
R-Mixup: Riemannian Mixup for Biological Networks
Xuan Kan∗

xuan.kan@emory.edu
Department of Computer Science,

Emory University
Atlanta, GA, USA

Zimu Li∗
lizm@mail.sustech.edu.cn

Pritzker School of Molecular
Engineering, University of Chicago

Chicago, IL, USA

Hejie Cui
hejie.cui@emory.edu

Department of Computer Science,
Emory University
Atlanta, GA, USA

Yue Yu
yueyu@gatech.edu

School of Computational Science and
Engineering, Georgia Institute of

Technology
Atlanta, GA, USA

Ran Xu
ran.xu@emory.edu

Department of Computer Science,
Emory University
Atlanta, GA, USA

Shaojun Yu
shaojun.yu@emory.edu

Department of Computer Science,
Emory University
Atlanta, GA, USA

Zilong Zhang
201957020@uibe.edu.cn

School of Statistics, University of
International Business and Economics

Beijing, China

Ying Guo
yguo2@emory.edu

Department of Biostatistics and
Bioinformatics, Emory University

Atlanta, GA, USA

Carl Yang†
j.carlyang@emory.edu

Department of Computer Science,
Emory University
Atlanta, GA, USA

ABSTRACT
Biological networks are commonly used in biomedical and health-
care domains to effectively model the structure of complex biologi-
cal systems with interactions linking biological entities. However,
due to their characteristics of high dimensionality and low sample
size, directly applying deep learning models on biological networks
usually faces severe overfitting. In this work, we propose R-Mixup,
a Mixup-based data augmentation technique that suits the sym-
metric positive definite (SPD) property of adjacency matrices from
biological networks with optimized training efficiency. The inter-
polation process in R-Mixup leverages the log-Euclidean distance
metrics from the Riemannian manifold, effectively addressing the
swelling effect and arbitrarily incorrect label issues of vanilla Mixup.
We demonstrate the effectiveness of R-Mixup with five real-world
biological network datasets on both regression and classification
tasks. Besides, we derive a commonly ignored necessary condition
for identifying the SPD matrices of biological networks and em-
pirically study its influence on the model performance. The code
implementation can be found in Appendix E.
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1 INTRODUCTION
As a ubiquitous type of data in biomedical studies, biological net-
works are used to depict a complex system with a set of interactions
between various biological entities. For example, in a brain network,
the correlations extracted from functional Magnetic Resonance
Imaging (fMRI) are modeled as interactions among human-divided
brain regions [16, 44, 45, 51, 62, 75, 76, 83]. Meanwhile, in a co-
expression gene-protein network, interactions are built to discover
disease genes and potential modules for clinical intervention [66].
There are diverse ways to define the connections among entities
in biological networks, such as interactions [60, 97], reactions [23],
and relations [25–27, 52, 89]. One of the most widespread practices
is calculating the covariance and correlation among entities to sum-
marize and quantify interactions [8, 32, 75, 81, 82, 96]. Therefore,
developing powerful computational methods to predict disease out-
comes based on profiling datasets from such correlation matrices
has attracted great interest from biologists [1, 58, 59, 61, 90, 91, 98].

Deep learning methods have achieved state-of-the-art perfor-
mance in various downstream applications [21, 54], especially when
the training sample size is large enough. However, biological net-
work datasets often suffer from limited samples due to the compli-
cated and expensive collection and annotation processes of scien-
tific data [13, 88, 102]. Another key property of biological networks
is that the dimension of such networks is typically very high, i.e.,
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Figure 1: Train/Test performance of a Transformer on the
biological network dataset PNC with 503 samples. Each sam-
ple is represented as a 120 × 120 adjacency matrix. V-Mixup
is the vanilla Mixup and R-Mixup is our proposed method.

𝑂(𝑛2) correlation edges among 𝑛 entities. Therefore, directly ap-
plying Deep Neural Networks (DNNs) to such biological network
datasets can easily cause severe overfitting [2, 29, 87, 92, 99].

Mixup is a widely used data augmentation technique that can im-
prove the model performance by linearly interpolating new samples
from pairs of existing instances [101]. In the scenario of biological
network analysis, since the node identities and their corresponding
order are usually fixed across network samples within the same
dataset [53], the Mixup technique can be easily applied via linear in-
terpolation. Empirically, Figure 1 (a) and (b) compare the processes
of training a transformer model [53] without Mixup and with the
vanilla Mixup (V-Mixup) [101] technique on the brain network
dataset from the PNC studies [73] to perform binary classification.
In Figure 1 (a), the training loss without the Mixup technique di-
minishes quickly while the test loss continues to increase, which
apparently indicates a severe overfitting problem. In contrast, in
Figure 1 (b) with V-Mixup, the training process becomes more sta-
ble, and the model achieves higher performance with a lower test
loss, even though the training loss is relatively high.

Although the vanilla Mixup can mitigate the overfitting issue
for biological networks, there are two critical limitations in exist-
ing Mixup methods. The first noticeable issue is that the linear
Mixup of correlation matrices in the Euclidean space would cause
a swelling effect, where the determinant of the interpolated matrix
is larger than any of the original ones. The inflated determinant,
which equals the product of eigenvalues, also indicates an increase
in eigenvalues. This can be interpreted as exaggerated variances
of the data points in the principal eigen-directions. As a result, an
unphysical augmentation from original data is generated, which
may change the characteristics, e.g., the correlations of different
brain functional areas, of the original dataset and violate the intu-
ition of linear interpolations that the determinant from a mixed
sample should be intuitively between the original pair of samples
[15, 31, 33, 69]. On the other hand, the vanilla Mixup cannot prop-
erly handle regression tasks due to arbitrarily incorrect label [93],
which means that linearly interpolating a pair of examples and their
corresponding labels cannot ensure that the synthetic sample is
paired with the correct label. Although several existing works like
RegMix [47] and C-Mixup [93] have attempted to avoid this issue
by restricting the mixing process only to samples with a similar
label, their practice leads to less various sample generation and
weakens the ability of Mixup towards improving the robustness
and generalization of deep neural network models.

Figure 2: The swelling effect of Mixing up with different
metrics. 𝑆 is the augmented sample mixed by samples 𝑆𝑖
and 𝑆 𝑗 , where det 𝑆𝑖 = 5.40 and det 𝑆 𝑗 = 6.46. Ideally, the de-
terminant of the mixed sample 𝑆 should be between det 𝑆𝑖
and det 𝑆 𝑗 . The results indicate that mixing samples with Eu-
clidean (widely used in existing Mixup methods), Cholesky,
andBures-Wassersteinmetrics leads to unphysical inflations.

Recently, investigating covariance and correlationmatrices in the
view of symmetric positive definite matrices (SPD) with Riemann-
ian manifold has demonstrated impressive advantages in biological
domains [4, 67, 95], which helps to improve the model performance
and capture informative sample features. Inspired by these studies,
we pinpoint a promising direction to mitigate these two identified
issues when adapting the Mixup technique for biological networks
from the perspective of SPD analysis. However, existing works
that leverage the Riemannian manifold for SPD analysis of bio-
logical networks often directly treat covariance and correlation
matrices as SPD matrices without rigorous verification. We clar-
ify that covariance and correlation matrices are not equal to SPD
matrices: a necessary condition for the covariance and correlation
matrices generated from a sample 𝑋 ∈ R𝑛×𝑡 to be positive defi-
nite is that the sequence length 𝑡 is no less than the sample variable

number 𝑛. We provide theoretical proof for this condition in Appen-
dix A. The collection of positive definite matrices mathematically
forms a unique geometric structure called the Riemannian mani-

fold, which generalizes curves and surfaces to higher dimensional
objects [35, 57, 72]. From a mathematical perspective, augmenting
samples along geodesics on the manifold of SPDs with the log-
Euclidean metric effectively (a) preserves the intrinsic geometric
structure of the original data and eases the arbitrarily incorrect label
and (b) eliminates the swelling effect as is shown in Figure 2. The
advantages are further proved theoretically in Section 3.

Based on this insight, we propose R-Mixup, a Mixup-based
data augmentation approach for SPD matrices of biological net-
works, which augments samples based on Riemannian geodesics
(i.e., Eq.(2)) instead of straight lines ( i.e., Eq.(1)). We theoretically
analyze the advantages of R-Mixup by incorporating tools from
differential geometry, probability and information theory. Besides,
a simple and efficient preprocess optimization is proposed to re-
duce the actual training time of R-Mixup considering the costly
eigenvalue decomposition operation. Sufficient experiments on five
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datasets spanning both regression and classification tasks demon-
strate the superior performance and generalization ability of R-
Mixup. For regression tasks, R-Mixup can achieve the best per-
formance based on the same random sampling strategy as vanilla
Mixup, demonstrating its ability to overcome the arbitrarily incor-

rect label issue by adequately leveraging the intrinsic geometric
structure of SPD. This advantage is also proved by a case study in
Appendix G. Furthermore, we observe that the performance gain
of R-Mixup over existing methods is especially prominent when
the annotated samples are extremely scarce, verifying its practical
advantage under the low-resource settings.

We summarize the contributions of this work as three folds:
• We propose R-Mixup, a data augmentation method for SPD ma-
trices in biological networks, which leverages the intrinsic geo-
metric structure of the dataset and resolves the swelling effect and
arbitrarily incorrect label issues. Different Riemannian metrics
on manifold are compared, and the effectiveness of R-Mixup is
theoretically proved from the perspective of statistics. We also
proposed a pre-computing optimization step to reduce the burden
from eigenvalue decomposition.
• Thorough empirical studies are conducted on five real-world
biological network datasets, demonstrating the superior perfor-
mance of R-Mixup on both regression and classification tasks.
Experiments on low-resource settings further stress its practical
benefits for biological applications often with limited annotation.
• We emphasize a commonly ignored necessary condition for view-
ing covariance and correlation matrices as SPD matrices. We
believe the clarification of this pre-requirement for applying SPD
analysis can enhance the rigor of future studies.

2 RELATEDWORK
2.1 Mixup for Data Augmentation
Mixup is a simple but effective principle to construct new training
samples for image data by linear interpolating input pairs and forc-
ing theDNNs to behave linearly in-between training examples [101].
Many follow-up works extend Mixup from different perspectives.
For example, [79, 80] interpolate training data in the feature space,
[20, 37] learn the mixing ratio for Mixup to alleviate the under-
confidence issue for predictions. Besides, [28, 48, 93, 104] strate-
gically select the sample pairs for Mixup to prevent low-quality
mixing examples and produce more reasonable augmented data.
To further improve the quality of the augmented data, [42, 56, 100]
create mixed examples by only interpolating a specific region (often
most salient ones) of examples. Mixup has also been extended to
other data modalities such as text [17, 103] and audio [63]. There
are several attempts to study Mixup on non-Euclidean data, graphs,
like NodeMixup [84], GraphMixup [85] and G-Mixup [39]. How-
ever, less attention has been paid to adapting Mixup for graphs
from a manifold perspective, which is the focus of this study.

2.2 Geometric Deep Learning
Geometric deep learning aims to adapt commonly used deep net-
work architectures from euclidean data to non-euclidean data, such
as graphs andmanifolds, with a broad spectrum of applications from
the domains of radar data processing [10], graph analysis [3, 64],
image and video processing [14, 41, 46, 64], and Brain-Computer

Interfaces [67, 77]. For example, SPDNet [46] builds a Riemannian
neural network architecture with special convolution-like layers,
rectified linear units (ReLU)-like layers, and modified backprop-
agation operations for the non-linear learning of SPD matrices.
ManifoldNet [14] defines the analog of convolution operations for
manifold-valued data. MoNet [64] generalizes CNN architectures
to the non-Euclidean domain with pseudo-coordinates and weight
functions. [10] designs a Riemannian batch normalization for SPD
matrices by leveraging geometric operations on the Riemannian
manifold. MAtt [67] proposes the manifold attention mechanism
to represent spatiotemporal representations of EEG data. Though
widely recognized as being effective for images, tabular and graph
data, to the best of our knowledge, data augmentation methods in
geometric deep learning have rarely been explored.

3 R-MIXUP
In this section, we first provide some preliminary facts, including a
necessary condition for treating covariance and correlation matri-
ces as SPD matrices. Next, we elaborate on the detailed process of
applying R-Mixup for data augmentation, compare possible mathe-
matical metrics designs, and finally provide the theoretical analysis
of the advantages of using R-Mixup.

3.1 Notations and Preliminary Results
Given 𝑛 variables of biological entities, we extract a 𝑡 length se-
quence for each variable and compose the input sequences 𝑋 ∈
R𝑛×𝑡 . The correlation matrix or biological network 𝑆 = Cor(𝑋 ) ∈
R𝑛×𝑛 is obtained by taking the pairwise correlation among each
pair of the biological variables. The value 𝑦 is the network-level
prediction label for the prediction task.

