks, and molecules, among others (Kipf
and Welling, 2017; Hamilton et al., 2017; Schlichtkrull
et al., 2018; Vashishth et al., 2020; Xu et al., 2019;
Ying et al., 2018; Zhang et al., 2020; Liu et al., 2022;
Xiong et al., 2020; Cui et al., 2022d; Xu et al., 2022).
These models have proven their ability to learn pow-
erful representations and e�ciently compute complex
graph structures, making them well-suited for various
downstream tasks. In the �eld of neuroscience, GNN
has been applied to brain network analysis, specif-
ically for graph-level classi�cation/regression (Ying
et al., 2018; Xu et al., 2019; Errica et al., 2020; Luo
et al., 2022; Dai et al., 2023; Xu et al., 2023a) and im-
portant vertex/edge identi�cation (Ying et al., 2019;
Luo et al., 2020; Vu and Thai, 2020; Yu et al., 2023;
Kan et al., 2022c), towards tasks such as connectome-
based disease prediction and multi-level neural pat-
tern discovery. However, deep learning models, in-
cluding GNNs, require large amounts of labeled data
to achieve optimal performance (Hu et al., 2020a; You
et al., 2020; Zhu et al., 2021a). While neuroimag-
ing datasets are available from national neuroimaging
studies such as the ABCD (Casey et al., 2018), ADNI
(Hinrichs et al., 2009), and PPMI (Aleksovski et al.,
2018), these datasets are still relatively small com-
pared to graph datasets from other domains, such as
datasets with 41K to 452K graphs on OGB (Hu et al.,
2020b) and datasets with thousands to millions of
graphs on NetRepo (Rossi and Ahmed, 2016)). The
limited amount of data can result in over�tting when
training deep models.

Transfer learning o�ers a solution to the challenge
of limited data availability in training deep models.
It allows a model pre-trained on large-scale source
datasets to be adapted to smaller target datasets
while maintaining robust performance. However, the
success of transfer learning depends on the availabil-
ity of similar supervision labels on the source and tar-
get dataset. This is not always feasible in large-scale
public studies, particularly in the �eld of brain net-

work analysis. Self-supervised pre-training has been
shown to be e�ective in various domains, such as com-
puter vision (He et al., 2020; Chen et al., 2020b),
natural language processing (Devlin et al., 2019; Yu
et al., 2022), and graph mining (Sun et al., 2022).
We aim to explore a self-supervised pre-training ap-
proach for GNNs on brain networks that is not re-
stricted by task-speci�c supervision labels. Despite
the promising potential, unique challenges still need
to be addressed to achieve e�ective disease prediction.
One of the major challenges is the inconsistent ROI
parcellation systems in constructing di�erent brain
network datasets, which hinders the transferability
of pre-trained models across datasets. The process
of parcellating raw imaging data into brain networks
is highly complex and usually done ad hoc by do-
main experts for each study, making it unrealistic to
expect every institution to follow the same parcella-
tion system. Although some institutions may release
preconstructed brain network datasets (Di Martino
et al., 2014), the requirement for universal adherence
to a single parcellation system is infeasible.

To tackle the challenge of insu�cient training data
for GNNs in brain network analysis, we presentPre-
T raining Graph neural networks for B rain networks
(PTGB), a fully unsupervised pre-training approach
that captures shared structures across brain network
datasets. PTGB adapts the data-e�cient MAML
(Finn et al., 2017) with a two-level contrastive learn-
ing strategy based on the naturally aligned node sys-
tems of brain networks across individuals. Addition-
ally, to overcome the issue of diverse parcellation sys-
tems, we introduce a novel data-driven atlas map-
ping technique. This technique transforms the orig-
inal features into low-dimensional representations in
a uniform embedding space and aligns them using
variance-based projection, which incorporates regu-
larizations that preserve spatial relationships, con-
sider neural modules, and promote sparsity.