Definition 3.1. A symmetric 𝑛×𝑛 matrix 𝑆 is positive semi-definite

if for any vector 𝑢 ∈ R𝑛 , 𝑢𝑇 𝑆𝑢 ≥ 0. Equivalently, this means that
the eigenvalues of 𝑆 are all nonnegative. If the inequality holds
strictly, 𝑆 is said to be positive definite, or symmetric positive definite,
or SPD for short.

Let Sym(𝑛) be the collection of all positive semi-definite matrices,
and Sym+(𝑛) denotes the collection of all SPDs. The collection
Sym(𝑛) can be seen as an 1

2𝑛(𝑛 − 1)-dimensional Euclidean space,
but Sym+(𝑛) ⊂ R𝑛×𝑛 admits a more general structure call manifold

in differential geometry which resembles the Euclidean space in
its local regions. To set up the modeling on the manifold Sym+(𝑛),
the covariance matrix Cor(𝑋 ) for the input 𝑋 should be positive
definite. However, it is worth mentioning that previous studies that
use the Riemannian manifold for analyzing biological networks
often treat covariance and correlation matrices as SPD without
proper validation. Towards this common negligence, we bring out
the following basic fact:

Proposition 3.2. Covariance and correlation matrices are positive

semi-definite. A necessary condition for them to be positive definite is

that the sample length is no less than the variable number, i.e., 𝑡 ≥ 𝑛.

This proposition indicates that covariance and correlation matri-
ces only have the opportunity to be positive definite when 𝑡 ≥ 𝑛.
The detailed proof can be found in Appendix A. This is the case for
the datasets involved in this study, where most of the correlation
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matrices are SPD. The few exceptions would have very few zero
eigenvalues, which we manually set as 10−6 to eliminate their in-
fluence. More discussions on adjusting correlation matrices to be
SPDs can be found in [22, 43].

3.2 R-Mixup Deduction
In this section, we explain on the detailed process of R-Mixup
for SPD matrice augmentation. Let 𝑆𝑖 , 𝑆 𝑗 represent two different
correlation matrices constructed based on 𝑋𝑖 , 𝑋 𝑗 . In the vanilla
Mixup [101], the augmented samples (𝑆,𝑦) are created through the
straight line connecting 𝑆𝑖 , 𝑆 𝑗 and 𝑦𝑖 , 𝑦 𝑗 ,

𝑆 = (1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 ,
𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 ,

(1)

where 𝜆 ∼ Beta(𝛼, 𝛼), Beta is the Beta distribution, given 𝛼 ∈ (0,∞).
To facilitate the illustration of R-Mixup in geometry notions,

we briefly introduce the main concepts here while more detailed
explanations can be found in [35, 57]. To define R-Mixup, we re-
place Eq.(1) by a certain Riemannian geodesics. Geodesics are the
generalization of straight lines in the Euclidean space, which is
intuitively the shortest path between two given points on Rie-
mannian manifolds. Riemannian manifolds (𝑀,𝑔) are manifolds
𝑀 equipped with Riemannian metrics 𝑔 which measure distances
between points in the manifold and induces geodesic equations
[35, 57]. It is generally hard to solve geodesics equations in the
simple analytical form as straight lines, however, for Sym+(𝑛), there
are lots of well-defined choices of Riemannian metrics with known
geodesics [31, 35, 50, 69], and we employ the log-Euclidean metric

with the following geodesic:

𝑆 = exp
(
(1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗

)
, (2)

where exp, log are matrix exponential and logarithm. Figure 3
sketches the geodesic as the purple dotted curve and a rigorous
deduction of Eq.(2) can be found in [35]. Implementation of the
matrix exponential for positive definite matrix 𝑆 is straightforward:
by basic linear algebra,

𝑆 = 𝑂diag(𝜇1, ..., 𝜇𝑛)𝑂𝑇 , (3)

where 𝑂 is an orthogonal matrix with 𝜇𝑖 being eigenvalues of 𝑆 .
Then by definition,

exp 𝑆 = 𝑂diag(exp 𝜇1, ..., exp 𝜇𝑛)𝑂𝑇 ,

log 𝑆 = 𝑂diag(log 𝜇1, ..., log 𝜇𝑛)𝑂𝑇 .
(4)

3.3 Comparison with Other Metrics
There are various choices of Riemannianmetrics and hence different
geodesics on Sym+(𝑛) [7, 31, 35, 50, 69], such as the Cholesky metric
defined by Cholesky decompositions 𝐿𝑖 of positive definite matrices
𝑆𝑖 , the well-known Affine-invariant metrics on Sym+(𝑛) [78], and
the Bures-Wasserstein studied in statistics and information theory
[6, 7]. We compare the most popular ones with the proposed log-
Euclidean for mixing up biological networks on prediction tasks.
The comparisons are summarized in Table 1. To be specific, differ-
ent geodesics are analyzed from two perspectives: (𝑎) whether it
causes the swelling effect, (𝑏) whether it is numerically stable on
our dataset.

𝐿𝑜𝑔S!

𝐿𝑜𝑔S" 𝐸𝑥𝑝

1 − 𝜆 𝐿𝑜𝑔𝑆! + 𝜆𝐿𝑜𝑔𝑆"

𝑆*

𝑆"

𝑆!

𝐼

𝑀

Figure 3: The process of R-Mixup generating sample 𝑆 , where
the blue surface𝑀 represents the Riemannian manifold and
the yellow plane is the tangent plane of 𝑀 at the origin 𝐼 .
𝑆𝑖 , 𝑆 𝑗 are the original samples in 𝑀 , and log 𝑆𝑖 , log 𝑆 𝑗 are tan-
gent vectors. R-Mixup creates the augmented sample 𝑆 by
combining the initial tangent vectors of both trajectories
connecting 𝐼 with 𝑆𝑖 , 𝑆 𝑗 , i.e., (1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 , and push it
back to the Riemannian manifold 𝑀 via exponential map.

Swelling Effect. The detailed definition and rigorous proof of the
swelling effect can be found in Section 3.4 and Appendix B. As
exemplified by the motivation in Figure 2, Euclidean, Cholesky, and
Bures-Wasserstein metrics evidently suffer from the swelling effect.
Numerical Stability.Augmenting matrices from the geodesic with
the Affine-invariant metric requires the computation of 𝑆−1/2

𝑖
and

hence the calculation of the inverse square root of its eigenvalues
as we define matrix exponential and logarithm in Eq.(4). For SPDs
with small eigenvalues 𝜇, such computations may not be numeri-
cally stable since 𝜇−1/2 →∞. Furthermore, with awareness to the
following limit relation:

lim
𝜇→0

log 𝜇
𝜇−1/2 = 0, (5)

which indicates that log 𝜇 ≪ 𝜇−1/2 for small 𝜇, we know that com-
puting matrix logarithmwhen using log-Euclideanmetric should be
more stable. Similarly, for Bures-Wasserstein geodesics, to compute
(𝑆𝑖𝑆 𝑗 )1/2, we notice the following fact:

𝑆𝑖𝑆 𝑗 = 𝑆1/2
𝑖

(
𝑆
−1/2
𝑖

(𝑆𝑖𝑆 𝑗 )𝑆1/2
𝑖

)
𝑆
−1/2
𝑖

= 𝑆1/2
𝑖

(
𝑆

1/2
𝑖
𝑆 𝑗𝑆

1/2
𝑖

)
𝑆
−1/2
𝑖

. (6)

Thus,

(𝑆𝑖𝑆 𝑗 )1/2 = 𝑆1/2
𝑖

(
𝑆

1/2
𝑖
𝑆 𝑗𝑆

1/2
𝑖

)1/2
𝑆
−1/2
𝑖

, (7)

where the undesirable 𝜇−1/2 appears again in the calculation.
Considering these two points, we stick with log-Euclideanmetric.

Experimental results in Section 4.2 further showcase the effective-
ness of this choice.

3.4 R-Mixup Theoretical Justification
Using geodesics when conducting data augmentation demonstrates
unique advantages over straight lines. The first advantage is that
R-Mixup will not cause the swelling effect which exaggerates the
determinant and certain eigenvectors of the samples as discussed
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Table 1: Comparison of Different Metrics Choices

Metric Geodesics Swelling Effect Numerical Stability

Euclidean (1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 Yes Stable
Cholesky ((1 − 𝜆)𝐿𝑖 + 𝜆𝐿𝑗 )((1 − 𝜆)𝐿𝑖 + 𝜆𝐿𝑗 )𝑇 Yes Stable

Bures-Wasserstein (1 − 𝜆)2𝑆𝑖 + 𝜆2𝑆 𝑗 + 𝜆(1 − 𝜆)((𝑆𝑖𝑆 𝑗 )1/2 + (𝑆 𝑗𝑆𝑖 )1/2 ) Yes Unstable
Affine-invariant 𝑆

1/2
𝑖

(𝑆−1/2
𝑖

𝑆 𝑗𝑆
−1/2
𝑖

)𝜆𝑆1/2
𝑖

No Unstable
Log-Euclidean exp((1 − 𝜆) log𝑆𝑖 + 𝜆 log𝑆 𝑗 ) No Stable

in Section 1 and 3.3. Mathematically, suppose det 𝑆𝑖 ≤ det 𝑆 𝑗 , then
the determinant of 𝑆 defined by Eq.(2) satisfies:

det 𝑆𝑖 ≤ det 𝑆 ≤ det 𝑆 𝑗 . (8)

Detailed proof can be found in Appendix B.
The second advantage is that, by leveraging the manifold struc-

ture, we can fit better estimators compared with linear interpolation
in the Euclidean space. To be precise, as illustrated after Proposition
3.2, our samples are distributed over Sym+(𝑛) rather than the whole
ambient Euclidean space R𝑛×𝑛 , which is accepted as a prior knowl-
edge in the sense of Bayesian modeling fitting. Then the purpose
of implementing R-Mixup becomes clear: we augment the non-
trivial geometric information for the learning architectures later
used in our experiments as an analogy to transforming images to
enhance the translation and rotational invariance before a train-
ing of image identification [18]. We theoretically justify this point
from the perspective of both statistics on Riemannian manifolds
[9, 30, 49, 50, 55] and information theory [12, 65, 70].

Specifically, we treat the data augmentation process as a re-
gression conducted on the manifold Sym+(𝑛) which is explicitly
constrained by its geometric structure and based on the distribution
of the dataset as the prior knowledge. Given any 𝑆 , let �̃�(𝑆) denote
the estimator/prediction function of the regression whose analytical
form depends on the concrete regressionmethods.We take geodesic
regression and kernel regression [9, 34, 74] on Sym+(𝑛) to address
the problem. Roughly speaking, geodesic regression generalizes
multi-linear regression on Euclidean space to manifold with the
Euclidean distance being replaced by Riemannian metric. Kernel
regression embeds data into higher dimensional feature space with
kernel functions 𝐾 to grasp more non-linear relationship of the
dataset. Since the exact distribution of augmented data is unknown,
we follow the common practice [19, 40, 74] and apply Gauss kernel

𝐾𝐸 (𝑆𝑖 , 𝑆) =
1

(2𝜋𝜎2)
𝑛
2

exp
(
− 1

2𝜎2 ∥𝑆𝑖 − 𝑆 ∥
2
)
, (9)

which possess the universal property to approximate any continuous
bounded function in principle. However, the Gauss kernel 𝐾𝐸 is
defined on the Euclidean space which unreasonably implies non-
zero density of samples outside Sym+(𝑛) contradicting the prior
knowledge. To remedy the problem, we introduce a method from
the heat kernel theory in differential geometry [5, 35] to generalize
𝐾𝐸 to

𝐾𝑅 (𝑆𝑖 , 𝑆) =
1

(2𝜋𝜎2)
𝑛(𝑛−1)

4

exp
(
− 1

2𝜎2𝑑(𝑆𝑖 , 𝑆)2
)
, (10)

with

𝑑(𝑆𝑖 , 𝑆 𝑗 ) = ∥log 𝑆𝑖 − log 𝑆 𝑗 ∥ (11)

being the Riemannian distances function on Sym+(𝑛). Then we prove
in details in the Appendix C.

Theorem 3.3. For Sym
+(𝑛) with log-Euclidean metric, comparing

R-Mixup with estimators �̃� obtained by regressions with respect to

the manifold structure, the square loss for augmented data 𝑆 from

Riemannian geodesics Eq.(2) is no more than those 𝑆 ′ from straight

lines Eq.(1): ∑︁
(�̃�(𝑆) − 𝑦)2 ≤ (�̃�(𝑆 ′) − 𝑦)2 . (12)

A less empirical loss from regression on manifold is recognized
as an evidence that R-Mixup captures some geometric features of
Sym+(𝑛), thereby providing the learning algorithm an opportunity
to learn this feature. Finally, the proposed R-Mixup is formally
defined as

𝑆 = exp
(
(1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗

)
,

𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 ,
(13)

where 𝜆 ∼ Beta(𝛼, 𝛼), for 𝛼 ∈ (0,∞).

3.5 Time Complexity and Optimization
One potential concern of the proposed R-Mixup lies in its time-
consuming operations of the eigenvalue decomposition and matrix
multiplication (with the time complexity of O(𝑛3)), which dominate
the overall running time of R-Mixup. In practice, we find that most
common modern deep learning frameworks such as PyTorch [68]
have been optimized for accelerating matrix multiplication. Thus,
the main extra time consumption of the R-Mixup is the exp and
log operations of the three eigenvalue decompositions. We pro-
pose a sample strategy to optimize the running time of R-Mixup
by precomputing the eigenvalue decomposition and saving the
orthogonal matrix 𝑂 and eigenvalues {𝜇1, ..., 𝜇𝑛} of each sample.
This precomputing process can reduce the three computations of
eigenvalue decomposition to once for each sample. Formally,

𝑆 = exp
(
(1 − 𝜆)𝑂𝑖diag(log 𝜇1, ..., log 𝜇𝑛)𝑂𝑇

𝑖

+𝜆𝑂 𝑗diag(log𝜈1, ..., log𝜈𝑛)𝑂𝑇
𝑗

)
,

(14)

where 𝑂𝑖diag(𝜇1, ..., 𝜇𝑛)𝑂𝑇
𝑖
and 𝑆 𝑗 = 𝑂 𝑗diag(𝜈1, ..., 𝜈𝑛)𝑂𝑇

𝑗
are the

eigenvalue decompositions of 𝑆𝑖 and 𝑆 𝑗 , respectively. The efficiency
of this optimization is further discussed in Section 4.4.

4 EXPERIMENTS
We evaluate the performance of R-Mixup comprehensively on
real-world biological network datasets with five tasks spanning
classification and regression. The dataset statistics are summarized
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Table 2: Dataset Summary.

Dataset Sample Size Variance Number (𝑛) Sequence Length (𝑡 ) Task Class Number

ABCD-BioGender 7901 360 Variable Length Classification 2
ABCD-Cog 7749 360 Variable Length Regression -

PNC 503 120 120 Classification 2
ABIDE 1009 100 100 Classification 2

TCGA-Cancer 240 50 50 Classification 24

in Table 2. The empirical studies aim to answer the following three
research questions:
• RQ1: How does R-Mixup perform compared with existing data
augmentation strategies on biological networks with various
sample sizes on different downstream tasks?
• RQ2: How does the sequence length of each sample affect the
characteristics of correlationmatrices and consequently the choice
of augmentation strategies?
• RQ3: Is R-Mixup efficient in the training process and robust to
hyperparameter changes?

4.1 Experimental Setup
4.1.1 Datasets and Tasks.
Adolescent Brain Cognitive Development Study (ABCD). The
dataset used in this study is one of the largest publicly available
fMRI datasets, with access restricted by a strict data requesting
process [13]. From this dataset, we define two tasks: BioGender Pre-
diction and Cognition Summary Score Prediction. The data used in
the experiments are fully anonymized brain networks based on the
HCP 360 ROI atlas [36] with only biological sex labels or cognition
summary scores. BioGender Prediction is a binary classification
problem, which includes 7901 subjects after the quality control pro-
cess, with 3961 (50.1%) females among them. Cognition Summary
Score Prediction is a regression task whose label is Cognition Total
Composite Score containing seven computer-based instruments
assessing five cognitive sub-domains: Language, Executive Func-
tion, Episodic Memory, Processing Speed, and Working Memory,
ranging from 44.0 to 117.0.
Autism Brain Imaging Data Exchange (ABIDE). The dataset
includes anonymous resting-state functional magnetic resonance
imaging (rs-fMRI) data from 17 international sites [11]. It includes
brain networks from 1009 subjects, with a majority of 516 (51.14%)
being patients diagnosed with Autism Spectrum Disorder (ASD).
The task is to perform the binary classification for ASD diagnosis.
The region definition is based on Craddock 200 atlas [24]. Given the
blood-oxygen-level-dependent (BOLD) signal length of the samples
in this dataset is 100, which reflects whether neurons are active
or reactive, we randomly select 100 nodes to satisfy the necessary
condition discussed in Proposition 3.2 for SPD matrices.
Philadelphia Neuroimaging Cohort (PNC). The dataset is a
collaborative project from the Brain Behavior Laboratory at the
University of Pennsylvania and the Children’s Hospital of Philadel-
phia. It includes a population-based sample of individuals aged 8–21
years [73]. After the quality control, 503 subjects were included
in our analysis. Among these subjects, 289 (57.46%) are female.
In the resulting data, each sample contains 264 nodes with time
series data collected through 120 timesteps. Hence, we randomly

select 120 nodes to satisfy the necessary condition mentioned in
Proposition 3.2 for treating generated correlation matrices as SPD.
BioGender Prediction is used as the downstream task.
TCGA-Cancer Transcriptome. The Cancer GenomeAtlas (TCGA)
dataset is a large-scale collection of multi-omics data from over
20,000 primary cancer and matched normal bio-samples spanning
33 cancer types. In this study, we select non-redundant cancer sub-
jects with gene expression data and valid clinical information. The
gene expression data is normalized, and the top 50 highly variable
genes (HVG) are selected as the nodes for network construction.
The subjects are then assigned to different samples based on their
cancer subtype. The final dataset consists of 459 subjects from 66
cancer subtypes. We extract 240 correlation matrices from these
subjects with 24 cancer types, each type includes ten samples, and
each sample contains 50 nodes. The downstream task of this study
is to predict cancer subtypes based on the HVG expression network.

4.1.2 Metrics. For binary classification tasks on datasets ABCD-
BioGender, PNC, and ABIDE, we adopt AUROC and accuracy for a
fair performance comparison. The classification threshold is set as
0.5. For the regression task on ABCD-Cog, the mean square error
(MSE) is used to reflect model performance. For the multiple class
classification task on TCGA-Cancer, since it contains 24 classes and
each class has a balanced sample size, we take the macro Precision
and macro Recall so that all classes are treated equally to reflect
the overall performance. All the reported results are based on the
average of five runs using different random seeds.

4.1.3 Implementation Details. We equip the proposed R-Mixup
with two most popular deep backbone models for biological net-
works, Transformer [53] and GIN [86], to verify its universal effec-
tiveness with different models. For the architecture of Transformer,
the number of transformer layers is set to 2, followed by an MLP
function to make the prediction. For each transformer layer, the
hidden dimension is set to be the same as the number of nodes 𝑛,
and the number of heads is set to 4. Regarding the GCN backbone,
we set the number of GCN layers as 3. The graph representation is
obtained with a sum readout function to make the final prediction.
We randomly select 70% of the datasets for training, 10% for vali-
dation, and the remaining for testing. In the training process, we
use the Adam optimizer with an initial learning rate of 10−4 and a
weight decay of 10−4. The batch size is set as 16. All the models are
trained for 200 epochs, and the epoch with the best performance
on the validation set is selected for the final report.

4.1.4 Baselines. We include a variety of Mixup approaches as base-
lines. Given Λ ∈ [0, 1]𝑣×𝑣 , 𝛼 ∈ (0,∞), 𝜋 ∈ (0, 1), · is the dot product.
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Table 3: Overall performance comparison based on the Transformer backbone. The best results are in bold, and the second best
results are underlined. The ↑ indicates a higher metric value is better and ↓ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE↓ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 95.28±0.32 87.68±1.31 60.21±1.53 74.85±4.93 66.57±6.29 73.32±4.11 66.00±3.66 35.33±11.52 45.00±10.79

V-Mixup 95.85±0.63 87.86±1.45 60.43±2.67 76.02±2.54 65.88±7.89 75.03±5.04 66.80±5.40 69.58±9.39 77.50±6.97
D-Mixup 94.55±2.84 87.17±3.45 60.96±1.82 76.15±4.58 68.82±6.29 72.92±4.93 67.40±5.64 70.28±12.30 75.83±12.98
DropNode 95.65±0.35 88.07±0.76 65.35±2.97 75.47±4.27 67.45±4.35 73.49±4.09 66.00±3.16 53.96±11.34 61.67±10.79
DropEdge 95.28±0.39 87.54±0.60 76.44±1.82 72.89±5.70 66.27±5.31 70.68±6.14 64.20±5.12 67.57±5.14 75.00±5.10
G-Mixup 95.24±0.92 88.16±0.63 62.16±2.04 76.01±3.04 69.41±3.21 73.68±5.67 65.60±4.56 59.72±7.77 69.44±6.27
C-Mixup 96.01±0.48 88.40±1.44 59.68±1.15 75.29±2.52 69.02±5.48 74.69±4.40 66.40±3.36 67.50±6.90 76.67±6.32

R-Mixup 96.20±0.33 89.44±1.06 56.89±1.66 77.01±2.59 69.80±3.63 74.79±4.90 68.20±4.19 71.39±9.59 78.33±9.03

V-Mixup [101] is the vanilla Mixup by the linear combination of
two random samples,

𝑆 = (1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 , 𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 ,
𝜆 ∼ Beta(𝛼, 𝛼).

(15)

D-Mixup is the discrete Mixup, a naive baseline designed by our-
selves. Given two randomly selected samples, a synthetic sample is
generated by obtaining parts of the edges from one sample and the
rest from the other,

𝑆 = (1 − Λ) · 𝑆𝑖 + Λ · 𝑆 𝑗 , 𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 ,

Λ𝑖, 𝑗 ∼ B(𝜆), 𝜆 ∼ Beta(𝛼, 𝛼).
(16)

DropNode [38] randomly selects nodes given a sample and sets all
edge weights related to these selected nodes as zero,

𝑆 = Λ · 𝑆,Λ𝑝,: = Λ:,𝑝 = 𝑧, 𝑧 ∼ Bernoulli(𝜋 ). (17)

DropEdge [71] randomly selects edges given a sample and assigns
their weights as zero,

𝑆 = Λ · 𝑆,Λ𝑝,𝑞 ∼ Bernoulli(𝜋 ). (18)

G-Mixup [39] is originally proposed for classification tasks, which
augments graphs by interpolating the generator of different classes
of graphs. Since each cell in a covariance and correlation matrix
represents a specific edge in a graph, we can convert a graph gen-
erator into a group of generator for each edge. We model each
edge generator as a conditional multivariate normal distribution
𝑃 (𝑆𝑝,𝑞 | 𝑦). The augmentation process can be formulated as,

𝑆𝑝,𝑞 ∼ (1 − 𝜆)𝑃 (𝑆𝑝,𝑞 | 𝑦𝑖 ) + 𝜆𝑃 (𝑆𝑝,𝑞 | 𝑦 𝑗 ), 𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 ,
𝜆 ∼ Beta(𝛼, 𝛼).

(19)

For the setting of classification,

𝑃 (𝑆𝑝,𝑞 | 𝑦 = 𝑐) ∼ N
(
𝜇
𝑝,𝑞
𝑐 , (𝜎𝑝,𝑞𝑐 )2

)
, (20)

To extend G-Mixup for regression, we slightly modify the augmen-
tation process to adapt it for regression tasks as

𝑃 (𝑆𝑝,𝑞 | 𝑦) ∼ N
(
𝜇𝑝,𝑞 +

𝜎𝑝,𝑞

𝜎𝑦
𝜌𝑝,𝑞

(
𝑦 − 𝜇𝑦

)
,

(
1 − (𝜌𝑝,𝑞)2

)
(𝜎𝑝,𝑞)2

)
,

(21)

where 𝜇 and 𝜎 are the mean and standard deviation of the weight
for each edge, 𝜌 is the correlation coefficient between 𝑆𝑝,𝑞 and 𝑦.

C-Mixup [93] shares the same process with the V-Mixup. Instead of
randomly selecting two samples, C-Mixup picks samples based on
label distance to ensure the mixed pairs are more likely to share sim-
ilar labels (𝑆 𝑗 , 𝑦 𝑗 ) ∼ 𝑃 (· | (𝑆𝑖 , 𝑦𝑖 )), where 𝑃 is a sampling function
which can sample closer pairs of examples with higher probability.
For classification tasks, it degenerates into the intra-class V-Mixup.