In summary, our contributions are three-folded:
ˆ We present an unsupervised pre-training approach

for GNNs on brain networks, addressing the issue
of resource-limited training.

ˆ We propose a two-level contrastive sampling strat-
egy tailored for GNN pre-training on brain net-
works, which combines with a data-driven brain
atlas mapping strategy that employs customized
regularizations and variance-based sorting to en-
hance cross-dataset learning.

ˆ Our experiments against shallow and deep base-
lines demonstrate the e�ectiveness of our proposed
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PTGB . Further, we provide an in-depth analysis
to understand the inuence of each component.

2. Related Work

GNNs for Brain Network Analysis. GNNs are
highly e�ective for analyzing graph-structured data
and there have been some pioneering attempts to
use them for predicting diseases by learning over
brain networks. For example, BrainGNN (Li et al.,
2021b) proposes ROI-aware graph convolutional lay-
ers and ROI-selection pooling layers for predicting
neurological biomarkers. BrainNetCNN (Kawahara
et al., 2017) designs a CNN that includes edge-to-
edge, edge-to-node, and node-to-graph convolutional
�lters, leveraging the topological locality of brain con-
nectome structures. BrainNetTF (Kan et al., 2022b)
introduces a transformer architecture with an or-
thonormal clustering readout function that considers
ROI similarity within functional modules. Addition-
ally, various studies (Cui et al., 2022c; Kan et al.,
2022a; Zhu et al., 2022a; Cui et al., 2022a; Yu et al.,
2023) have shown that, when data is su�cient, GNNs
can greatly improve performance in tasks such as
disease prediction. However, in reality, the lack of
training data is a common issue in neuroscience re-
search, particularly for speci�c domains and clinical
tasks (Xu et al., 2023b). Despite this, there has been
little research into the ability of GNNs to e�ectively
train for brain network analysis when data is limited.

Unsupervised Graph Representation Learning
and GNN Pre-training. Unsupervised learning
is a widely used technique for training complex mod-
els when resources are limited. Recent advancements
in contrastive learning (Chen et al., 2020a; He et al.,
2020; Yu et al., 2021; Zhu et al., 2022b) have led to
various techniques for graphs. For instance, GBT
(Bielak et al., 2022) designs a Barlow Twins Zbon-
tar et al. (2021) loss function based on the empirical
cross-correlation of node representations learned from
two di�erent views of the graph (Zhao et al., 2021).
Similarly, GraphCL (You et al., 2020) involves a com-
parison of graph-level representations obtained from
two di�erent augmentations of the same graph. DGI
(Velickovic et al., 2019) contrasts graph and node rep-
resentations learned from the original graph and its
corruption.

To obtain strong models for particular downstream
tasks, unsupervised training techniques can be used
to pre-train a model, which is then �ned tuned on

the downstream tasks to reduce the dependence on
labeled training data. The approach has proven
highly successful in computer vision (Cao et al., 2020;
Grill et al., 2020), natural language processing (De-
vlin et al., 2019; Radford et al., 2018, 2021; Liang
et al., 2020), and multi-modality (e.g. text-image
pair) learning (Li et al., 2022; Yao et al., 2022). There
are various strategies for pre-training GNNs as well.
GPT-GNN (Hu et al., 2020c) proposes graph-oriented
pretext tasks, such as masked attribute and edge re-
construction. L2P-GNN (Lu et al., 2021) introduces
dual adaptation by simultaneously optimizing the en-
coder on a node-level link prediction objective and a
graph-level self-supervision task similar to DGI. Oth-
ers, such as GMPT (Hou et al., 2022) adopt an inter-
graph message-passing approach to obtain context-
aware node embedding and optimize the model con-
currently under supervision and self-supervision. To
the best of our knowledge, the e�ectiveness of both
contrastive learning and pre-training has not been in-
vestigated in the context of the unique properties of
brain networks.