4.2 RQ1: Performance Comparison
Overall Performance. The overall comparison based on the Trans-
former and GCN backbone are presented in Table 3 and Table 5 re-
spectively, where ABCD-BioGender, PNC, ABIDE, and TCGA-Cancer
focus on classification tasks, while ABCD-Cog is a regression task.
Since the performance of the two backbones demonstrates similar
patterns, we focus on the result discussion of the Transformer due
to the space limit. Specifically, for classification tasks, incorporat-
ing the Mixup technique can constantly improve the performance,
especially on the TCGA-Cancer dataset, which features a small
sample size with high dimensional matrices. Among the various
Mixup techniques, our proposed R-Mixup performs the best across
datasets and tasks, indicating the further advantage of using log-
Euclidean metrics instead of Euclidean metrics for SPD matrices
mixture. Besides, for datasets with a relatively smaller sample size,
such as PNC, ABIDE, and TCGA-Cancer, R-Mixup can further re-
duce training variance and stabilize the final performance compared
with other data augmentation methods.

Compared with the improvements on classification tasks, R-
Mixup demonstrates a more significant advantage on the regression
task. It is shown that R-Mixup can significantly reduce the MSE
compared with the baseline without Mixup (5.5% with the trans-
former backbone) and archive a large advantage over the second
runner (4.8% with the transformer backbone). It is also noted that
other Mixup approaches sometimes hurt the model performance, in-
dicating the Euclidean space cannot measure the distance between
SPD matrices very well, and the mixed samples may not be paired
with the correct labels. In contrast, our proposed log-Euclidean
metric can correctly represent the distance among SPD matrices
and therefore address the problem of arbitrarily incorrect label.
Performance with Different Sample Sizes. As collecting labeled
data can be extremely expensive for biological networks in prac-
tice, we adopt R-Mixup for the challenging low-resource setting
to justify its efficacy with limited labeled data only. For this set of
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Table 4: Detailed performance comparison of different sample sizes with Transformer as the backbone.

Percentage (in %)
Dataset: ABCD-BioGender (AUROC↑) Dataset: ABCD-Cog (MSE↓)

w/o Mixup V-Mixup C-Mixup R-Mixup w/o Mixup V-Mixup C-Mixup R-Mixup

10 87.14±1.15 88.99±0.75 88.72±1.13 90.21±0.64 73.07±2.75 77.00±4.58 71.22±1.68 70.69±1.06
20 90.60±0.91 91.11±0.54 91.49±0.89 92.72±0.64 69.70±2.75 69.80±2.42 69.30±3.21 66.50±2.50
30 92.60±0.51 93.45±0.35 93.33±0.78 93.93±0.55 65.97±2.48 65.84±1.11 64.31±0.57 63.50±1.61
40 92.84±0.40 94.06±0.48 93.95±0.53 94.12±0.21 63.91±4.07 63.14±1.08 61.88±2.93 61.15±1.80
50 94.18±0.51 95.20±0.39 95.03±0.57 94.78±0.98 61.89±3.85 63.45±1.65 61.26±1.31 60.82±2.71
60 94.22±0.44 95.19±0.54 95.17±0.32 95.65±0.37 59.47±1.59 60.32±0.94 60.20±1.58 58.75±1.65
70 94.18±0.40 95.51±0.18 95.49±0.28 95.07±0.18 62.35±2.28 61.15±1.51 60.54±3.57 60.17±0.50
80 95.18±0.31 95.60±0.42 95.73±0.51 95.94±0.31 59.85±1.47 60.31±1.07 60.85±3.84 56.78±2.05
90 95.55±0.86 95.92±0.34 95.49±0.73 95.24±0.65 61.17±3.36 61.51±0.78 60.35±0.93 57.45±3.39
100 95.28±0.32 95.85±0.63 96.01±0.48 96.20±0.33 60.21±1.53 60.43±2.67 59.68±1.15 56.89±1.66

(a) (b)

Figure 4: (a) The influence of time-series sequence length 𝑡 on the percentage of the positive eigenvalues (%). (b) The influence
of the sequence length 𝑡 or SPD-ness (%) on the prediction performance of classification and regression tasks.

experiments, we vary the training sample size from 10% to 100%
of the full datasets to show the performance of R-Mixup based on
transformers with different sample sizes. Specifically, the ABCD
dataset is adopted in this detailed analysis due to its relatively large
sample size and supports for both classification and regression
tasks. The selected comparing methods are the strongest baselines,
namely V-Mixup and C-Mixup, from the overall performance in
Table 3. Results are presented in Table 4.

On the classification task of BioGender prediction, impressively,
the proposed R-Mixup can already achieve a decent performance
with only 10% percent of full datasets and demonstrates a large
margin over other compared methods. As the sample size becomes
larger, the performance of different data augmentation methods
tends to be close, while the proposed R-Mixup reaches the best
performance for most of the cases (7 out of 10 setups). On the more
challenging regression task of Cognition Summary Score prediction,
R-Mixup consistently outperforms the other two baselines under
different portions of the training data, which stresses the absolute
advantages of our proposed R-Mixup in its flexible and effective
adaption for the regression settings. Note that when equipped with
an inappropriate augmentation method (i.e., V-Mixup), the regres-
sion performance can always deteriorate under different volumes
of training data. This implies the necessity of proposing appropri-
ate Mixup techniques tailored for biological networks to address
specific challenges for regression tasks. Furthermore, we propose a
case study in Appendix G to show why R-Mixup can achieve the
best performance for the Regression task in the ABCD-Cog dataset.

4.3 RQ2: The Relations of Sequence Length,
SPD-ness and Model Performance

To quantitatively verify the necessary conditions of SPD matrices
in Proposition 3.2, we vary the length of sequences whose pair-
wise correlations compose the network matrices and observe its
influence on the percentage of positive eigenvalues and the final
prediction performance. For better illustration, we define a new
terminology SPD-ness to reflect the percentage of positive values
among all eigenvalues. The higher the percentage of positive eigen-
values, the higher SPD-ness, and a full SPD matrice requires all the
eigenvalues to be positive. Specifically, we choose the dataset with
the longest time sequence, namely ABCD, to facilitate this study.
Since samples in the ABCD dataset are of different sequence lengths,
we simply select those with sequence length longer than 1024 and
truncate them to 1024 to form a length-unified dataset ABCD-1024,
leading to 4613 samples for the ABCD-BioGender classification task
and 4533 samples for the ABCD-Cog regression task.

First, we investigate the relationship between the length of bio-
logical sequences 𝑡 and the SPD-ness of the corresponding network
matrix. The results are shown in Figure 4(a), where the value of
sequence length 𝑡 is varied from 90 to 900 with a step size of 90.
For each given 𝑡 , we construct the correlation matrices based on
each pair of the truncated sequences with only the first 𝑡 elements
from the original sequences. Then the eigenvalue decomposition is
applied to each obtained correlation matrix, and the percentage of
positive (> 10−6) eigenvalues are calculated. The reported results
are the average over all the correlation matrices. From this curve,
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Figure 5: The influence of the key hyperparameter (𝛼) value
on the performance of classification and regression tasks.

we observe that the percentage of positive eigenvalues grows gradu-
ally as the time-series length increases. The growth trend gradually
slows down, reaching a percentage point saturation at about the
length of 540, where the full percentage indicates full SPD-ness.
Note that the number of variables 𝑛 for the ABCD dataset is 360.
This aligns with our conclusion in Proposition 3.2 that a necessary
condition for correlation matrices satisfying SPD matrices is 𝑡 ≥ 𝑛.

Second, with the verified relation between the sequence length
𝑡 and SPD-ness, we study the influence of sequence length 𝑡 or
SPD-ness on the prediction performance. We observe that directly
truncating the time series to length 𝑡 will lose a huge amount of
task-relevant signals, resulting in a significant prediction perfor-
mance drop. As an alternative, we reduce the original sequence to
length 𝑡 by taking the average of each 1024/𝑡 consecutive sequence
unit. Results on the classification task ABCD-BioGender and the
regression task ABCD-Cognition with the input of different time-
series length 𝑡 are demonstrated in Figure 4(b). It shows that for the
classification task, although V-Mixup and C-Mixup demonstrate
an advantage when the percentage of positive eigenvalues is low,
the performance of the proposed R-Mixup continuously improves
as the sequence length 𝑡 increases and finally beats the other base-
lines. For the regression task, our proposed R-Mixup consistently
performs the best regardless of the SPD-ness of the correlation ma-
trices. The gain is more observed when the dataset matrices are full
SPD. Combining these observations from both classification and re-
gression tasks, we prove that the proposed R-Mixup demonstrates
superior advantages for mixing up SPD matrices and facilitating
biological network analysis that satisfies full SPD-ness.

4.4 RQ3: Hyperparameter and Efficiency Study
The Influence ofKeyHyperparameter𝛼 .We study the influence
of the key hyperparameter 𝛼 in R-Mixup, which correspondingly
changes the Beta distribution of 𝜆 in Equation (13). Specifically,
the value of 𝛼 is adjusted from 0.1 to 1.0, and the corresponding
prediction performance under the specific values is demonstrated
in Figure 5. We observe that the prediction performance of both
classification and regression tasks are relatively stable as the value
of 𝛼 varies, indicating that the proposed R-Mixup is not sensitive
to the key hyperparameter 𝛼 .
Efficiency Study. To further investigate the efficiency of different
Mixup methods, we compare the training time of different data

Figure 6: Training Time of different Mixup methods on the
large ABCD dataset. R-Mixup is the original model while
R-Mix(Opt) is time-optimized as discussed in Section 3.5.

augmentation methods on the large-scale dataset, ABCD, to high-
light the difference. The results are shown in Figure 6. Besides, the
running time comparison on three smaller datasets, ABIDE, PNC,
and TCGA-Cancer are also included in appendix D for reference.
All the compared methods are trained with the same backbone
model [53]. It is observed that with the precomputed eigenvalue
decomposition, the training speed of the optimized R-Mixup on
the large ABCD dataset can be 2.5 times faster than the original
model without optimization. Besides, on the smaller datasets such
as PNC, ABIDE, and TCGA-Cancer, there is no significant difference
in elapsed time between different methods.

5 CONCLUSION
In this paper, we present R-Mixup, an effective data augmenta-
tion method tailored for biological networks that leverage the log-
Euclidean distance metrics from the Riemannian manifold. We
further propose an optimized strategy to improve the training effi-
ciency of R-Mixup. Empirical results on five real-world biological
network datasets spanning both classification and regression tasks
demonstrate the superior performance of R-Mixup over existing
commonly used data augmentation methods under various data
scales and downstream applications. Besides, we theoretically ver-
ify a necessary condition overlooked by prior works to determine
whether a correlation matrix is SPD and empirically demonstrate
how it affects the prediction performance, which we expect to guide
future applications spreading the biological networks.

6 ACKNOWLEDGMENTS
This research was supported in part by the University Research
Committee of Emory University and the National Institute Of Dia-
betes And Digestive And Kidney Diseases of the National Institutes
of Health under Award Number K25DK135913. The authors also
gratefully acknowledge support from NIH under award number
R01MH105561 and R01MH118771. The content is solely the respon-
sibility of the authors and does not necessarily represent the official
views of the National Institutes of Health. Besides, the acknowledg-
ment of used datasets can be found in Appendix H.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xuan Kan, Zimu Li, Hejie Cui, Yue Yu, Ran Xu, Shaojun Yu, Zilong Zhang, Ying Guo, and Carl Yang

REFERENCES
[1] Rushil Anirudh and Jayaraman J. Thiagarajan. 2019. Bootstrapping Graph

Convolutional Neural Networks for Autism Spectrum Disorder Classification.
In ICASSP. IEEE, 3197–3201.

[2] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel
Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A Closer Look at Memorization
in Deep Networks. In Proc. of ICML. PMLR, 233–242.

[3] Sarp Aykent and Tian Xia. 2022. Gbpnet: Universal geometric representation
learning on protein structures. In KDD. 4–14.

[4] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jut-
ten. 2010. Riemannian geometry applied to BCI classification. In International

conference on latent variable analysis and signal separation. Springer, 629–636.
[5] Nicole Berline, Ezra Getzler, and Micheèle Vergne. 2004. Heat kernels and Dirac

operators. Springer.
[6] Rajendra Bhatia, Stephane Gaubert, and Tanvi Jain. 2019. Matrix versions of

the Hellinger distance. Letters in Mathematical Physics (2019), 1777–1804.
[7] Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. 2019. On the Bures–Wasserstein

distance between positive definite matrices. Expositiones Mathematicae (2019).
[8] Ronakben Bhavsar, Yi Sun, Na Helian, Neil Davey, David Mayor, and Tony

Steffert. 2018. The Correlation between EEG Signals as Measured in Different
Positions on Scalp Varying with Distance. Procedia Computer Science (2018),
92–97.

[9] Peter J. Bickel and Bo Li. 2007. Local Polynomial Regression on Unknown
Manifolds. Lecture Notes-Monograph Series (2007), 177–186.

[10] Daniel A. Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider,
and Matthieu Cord. 2019. Riemannian batch normalization for SPD neural
networks. In NeurIPS. 15463–15474.

[11] Craddock Cameron, Benhajali Yassine, Chu Carlton, Chouinard Francois,
E. Aykan Alan, Jakab András, Khundrakpam Budhachandra, Lewis John, Liub
Qingyang, Milham Michael, Yan Chaogan, and Bellec Pierre. 2013. The Neuro
Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging
data and derivatives. Frontiers in Neuroinformatics (2013).

[12] Eric Carlen. 2010. Trace inequalities and quantum entropy: an introductory
course. In Contemporary Mathematics. American Mathematical Society.

[13] B.J. Casey, Tariq Cannonier, and May I. Conley et al. 2018. The Adolescent
Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.
Developmental Cognitive Neuroscience (2018), 43–54.

[14] Rudrasis Chakraborty, Jose Bouza, Jonathan H. Manton, and Baba C. Vemuri.
2022. ManifoldNet: A Deep Neural Network for Manifold-Valued Data With
Applications. TPAMI 2 (2022), 799–810.

[15] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and O. Faugeras. 2004. Regularizing
Flows for Constrained Matrix-Valued Images. Journal of Mathematical Imaging

and Vision 1/2 (2004), 147–162.
[16] Junru Chen, Yang Yang, Tao Yu, Yingying Fan, Xiaolong Mo, and Carl Yang.

2022. BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph
Diffusion Learning. In KDD. 2741–2751.

[17] Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. MixText: Linguistically-Informed
Interpolation of Hidden Space for Semi-Supervised Text Classification. In Proc.

of ACL. Association for Computational Linguistics, 2147–2157.
[18] Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. 2020. A Group-Theoretic

Framework for Data Augmentation. In NeurIPS.
[19] Philip E. Cheng. 1990. Applications of kernel regression estimation:survey.

Communications in Statistics - Theory and Methods 11 (1990), 4103–4134.
[20] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan.

2020. Remix: rebalanced mixup. In ECCV. Springer, 95–110.
[21] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,

Huaxia Xia, and Chunhua Shen. 2021. Twins: Revisiting the Design of Spatial
Attention in Vision Transformers. In NeurIPS. 9355–9366.

[22] Marco Congedo and Alexandre Barachant. 2015. A special form of SPD co-
variance matrix for interpretation and visualization of data manipulated with
Riemannian geometry. 495–503.

[23] Gheorghe Craciun and Martin Feinberg. 2006. Multiple equilibria in complex
chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math.

4 (2006), 1321–1338.
[24] R Cameron Craddock, G Andrew James, Paul E Holtzheimer III, Xiaoping P Hu,

and Helen S Mayberg. 2012. A whole brain fMRI atlas generated via spatially
constrained spectral clustering. Human Brain Mapping (2012), 1914–1928.

[25] Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua
Lukemire, Liang Zhan, Lifang He, Ying Guo, and Carl Yang. 2023. BrainGB: A
Benchmark for Brain Network Analysis With Graph Neural Networks. IEEE
Transactions on Medical Imaging 42, 2 (2023), 493–506.

[26] Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, and Carl Yang. 2022.
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis. In MICCAI.

[27] Hejie Cui, Jiaying Lu, Shiyu Wang, Ran Xu, Wenjing Ma, Shaojun Yu, et al.
2023. A Survey on Knowledge Graphs for Healthcare: Resources, Application

Progress, and Promise. arXiv (2023).
[28] Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, and Nasser M. Nasrabadi.

2021. SuperMix: Supervising the Mixing Data Augmentation. In CVPR. 13794–
13803.

[29] Wei Dai, Hejie Cui, Xuan Kan, Ying Guo, and Carl Yang. 2022. Transformer-
Based Hierarchical Clustering for Brain Network Analysis. In 2022 IEEE Inter-

national Conference on Big Data (Big Data). 4970–4971.
[30] Luca Dodero, Hà Quang Minh, Marco San Biagio, Vittorio Murino, and Diego

Sona. 2015. Kernel-based classification for brain connectivity graphs on the
Riemannian manifold of positive definite matrices. In ISBI. 42–45.

[31] Ian L. Dryden, Alexey Koloydenko, and Diwei Zhou. 2009. Non-Euclidean
statistics for covariance matrices, with applications to diffusion tensor imaging.
The Annals of Applied Statistics 3 (2009), 1102 – 1123.

[32] Yuanqi Du, Shiyu Wang, Xiaojie Guo, Hengning Cao, Shujie Hu, Junji Jiang,
Aishwarya Varala, Abhinav Angirekula, and Liang Zhao. 2021. Graphgt: Ma-
chine learning datasets for graph generation and transformation. In NeurIPS.

[33] Christian Feddern, Joachim Weickert, Bernhard Burgeth, and Martin Welk.
2006. Curvature-Driven PDE Methods for Matrix-Valued Images. IJCV 1 (2006),
93–107.

[34] Thomas Fletcher. 2011. Geodesic Regression on Riemannian Manifolds. In
Proceedings of the Third International Workshop on Mathematical Foundations of

Computational Anatomy. 75–86.
[35] Jean Gallier and Jocelyn Quaintance. 2020. Differential Geometry and Lie Groups:

A Computational Perspective. Springer International Publishing.
[36] Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S.

Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew
Webster, Jonathan R. Polimeni, David C. Van Essen, and Mark Jenkinson. 2013.
The minimal preprocessing pipelines for the Human Connectome Project. Neu-
roImage (2013), 105–124.

[37] Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. MixUp as Locally Linear
Out-of-Manifold Regularization. In AAAI. AAAI Press, 3714–3722.

[38] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NeurIPS. 1024–1034.

[39] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. 2022. G-Mixup: Graph
Data Augmentation for Graph Classification. In ICML. PMLR, 8230–8248.

[40] Wolfgang Härdle. 1990. Applied nonparametric regression. Number 19.
[41] Wenchong He, Zhe Jiang, Chengming Zhang, and Arpan Man Sainju. 2020.

CurvaNet: Geometric Deep Learning based on Directional Curvature for 3D
Shape Analysis. In KDD. ACM, 2214–2224.

[42] Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song,
and Jacob Steinhardt. 2022. PixMix: Dreamlike Pictures Comprehensively Im-
prove Safety Measures. In CVPR. IEEE, 16762–16771.

[43] Chao Huang, Daniel Farewell, and Jianxin Pan. 2017. A calibration method for
non-positive definite covariance matrix in multivariate data analysis. Journal of
Multivariate Analysis (2017), 45–52.

[44] Shuai Huang, James J. Lah, Jason W. Allen, and Deqiang Qiu. 2022. A probabilis-
tic Bayesian approach to recover R2* map and phase images for quantitative
susceptibility mapping. Magnetic Resonance in Medicine 88, 4 (2022), 1624–1642.

[45] Shuai Huang, James J Lah, Jason W Allen, and Deqiang Qiu. 2023. Robust
quantitative susceptibility mapping via approximate message passing with
parameter estimation. Magnetic Resonance in Medicine (2023).

[46] Zhiwu Huang and Luc Van Gool. 2017. A Riemannian Network for SPD Matrix
Learning. In Proc. of AAAI. AAAI Press, 2036–2042.

[47] Seonghyeon Hwang and Steven Euijong Whang. 2021. MixRL: Data Mixing
Augmentation for Regression using Reinforcement Learning. CoRR (2021).

[48] Seong-Hyeon Hwang and Steven Euijong Whang. 2021. MixRL: Data mixing
augmentation for regression using reinforcement learning. ArXiv preprint

(2021).
[49] Sadeep Jayasumana, Richard Hartley, Mathieu Salzmann, Hongdong Li, and

Mehrtash Harandi. 2015. Kernel Methods on Riemannian Manifolds with Gauss-
ian RBF Kernels. TPAMI 12 (2015), 2464–2477.

[50] Sadeep Jayasumana, Richard I. Hartley, Mathieu Salzmann, Hongdong Li, and
Mehrtash Tafazzoli Harandi. 2013. Kernel Methods on the Riemannian Manifold
of Symmetric Positive Definite Matrices. In CVPR. 73–80.

[51] Xuan Kan, Hejie Cui, Joshua Lukemire, Ying Guo, and Carl Yang. 2022. Fbnetgen:
Task-aware gnn-based fmri analysis via functional brain network generation.
In MIDL. PMLR, 618–637.

[52] Xuan Kan, Hejie Cui, and Carl Yang. 2021. Zero-shot scene graph relation
prediction through commonsense knowledge integration. In Machine Learning

and Knowledge Discovery in Databases. Springer, 466–482.
[53] Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. 2022.

BRAIN NETWORK TRANSFORMER. In NeurIPS.
[54] Jeremy Kawahara, Colin J. Brown, Steven P. Miller, Brian G. Booth, Vann Chau,

Ruth E. Grunau, Jill G. Zwicker, and Ghassan Hamarneh. 2017. BrainNetCNN:
Convolutional neural networks for brain networks; towards predicting neurode-
velopment. NeuroImage (2017), 1038–1049.



R-Mixup: Riemannian Mixup for Biological Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[55] Hyunwoo J. Kim, Barbara B. Bendlin, Nagesh Adluru, Maxwell D. Collins, Moo K.
Chung, Sterling C. Johnson, Richard J. Davidson, and Vikas Singh. 2014. Mul-
tivariate General Linear Models (MGLM) on Riemannian Manifolds with Ap-
plications to Statistical Analysis of Diffusion Weighted Images. In CVPR. IEEE
Computer Society, 2705–2712.

[56] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. 2020. Puzzle Mix: Exploiting
Saliency and Local Statistics for Optimal Mixup. In ICML. PMLR, 5275–5285.

[57] John M. Lee. 2018. Introduction to Riemannian Manifolds. Springer International
Publishing.

[58] Xiaoxiao Li, Nicha C. Dvornek, Yuan Zhou, Juntang Zhuang, Pamela Ventola,
and James S. Duncan. 2019. Graph Neural Network for Interpreting Task-fMRI
Biomarkers. In MICCAI.

[59] Xiaoxiao Li, Yuan Zhou, Siyuan Gao, Nicha Dvornek, Muhan Zhang, Juntang
Zhuang, Shi Gu, Dustin Scheinost, Lawrence Staib, Pamela Ventola, et al. 2021.
BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. Med-

ical Image Analysis (2021).
[60] Zimeng Li, Shichao Zhu, Bin Shao, Xiangxiang Zeng, Tong Wang, and Tie-

Yan Liu. 2023. DSN-DDI: an accurate and generalized framework for drug–
drug interaction prediction by dual-view representation learning. Briefings in
Bioinformatics 1 (2023).

[61] Qixiang Lin, Salman Shahid, Antoine Hone-Blanchet, Shuai Huang, Junjie Wu,
Aditya Bisht, David Loring, Felicia Goldstein, Allan Levey, Bruce Crosson, et al.
2023. Magnetic resonance evidence of increased iron content in subcortical
brain regions in asymptomatic Alzheimer’s disease. Human Brain Mapping

(2023).
[62] Sikun Lin, Shuyun Tang, Scott T Grafton, and Ambuj K Singh. 2022. Deep

Representations for Time-varying Brain Datasets. In KDD. 999–1009.
[63] Linghui Meng, Jin Xu, Xu Tan, Jindong Wang, Tao Qin, and Bo Xu. 2021.

Mixspeech: Data augmentation for low-resource automatic speech recogni-
tion. In ICASSP 2021. IEEE, 7008–7012.

[64] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svo-
boda, and Michael M. Bronstein. 2017. Geometric Deep Learning on Graphs
and Manifolds Using Mixture Model CNNs. In CVPR. 5425–5434.

[65] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum computation and

quantum information (10th anniversary ed ed.). Cambridge University Press.
[66] Paola Paci, Giulia Fiscon, Federica Conte, Rui-Sheng Wang, Lorenzo Farina,

and Joseph Loscalzo. 2021. Gene co-expression in the interactome: moving
from correlation toward causation via an integrated approach to disease module
discovery. NPJ systems biology and applications 1 (2021), 1–11.

[67] Yue-Ting Pan, Jing-Lun Chou, and Chun-Shu Wei. 2022. MAtt: A Manifold
Attention Network for EEG Decoding. NeurIPS (2022).

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS. 8024–8035.