3. Unsupervised Brain Network
Pre-training

Problem De�nition. The available training re-
source includes a collection of brain network datasets
S = fD 1; D2; � � � D sg, where each dataset contains
a varying number of brain networks. We consider
each brain network instance with M number of de-
�ned ROIs as an undirected weighted graphGwith M
nodes. G is represented by a node-setV = f vm gM

m =1 ,
an edge setE = V �V , and a weighted adjacency ma-
trix A 2 RM � M . We de�ne a � parameterized GNN
model f (�), and our goal is to propose a pre-training
schema that can e�ectively learn an initialization � 0

for f (�) on a set of source datasetsSsource � S via
self-supervision and adaptf � 0 (�) to a local optimum
� � on a target set Starget 2 S.

3.1. GNN Pre-training for Brain Networks

The goal of pre-training a GNN model for brain net-
works is to learn an appropriate initialization that
can easily be adapted to downstream task. Note that
the concept of pre-training is distinct from transfer
learning since the latter expects a similarity between
the source and target data as well as their learning
objectives (e.g., loss functions), while this is often
lacking in brain network analysis due to absence of
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Figure 1: Overview of the proposed frameworkPTGB . The initial features of the source datasets are pro-
jected to a �xed dimension through atlas transformation followed by variance-based feature align-
ment, which facilitates self-supervised GNN pre-training on multiple datasets via the novel two-
level contrastive learning objective. The learned model can serve as the parameter initialization
and be further �ne-tuned on target tasks.

su�cient ground truth labels in large scale studies
as well as inherent di�erences in their brain network
parcellation methods across varying datasets. Prac-
tically, a GNN model can be pre-trained either on a
singular task with a single source dataset or on a col-
lection of tasks with multiple source datasets. The
proposedPTGB framework adopts the latter option
since multi-task pre-training reduces the likelihood
of the model being biased towards the knowledge of
data from a singular source, which could be particu-
larly concerning if the source and target data shares
limited similarity leading to poor downstream adap-
tation due to information loss during model transfer.
However, a naive approach towards multi-task pre-
training would not su�ce in learning a robust model
initialization. Speci�cally, it presents two underlying
risks: (1) the model may not perform consistently
well on all tasks and may also over�t to a particular
task which signi�cantly undermines model generaliz-
ability; and (2) the process could be computationally
ine�cient with increasing number of tasks regardless
if the model is optimized sequentially or simultane-
ously on all tasks (Yang et al., 2022).

To this end, we adopt the popular data-e�cient
training techniques presented in MAML (Finn et al.,
2017) with the goal of ensuring consistent perfor-
mance on all tasks as well as computational e�-
ciency. The MAML technique is characterized by
an inner-loop adaptation and an outer-loop update
(Raghu et al., 2019). At each training iteration, each

input dataset is partitioned into an inner-loop sup-
port set and an outer-loop query set. The model
is �rst trained on the support set without explic-
itly updating the parameters. Instead, the updates
are temporarily stored as fast weights (Ba et al.,
2016). These fast weights are then used to eval-
uate the query set and compute the actual gradi-
ents. This approach makes use of approximating
higher-order derivatives (Tan and Lim, 2019) at each
step, allowing the model to foresee its optimization
trajectory a few steps ahead, which practically re-
duces the number of required training iterations to
reach local optima. In our scenario, the joint opti-
mization involves summing the loss over each brain
network dataset, i.e., for n number of datasets and
their respective temporary fast weights f � 0

i g
n
i =1 and

outer-loop queriesf queryi g
n
i =1 , the step-wise update

of the model parameter at time t is � t +1 = � t �
� r � t

P n
i =1 L query i

f � 0t
i

(�): We hereby summarize this
process in Algorithm 1. In addition, we will also
demonstrate the advantages of MAML-styled pre-
training over vanilla multi-task pre-training as well
as single task pre-training through experiments which
will be discussed in Section 4.1.

3.2. Brain Network Oriented Two-Level
Contrastive Learning

Given the high cost of acquiring labeled training data
for brain network analysis, our pre-training pipeline
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