[69] Xavier Pennec. 2009. Statistical Computing on Manifolds: From Riemannian

Geometry to Computational Anatomy. Springer Berlin Heidelberg, 347–386.
[70] Daniel A. Roberts. 2022. The principles of deep learning theory: an effective theory

approach to understanding neural networks. Cambridge University Press.
[71] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In Proc.

of ICLR. OpenReview.net.
[72] Takashi Sakai. 1996. Riemannian Manifolds.
[73] Theodore D. Satterthwaite, Mark A. Elliott, Kosha Ruparel, James Loughead,

Karthik Prabhakaran, Monica E. Calkins, Ryan Hopson, Chad Jackson, Jack
Keefe, Marisa Riley, Frank D. Mentch, Patrick Sleiman, Ragini Verma, Christos
Davatzikos, Hakon Hakonarson, Ruben C. Gur, and Raquel E. Gur. 2014. Neu-
roimaging of the Philadelphia Neurodevelopmental Cohort. NeuroImage (2014),
544–553.

[74] John Shawe-Taylor and Nello Cristianini. 2004. Kernel methods for pattern

analysis. Cambridge University Press.
[75] Sean L Simpson, F DuBois Bowman, and Paul J Laurienti. 2013. Analyzing

complex functional brain networks: fusing statistics and network science to
understand the brain. Statistics Surveys (2013), 1.

[76] Stephen M. Smith, Karla L. Miller, Gholamreza Salimi-Khorshidi, Matthew Web-
ster, Christian F. Beckmann, Thomas E. Nichols, Joseph D. Ramsey, and Mark W.
Woolrich. 2011. Network modelling methods for FMRI. NeuroImage (2011).

[77] Yoon-Je Suh and Byung Hyung Kim. 2021. Riemannian Embedding Banks for
Common Spatial Patterns with EEG-based SPD Neural Networks. In AAAI.
854–862.

[78] Yann Thanwerdas and Xavier Pennec. 2023. O(n)-invariant Riemannian metrics
on SPD matrices. Linear Algebra Appl. (2023), 163–201.

[79] Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, and Yannis Avrithis.
2022. AlignMixup: Improving Representations By Interpolating Aligned Fea-
tures. In CVPR. 19174–19183.

[80] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold Mixup: Better Represen-
tations by Interpolating Hidden States. In Proc. of ICML. PMLR, 6438–6447.

[81] Shiyu Wang, Guangji Bai, Qingyang Zhu, Zhaohui Qin, and Liang Zhao. 2023.
Domain Generalization Deep Graph Transformation. arXiv:2305.11389 [cs.LG]

[82] Shiyu Wang, Xiaojie Guo, Xuanyang Lin, Bo Pan, Yuanqi Du, Yinkai Wang,
Yanfang Ye, Ashley Petersen, Austin Leitgeb, Saleh Alkhalifa, Kevin Minbiole,
William M. Wuest, Amarda Shehu, and Liang Zhao. 2022. Multi-objective Deep
Data Generation with Correlated Property Control. In NeurIPS.

[83] Yikai Wang, Jian Kang, Phebe B. Kemmer, and Ying Guo. 2016. An Efficient
and Reliable Statistical Method for Estimating Functional Connectivity in Large
Scale Brain Networks Using Partial Correlation. Frontiers in Neuroscience (2016).

[84] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup
for node and graph classification. In the Web Conference. 3663–3674.

[85] Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al. 2021.
Graphmixup: Improving class-imbalanced node classification on graphs by
self-supervised context prediction. ArXiv preprint (2021).

[86] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proc. of ICLR. OpenReview.net.

[87] Ran Xu, Yue Yu, Hejie Cui, Xuan Kan, Yanqiao Zhu, Joyce Ho, Chao Zhang, and
Carl Yang. 2023. Neighborhood-Regularized Self-Training for Learning with
Few Labels. In AAAI Conference on Artificial Intelligence.

[88] Ran Xu, Yue Yu, Joyce C Ho, and Carl Yang. 2023. Weakly-Supervised Scientific
Document Classification via Retrieval-Augmented Multi-Stage Training. In
SIGIR.

[89] Ran Xu, Yue Yu, Chao Zhang, Mohammed K Ali, Joyce C Ho, and Carl Yang.
2022. Counterfactual and factual reasoning over hypergraphs for interpretable
clinical predictions on ehr. In Machine Learning for Health. PMLR, 259–278.

[90] Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai
Koutra. 2019. GroupINN: Grouping-based Interpretable Neural Network-based
Classification of Limited, Noisy Brain Data. In KDD.

[91] Yi Yang, Hejie Cui, and Carl Yang. 2023. PTGB: Pre-Train GraphNeural Networks
for Brain Network Analysis. In The Conference on Health, Inference, and Learning.

[92] Yi Yang, Yanqiao Zhu, Hejie Cui, Xuan Kan, Lifang He, Ying Guo, and Carl Yang.
2022. Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning.
In KDD ’22 (Washington DC, USA). New York, NY, USA, 4743–4751.

[93] Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, and Chelsea Finn. 2022.
C-Mixup: Improving Generalization in Regression. In NeurIPS.

[94] Özgür Yeniay. 2005. Penalty Function Methods for Constrained Optimization
with Genetic Algorithms. Mathematical and Computational Applications (2005).

[95] Kisung You and Hae-Jeong Park. 2022. Geometric learning of functional brain
network on the correlation manifold. Scientific Reports (2022), 1–13.

[96] Haiyuan Yu, Philip M Kim, Emmett Sprecher, Valery Trifonov, and Mark Ger-
stein. 2007. The importance of bottlenecks in protein networks: correlation
with gene essentiality and expression dynamics. PLoS computational biology 4
(2007).

[97] Yue Yu, Kexin Huang, Chao Zhang, Lucas M Glass, Jimeng Sun, and Cao Xiao.
2021. SumGNN: multi-typed drug interaction prediction via efficient knowledge
graph summarization. Bioinformatics 18 (2021), 2988–2995.

[98] Yue Yu, Xuan Kan, Hejie Cui, Ran Xu, Yujia Zheng, Xiangchen Song, Yanqiao
Zhu, Kun Zhang, et al. 2022. Learning Task-Aware Effective Brain Connectivity
for fMRI Analysis with Graph Neural Networks. ArXiv preprint (2022).

[99] Yue Yu, Rongzhi Zhang, Ran Xu, Jieyu Zhang, Jiaming Shen, and Chao Zhang.
2022. Cold-start data selection for few-shot language model fine-tuning: A
prompt-based uncertainty propagation approach. ArXiv preprint (2022).

[100] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon
Yoo, and Junsuk Choe. 2019. CutMix: Regularization Strategy to Train Strong
Classifiers With Localizable Features. In ICCV. IEEE, 6022–6031.

[101] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond Empirical Risk Minimization. In Proc. of ICLR. OpenReview.net.

[102] Rongzhi Zhang, Yue Yu, Jiaming Shen, Xiquan Cui, and Chao Zhang. 2023. Local
Boosting for Weakly-supervised Learning. In KDD.

[103] Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. SeqMix: Augmenting Active
Sequence Labeling via Sequence Mixup. In Proc. of EMNLP. Association for
Computational Linguistics, 8566–8579.

[104] Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Xi-
aokang Yang, and Pinyan Lu. 2022. M-Mix: Generating Hard Negatives via
Multi-sample Mixing for Contrastive Learning. In KDD. 2461–2470.

https://arxiv.org/abs/2305.11389


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xuan Kan, Zimu Li, Hejie Cui, Yue Yu, Ran Xu, Shaojun Yu, Zilong Zhang, Ying Guo, and Carl Yang

A COVARIANCE, CORRELATION AND
POSITIVE DEFINITE MATRICES

We provide detailed definitions on covariance, correlation and pos-
itive definite matrices with necessary properties here.
Definition A.1. Let 𝑋 = (𝑋𝑖 ) = (𝑥𝑖𝑘 ) with 𝑖 = 1, ..., 𝑛 and 𝑘 =
1, ..., 𝑡 be 𝑡-dimensional vectors of 𝑛 variables. The corresponding
covariance matrix Cov(𝑋 ) is defined as

Cov(𝑋 )𝑖 𝑗 =
1
𝑡

(∑︁
𝑘

(𝑥𝑖𝑘 − 𝐸(𝑋𝑖 ))(𝑥 𝑗𝑘 − 𝐸(𝑋 𝑗 ))
)

=𝐸(𝑋𝑖𝑋 𝑗 ) − 𝐸(𝑋𝑖 )𝐸(𝑋 𝑗 ).
(22)

The correlation matrix is normalized as:

Cor(𝑋 ) =diag(
1√︁

Cov(𝑋 )11
, ...,

1√︁
Cov(𝑋 )𝑣𝑣

)·

Cov(𝑋 ) · diag(
1√︁

Cov(𝑋 )11
, ...,

1√︁
Cov(𝑋 )𝑣𝑣

).
(23)

Expressed by matrix entries, we restore the familiar Pearson corre-

lation coefficients:

Cor(𝑋 )𝑖 𝑗 =
Cov(𝑋 )𝑖 𝑗√︁

Cov(𝑋 )𝑖𝑖
√︁
Cov(𝑋 )𝑗 𝑗

. (24)

Remark A.2. It should be noted that tomake the definition of Cor(𝑋 )
valid, Cov(𝑋 )𝑖𝑖 ̸= 0 for all 𝑖 . Since

Cov(𝑋 )𝑖𝑖 = 𝐸(𝑋𝑖𝑋𝑖 ) − 𝐸(𝑋𝑖 )𝐸(𝑋𝑖 ) =
1
𝑡

∑︁
𝑘

𝑥2
𝑖𝑘
−
( 1
𝑡

∑︁
𝑘

𝑥𝑖𝑘

)2
, (25)

the geometric mean inequality says that Cov(𝑋 )𝑖𝑖 vanishes only
when 𝑥𝑖𝑘 are identical, which does not happen in our case.
Definition A.3. A symmetric 𝑛×𝑛matrix 𝑆 is positive semi-definite

if for any vector 𝑢 ∈ R𝑛 , 𝑢𝑇 𝑆𝑢 ≥ 0. Equivalently, this means that
the eigenvalues of 𝑆 are all nonnegative. If the inequality holds
strictly, 𝑆 is said to be positive definite, or symmetric positive definite,
or SPD for short.
Proposition A.4. Covariance and correlation matrices are positive

semi-definite. A necessary condition for them to be positive definite is

that the length of each sample is no less than the number of variables,

i.e., 𝑡 ≥ 𝑛.

Proof. Recall Eq.(22) from Definition A.1, let us consider col-
umn vectors 𝑌𝑘 = (𝑥𝑖𝑘 − 𝐸(𝑋𝑖 )). Then Cov(𝑋 ) = 1

𝑡

∑
𝑘 𝑌𝑘𝑌

𝑇
𝑘
. Given

any vector 𝑢 ∈ R𝑛 ,

𝑢𝑇Cov(𝑋 )𝑢 =
1
𝑡

∑︁
𝑖

𝑢𝑇𝑌𝑘𝑌
𝑇
𝑘
𝑢 =

1
𝑡

∑︁
𝑖

(𝑌𝑇
𝑘
𝑢)2 ≥ 0. (26)

On the other hand, by Eq.(23)

𝑢𝑇Cor(𝑋 )𝑢 = 𝑢𝑇 diag(
1√︁

Cov(𝑋 )11
, ...,

1√︁
Cov(𝑋 )𝑣𝑣

)·

Cov(𝑋 ) · diag(
1√︁

Cov(𝑋 )11
, ...,

1√︁
Cov(𝑋 )𝑣𝑣

)𝑢 (27)

= �̃�𝑇Cov(𝑋 )�̃� ≥ 0.

If {𝑌𝑘 }𝑡𝑘=1 spans the whole vector space R𝑛 , in which case 𝑡
must be no less than 𝑛, then Cov(𝑋 ) is positive definite. Otherwise,
there must be some vector 𝑢 perpendicular to all 𝑌𝑘 , which leads to∑
𝑖 (𝑌𝑇𝑘 𝑢)2 = 0. □

B GEODESICS AND SWELLING EFFECT
We list the geodesic equation and Riemannian distance function
induced from log-Euclidean metric on Sym+(𝑛) here followed by a
rigorous proof on the swelling effect.

Definition B.1. Let Sym+(𝑛) denote the manifold of positive defi-
nite matrices equipped with the log-Euclidean metric. Analytically,
the induced distance function reads

𝑑(𝑆𝑖 , 𝑆 𝑗 ) = ∥log 𝑆𝑖 − log 𝑆 𝑗 ∥, (28)

which measures the distance between different two points 𝑆𝑖 , 𝑆 𝑗 ∈
Sym+(𝑛), with the following geodesic connecting two points:

𝛾 (𝜆) = exp((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ). (29)

Detailed derivation of the geodesics equation can be found in [35,
57, 72].

PropositionB.2 (Swelling Effect). Given arbitrary 𝑆𝑖 , 𝑆 𝑗 ∈ Sym+(𝑛),
then

det ( exp((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ))
≤ det (((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 )) .

(30)

Especially,

min{det 𝑆𝑖 , det 𝑆 𝑗 }
≤ det ( exp((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 )) ≤ max{det 𝑆𝑖 , det 𝑆 𝑗 },

(31)

while det ((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ) would exceed the determinants of

both 𝑆𝑖 and 𝑆 𝑗 as shown in Figure 2 in the main text.

Proof. To prove the first inequality, we note one basic fact of
matrix exponential: det(exp(𝐴)) = exp(Tr𝐴). Thus,

det ( exp((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ))
= exp (Tr((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ))
= exp ((1 − 𝜆)Tr log 𝑆𝑖 ) exp (𝜆Tr log 𝑆 𝑗 ))

=( expTr log 𝑆𝑖 )1−𝜆 ( expTr log 𝑆 𝑗 )𝜆

=(det 𝑆𝑖 )1−𝜆(det 𝑆2)𝜆 .

(32)

Then we make use of the following identity of n-dimensional Gauss-
ian integral: ∫

exp(−1
2
𝒙𝑇 𝑆𝒙)𝑑𝒙 =

√︂
(2𝜋 )𝑛

det 𝑆
, (33)

where 𝒙 ∈ R𝑛 and 𝑆 ∈ Sym+(𝑛). In our case,√︄
(2𝜋 )𝑛

det (((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 ))

=
∫

exp(−1
2
𝒙𝑇 ((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 )𝒙)𝑑𝒙

=
∫ (

exp(−1
2
𝒙𝑇 𝑆𝑖𝒙)

)1−𝜆 (
exp(−1

2
𝒙𝑇 𝑆 𝑗𝒙)

)𝜆
𝑑𝒙

≤
( ∫

exp(−1
2
𝒙𝑇 𝑆𝑖𝒙)𝑑𝒙

)1−𝜆 ( ∫
exp(−1

2
𝒙𝑇 𝑆 𝑗𝒙)𝑑𝒙

)𝜆
=

√︄
(2𝜋 )𝑛

(det 𝑆𝑖 )1−𝜆(det 𝑆 𝑗 )𝜆
.

(34)
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We use Hölder’s inequality in the last step from above, which yields
det ( exp((1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 ))

=(det 𝑆𝑖 )1−𝜆(det 𝑆 𝑗 )𝜆 ≤ det (((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 )).
(35)

To prove the second inequality, let us assume det 𝑆𝑖 ≤ det 𝑆 𝑗
and let 𝑎 = det 𝑆 𝑗/det 𝑆𝑖 ≥ 1. It is straightforward to check that
𝑎𝜆 − 1 ≤ (𝑎 − 1)𝜆 when 0 ≤ 𝜆 ≤ 1. This fact indicates that

(
det 𝑆 𝑗
det 𝑆𝑖

)𝜆 − 1 ≤ (
det 𝑆 𝑗
det 𝑆𝑖

− 1)𝜆

=⇒ (
det 𝑆 𝑗
det 𝑆𝑖

)𝜆 ≤ (
det 𝑆 𝑗
det 𝑆𝑖

)𝜆 + (1 − 𝜆)

=⇒ (det 𝑆𝑖 )1−𝜆(det 𝑆 𝑗 )𝜆 ≤ (det 𝑆𝑖 )(1 − 𝜆) + (det 𝑆 𝑗 )𝜆,

(36)

and finishes the proof. □

C KERNEL REGRESSION ON Sym+(𝑛)
We now present the proof details of Theorem 3.3 from the main
text. To begin with, we introduce a method from heat kernel theory
[5] to generalize to Euclidean Gauss kernel

𝐾𝐸 (𝑆𝑖 , 𝑆) =
1

(2𝜋𝜎2)𝑛2/2
exp(− 1

2𝜎2 ∥𝑆𝑖 − 𝑆 ∥
2) (37)

on Sym+(𝑛) over which our samples are distributed. The notion of
geodesic regression [9, 34] would also become apparent as we move
forward. Let us first consider the following classical heat equation
on Euclidean space( 𝜕

𝜕𝑡
−
∑︁
𝑖

𝜕2

𝜕𝑥2
𝑖

)
𝑓 =

𝜕𝑓

𝜕𝑡
+ ∆𝑓 = 0, (38)

where ∆ = ∑
𝑖

𝜕2

𝜕𝑥2
𝑖

is the Laplacian. A solution 𝑓 (𝑥, 𝑡 ) to this equa-
tion is interpreted as the temperature at position 𝑥 and time 𝑡 .
Substituting 𝑡 = 𝜎2/2 into Eq.(9), it can be check by definition that
the function

𝐾𝑡 (𝑥,𝑦) =
1

(4𝜋𝑡 )𝑛2/2
exp(− 1

4𝑡
∥𝑥 − 𝑦∥2) (39)

solves Eq.(38). It is called the fundamental solution or heat kernel
as any other solutions to Eq.(38) can be written as the convolution
with a certain function 𝑓 (𝑦):

𝑓 (𝑥, 𝑡 ) =
∫
R𝑛×𝑛

𝐾𝑡 (𝑥,𝑦)𝑓 (𝑦)𝑑𝑦. (40)

Based on this fact, it is natural to define Riemannian Gauss ker-
nel as the fundamental solution to heat equation on Riemannian
manifolds. To this end, we need to replace the Laplacian on Eu-
clidean spaces by Laplace–Beltrami operator, still denoted by ∆, on
manifolds. The formal definition of this operator is unnecessary
here and we recommend interested readers to [5, 35] for more de-
tails. It is enough to known its local coordinate expression for our
purpose. Specifically, being different from Euclidean spaces with
a standard and explicit coordinate system, i.e., any vector 𝒙 ∈ R𝑛
can be explicitly expressed by its components (coordinates) 𝑥𝑖 , the
coordinates of points 𝑝 in a manifold𝑀 always need being defined
exclusively depending on the concerned manifold. In the most gen-
eral case, it is only known that manifolds admit local coordinate

parametrizations for its local regions as they resemble Euclidean
spaces. Expressed by any local coordinates,

∆𝑓 =
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗
( 𝜕2 𝑓

𝜕𝑥2
𝑖

− Γ𝑘𝑖 𝑗
𝜕𝑓

𝜕𝑥𝑘

)
(41)

where 𝑔𝑖 𝑗 , Γ𝑘
𝑖 𝑗
are called dual metric and Christoffel symbols and

are all determined by the Riemannian metric [57, 72]. Now we
wish to analyze the heat equation expressed by local coordinates.
However due to its intricate form involving the Riemannian metric,
it is generally impossible to solve the equation analytically. Even
though, the following theorem is established in heat kernel theory
using advanced tools from differential geometry:

Theorem C.1. [5] Let𝑀 be a complete Riemannian manifold, then

there exists a function 𝐾𝑡 (𝑝, 𝑞), called heat kernel, with the following

properties

(1) 𝐾𝑡 (𝑝, 𝑞) = 𝐾𝑡 (𝑞, 𝑝) for all 𝑝, 𝑞 ∈ 𝑀 .

(2) lim𝑡→0 𝐾𝑡 (𝑝, 𝑞) equals the Dirac delta function 𝛿𝑥 (𝑦).
(3) 𝐾𝑡 (𝑝, 𝑞) is positive definite and solves the heat equation.
(4) 𝐾𝑡 (𝑝, 𝑞) =

∫
𝑀
𝐾𝑡−𝑠 (𝑝, 𝑝′)𝐾𝑠 (𝑝′, 𝑞)𝑑𝑝′ for any 𝑠 > 0.

We are only interested in the third property as its confirms that
the heat kernel truly determines a feature map from Sym+(𝑛) into
a higher dimensional feature space [74]. Let 𝒚 = (𝑦𝑖 ) denote the
column vector consisting of training data labels, let 𝑲

𝑆
denote

the column vector consisting of 𝐾𝑅 (𝑆𝑖 , 𝑆) and let 𝐺 = (𝐾𝑅 (𝑆𝑖 , 𝑆 𝑗 )
denote the kernel matrix evaluated by 𝐾𝑅 on the data set. Then the
predictor function regressed through kernel ridge regression is

�̃�(𝑆) = 𝒚𝑇𝐺−1𝑲
𝑆
. (42)

As a reminder, if det𝐺 = 0 (when does not happen here since the
kernel function is positive definite), a regularization 𝜁 ≥ 0 can be
chosen as a trade-off between weights and square errors when op-
timizing the regression. The log-Euclidean metric is now explicitly
used in evaluating 𝑲

𝑆
as well as 𝐺 . On the other hand, a vanilla

geodesic regression could be intuitively treat as the multi-linear
regression on manifold with the Riemannian metric substituting
for the Euclidean metric, which is fairly easy to deal with when we
have a coordinate system and this is what we are going to do in the
following proof.

Theorem C.2. For Sym
+(𝑛) with log-Euclidean metric and estima-

tors �̃� obtained with either geodesic regression or Gaussian kernel

regression on samples. Augmented data from Riemannian geodesics

bear the mean square error no more than those from straight lines.

Proof. We first note the fact that the exponential and logarithm
functions

exp : Sym(𝑛)→ Sym+(𝑛), log : Sym+(𝑛)→ Sym(𝑛) (43)

are isometries between Sym+(𝑛) and Sym(𝑛). That is: (𝑎) they are
bijective and (𝑏) preserve the Riemannian distance functions:

∥𝐻𝑖 − 𝐻 𝑗 ∥= 𝑑(exp𝐻𝑖 , exp𝐻 𝑗 ), 𝑑(𝑆𝑖 , 𝑆𝑖 ) = ∥log 𝑆𝑖 − log 𝑆 𝑗 ∥ (44)

for any 𝑆𝑖 , 𝑆 𝑗 ∈ Sym+(𝑛) and any 𝐻𝑖 , 𝐻 𝑗 ∈ Sym(𝑛). A detailed
proof on the RHS equation from can be found in [35] and with
the bijectivity of exp and log, we obtain the LHS equation from
above. Besides, being defined as collection of all symmetric 𝑛 × 𝑛
matrices, Sym(𝑛) is an 1

2𝑛(𝑛 − 1)-dimensional Euclidean space with
a standard coordinate system introduced above. Combining with
the logarithm function log : Sym+(𝑛)→ Sym(𝑛), then we obtain a
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coordinate system for Sym+(𝑛) within which we can express the
heat equation Eq.(38) explicitly.

Since log is an isometry and since Sym(𝑛) is a Euclidean space,
as a basic result in Riemannian geometry, the Christoffel symbols
Γ𝑘
𝑖 𝑗
in Eq.(41) vanishes [57] in the defined coordinate system and

hence the Laplace–Beltrami operator degenerates to the common
Laplacian. As a result, the fundamental solution is exactly Eq.(39)
expressed by the coordinates. After taking the inverse map exp, the
Euclidean distance is replaced by Riemannian distance in Eq.(39).
Hence,

𝐾𝑅 (𝑆𝑖 , 𝑆) =
1

(2𝜋𝜎2)
𝑛(𝑛−1)

4

exp
(
− 1

2𝜎2𝑑(𝑆𝑖 , 𝑆)2
)
, (45)

is the heat kernel on Sym+(𝑛) with the property being positive
definite by Theorem C.1.

Recall that the Riemannian geodesic of log-Euclidean metric is

𝛾 (𝜆) = 𝑆 = exp
(
(1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗

)
. (46)

Its coordinate representations is then

log(𝛾 (𝜆)) = (1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 , (47)

which is a straight line connecting log 𝑆𝑖 and log 𝑆 𝑗 ∈ Sym(𝑛). As a
contrary, the coordinate representation of

𝜂(𝜆) = 𝑆 ′ = (1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 (48)

is highly curved as

log(𝜂(𝜆)) =
(
log(1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗

)
. (49)

Since Sym(𝑛) is an Euclidean space and since we verified above
that the function log is an isometry, conducting geodesic regression
for the samples {(𝑆𝑖 , 𝑦𝑖 )|𝑖 = 1, ..., 𝑁 } is merely solving the linear
model of {(log 𝑆𝑖 , 𝑦𝑖 )|𝑖 = 1, ..., 𝑁 }. Since the total sample number
𝑁 in our case is less than the dimension of the ambient Euclidean
space 𝑛2, the optimal solution is just a hyperplane encompassing all
samples as well as those synthesized via Eq.(47). However, curves
like Eq.(49) are manifestly deviated from the regression hyperplane
which leads to large square loss.

To verify the case involving Gaussian kernel, we make use of
the following operator inequalities [12]:

log((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 ) ≥ (1 − 𝜆) log 𝑆𝑖 + 𝜆 log 𝑆 𝑗 . (50)

Intuitively, the logarithm is a concave function on (0, +∞), which is
generalized to hold in the setting of positive semidefinite matrices
with 𝐴 ≥ 𝐵 meaning 𝐴 − 𝐵 is positive semidefinite. For simplicity,
we only analyze Eq.(42) for a pair of samples 𝑆𝑖 , 𝑆 𝑗 as an augmented
sample 𝑆 is coined in this way through our mixup method. In statis-
tics, penalty functions [94] can be employed weaken the influence
of other samples and achieve this effect. With these preparation,

�̃�(𝑆) = 𝒚𝑇𝐺−1𝑲𝑆 = (𝑦𝑖 , 𝑦 𝑗 )
(
𝐾𝑅 (𝑆𝑖 , 𝑆𝑖 ) 𝐾𝑅 (𝑆𝑖 , 𝑆 𝑗 )
𝐾𝑅 (𝑆 𝑗 , 𝑆𝑖 ) 𝐾𝑅 (𝑆𝑖 , 𝑆𝑖 )

)−1 (
𝐾𝑅 (𝑆𝑖 , 𝑆)
𝐾𝑅 (𝑆 𝑗 , 𝑆)

)
=

1
1 − 𝐾2

𝑖 𝑗

(
(𝑦𝑖 − 𝐾𝑖 𝑗𝑦 𝑗 )𝐾𝑖,𝑆 + (𝑦 𝑗 − 𝐾𝑖 𝑗𝑦𝑖 )𝐾𝑗,𝑆 )

)
, (51)

where 𝐾𝑖 𝑗 = exp
(
− 1

2𝜎2𝑑(𝑆𝑖 , 𝑆)2
)
is an abbreviation for the non-

normalized Gaussian distribution of log-Euclidean distance with

𝐾𝑖,𝑆 being denoted analogously. Substituting 𝑆 and 𝑆 ′ from Eq.(46)
and Eq.(48) into the above equation, we then compare the estimators
with 𝑦 = (1 − 𝜆)𝑦𝑖 + 𝜆𝑦 𝑗 directly.

For predictions of 𝑆 , we note that

𝐾𝑖 𝑗 = exp
(
− 1

2𝜎2 ∥log 𝑆𝑖 − log 𝑆 𝑗 ∥
)
, (52)

𝐾
𝑖,𝑆

= exp
(
− 1

2𝜎2 𝜆∥log 𝑆𝑖 − log 𝑆 𝑗 ∥
)

= 𝐾𝜆
𝑖 𝑗 (53)

𝐾
𝑗,𝑆

= exp
(
− 1

2𝜎2 (1 − 𝜆)∥log 𝑆𝑖 − log 𝑆 𝑗 ∥
)

= 𝐾1−𝜆
𝑖 𝑗 (54)

with

�̃�(𝑆) =
1

1 − 𝐾2
𝑖 𝑗

(
𝐾𝜆
𝑖 𝑗 (𝑦𝑖 − 𝐾𝑖 𝑗𝑦 𝑗 ) + 𝐾1−𝜆

𝑖 𝑗 (𝑦 𝑗 − 𝐾𝑖 𝑗𝑦𝑖 ))
)

(55)

being a concave function for 𝜆 ∈ [0, 1]. This can be demonstrated
by examining that the second order derivative

𝑑2�̃�(𝑆(𝜆))
𝑑𝜆2 =

ln2 𝐾𝑖 𝑗

𝐾𝜆
𝑖 𝑗

(1 − 𝐾2
𝑖 𝑗

)

(
(𝐾𝑖 𝑗 − 𝐾2𝜆+1

𝑖 𝑗 )𝑦 𝑗 + (𝐾2𝜆
𝑖 𝑗 − 𝐾

2
𝑖 𝑗 )𝑦𝑖

)
, (56)

which is nonnegative because𝐾𝑖 𝑗 ≤ 1 and𝐾𝑖 𝑗−𝐾2𝜆+1
𝑖 𝑗

, 𝐾2𝜆
𝑖 𝑗
−𝐾2

𝑖 𝑗
≥ 0.

As a result, �̃�(𝑆) ≤ 𝑦. On the other hand,

𝐾
𝑖,𝑆 ′ = exp

(
− 1

2𝜎2 ∥log((1 − 𝜆)𝑆𝑖 − 𝜆𝑆 𝑗 ) − log 𝑆𝑖 ∥
)

(57)

𝐾
𝑗,𝑆 ′ = exp

(
− 1

2𝜎2 ∥log((1 − 𝜆)𝑆𝑖 − 𝜆𝑆 𝑗 ) − log 𝑆 𝑗 ∥
)

(58)

are intricate as the linear combination of matrices ((1 − 𝜆)𝑆𝑖 − 𝜆𝑆 𝑗 )
does not commute with the logarithm. Despite of this difficulty, we
are still above to compare �̃�(𝑆) and �̃�(𝑆 ′) based on their general
expansion in Eq.(51). By (50),

log((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 ) − log 𝑆𝑖 ≥ 𝜆(log 𝑆𝑖 + log 𝑆 𝑗 )
=⇒ ∥log((1 − 𝜆)𝑆𝑖 + 𝜆𝑆 𝑗 ) − log 𝑆𝑖 ∥≥ ∥𝜆(log 𝑆𝑖 + log 𝑆 𝑗 )∥

=⇒ 𝐾
𝑖,𝑆 ′ = exp

(
− 1

2𝜎2 ∥log((1 − 𝜆)𝑆𝑖 − 𝜆𝑆 𝑗 ) − log 𝑆𝑖 ∥
)

≤ exp
(
− 1

2𝜎2 𝜆∥log 𝑆𝑖 − log 𝑆 𝑗 ∥
)

= 𝐾
𝑖,𝑆
.

(59)

The second inequality is due to the fact that the operator norm
∥ - ∥ equals the largest eigenvalue of any positive semidefinite
operator. Similar argument also implies case with 𝑆 𝑗 . Together
with the concavity of �̃�(𝑆), Eq.(51) and the range of our labels, we
conclude that

0 ≤ �̃�(𝑆 ′) ≤ �̃�(𝑆) ≤ 𝑦 =⇒
∑︁

(�̃�(𝑆) − 𝑦)2 ≤ (�̃�(𝑆 ′) − 𝑦)2, (60)

which are finally summed over the samples to show that the square
error of estimation using geodesics is no more than that using
straight lines on Sym+(𝑛). □

Remark C.3. For affine-invariant metric, it has been shown that
the induced Riemannian curvature tensor 𝑅 is nonzero [72, 78] and
hence it is impossible to find coordinate systems within which Γ𝑘

𝑖 𝑗
=

0 [57]. Therefore, the fundamental solution to the heat equation can
never take in the concise form as Eq.(45) and Theorem 3.3 becomes
invalid to appraise the case when using affine-invariant metric.
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Figure 7: Running Time in PNC, ABIDE and TCGA-Cancer. R-
Mixup is the original version of ourmethodwhile R-Mix(Opt)
is the proposed optimized version in Section 3.5.

D RUNNING TIME ON THREE SMALLER
DATASETS

As shown in Figure 7, on the smaller datasets, PNC, ABIDE, and
TCGA-Cancer, there is no significant difference in elapsed time
between the different methods. Notably, the proposed R-Mixup is
magically faster than C-Mixup on the TCGA-Cancer dataset. This is
mainly due to the small node size of TCGA-Cancer, which reduces
the main barrier of the eigenvalue decomposition in R-Mixup, while
the time cost of the sampling operation in the C-Mixup baseline
does not change dynamically with the node size.

E CODE IMPLEMENTATION
1 import torch

2 import numpy as np

3

4 def tensor_log(t):

5 # condition: t is symmetric.

6 s, u = torch.linalg.eigh(t)

7 s[s <= 0] = 1e-8

8 return u @ torch.diag_embed(torch.log(s)) @ u.permute

(0, 2, 1)

9

10 def tensor_exp(t):

11 # condition: t is symmetric.

12 s, u = torch.linalg.eigh(t)

13 return u @ torch.diag_embed(torch.exp(s)) @ u.permute

(0, 2, 1)

14

15 def r_mixup(x, y, alpha =1.0, device='cuda'):

16 if alpha > 0:

17 lam = np.random.beta(alpha , alpha)

18 else:

19 lam = 1

20 batch_size = y.size()[0]

21 index = torch.randperm(batch_size).to(device)

22 x = tensor_log(x)

23 x = lam * x + (1 - lam) * x[index , :]

24 y = lam * y + (1 - lam) * y[index]

25 return tensor_exp(x), y

Listing 1: Python Example

F GCN BACKBONE PERFORMANCE
The performance of models with the GCN backbones can be found
in Table 5.

G CASE STUDY ABOUT ARBITRARILY
INCORRECT LABEL PROBLEM

To verify how R-Mixup migrate the arbitrarily incorrect label prob-
lem, we design the following process:

Algorithm 1 The Measurement of Arbitrarily Incorrect Label
𝑖 ← 𝑛

𝑑𝑣 ← 0
𝑑𝑟 ← 0
while 𝑖 > 0 do

(𝑋1, 𝑦1), (𝑋2, 𝑦2), (𝑋3, 𝑦3) ∼ D𝐴𝐵𝐶𝐷−𝐶𝑜𝑔, where 𝑦1 <

𝑦2 < 𝑦3 ⊲ Randomly sample 3 data points and sorted by 𝑦
𝑤 = 𝑦2−𝑦3

𝑦1−𝑦3
⊲ Ensure𝑤𝑦1 + (1 −𝑤 )𝑦3 = 𝑦2

𝑋𝑣𝑚𝑖𝑥 = 𝑤𝑋1 + (1 −𝑤 )𝑋3
𝑋𝑟𝑚𝑖𝑥 = exp (𝑤 log𝑋1 + (1 −𝑤 ) log𝑋3)
𝑑𝑣+ = | |𝑋𝑣𝑚𝑖𝑥 − 𝑋2 | |1
𝑑𝑟+ = | |𝑋𝑟𝑚𝑖𝑥 − 𝑋2 | |1

end while
𝑑𝑣 = 𝑑𝑣

𝑛

𝑑𝑟 = 𝑑𝑟
𝑛

We set 𝑛 as 1000 and obtain 𝑑𝑣 = 24, 416.04±4, 066.60, 𝑑𝑟 =
22, 622.41±3, 873.05, where the sample distance 𝑑𝑟 from R-Mixup
is significantly smaller (7.3%) than the sample distance 𝑑𝑣 from
V-Mixup. The phenomenon shows our R-Mixup indeed can migrate
the arbitrarily incorrect label problem.
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Table 5: Overall performance comparison based on the GCN backbone. The best results are in bold, and the second best results
are underlined. The ↑ indicates a higher metric value is better and ↓ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE↓ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 78.82±0.62 71.55±0.43 80.85±4.69 59.14±5.66 60.00±4.72 55.09±6.91 55.20±6.18 30.49±6.89 40.83±6.18

V-Mixup 81.47±0.79 73.97±0.79 80.35±3.09 63.63±3.80 61.76±3.25 58.49±6.58 56.40±3.91 38.50±9.22 46.67±11.18
D-Mixup 81.30±0.35 73.67±0.39 80.90±9.48 58.68±6.24 58.43±5.99 60.19±6.58 55.40±6.15 37.67±5.47 50.00±4.17
DropNode 80.77±2.02 73.18±2.09 88.11±10.59 63.65±5.04 61.57±5.16 59.49±4.99 56.60±5.55 29.58±7.69 39.17±10.46
DropEdge 79.98±1.54 72.23±1.37 85.98±2.31 56.61±2.72 56.67±2.89 56.58±6.78 54.80±4.76 39.44±7.72 50.00±7.80
G-Mixup 81.30±1.07 73.90±0.86 81.28±3.46 57.25±3.75 57.45±2.91 62.43±2.94 60.40±3.44 38.64±8.47 49.17±9.03
C-Mixup 81.62±1.65 73.62±1.80 78.86±3.51 60.88±7.24 58.24±7.61 60.22±9.32 57.40±5.32 34.17±11.74 46.67±15.14

R-Mixup 82.85±1.86 75.86±1.88 74.88±2.03 64.39±5.05 62.31±3.32 63.03±5.58 59.67±5.96 44.78±8.64 48.44±8.61

participating sites and a complete listing of the study investigators
can be found at https://abcdstudy.org/consortium_members/.
ABCD consortium investigators designed and implemented the
study and/or provided data but did not necessarily participate in
the analysis or writing of this report. This manuscript reflects the

views of the authors and may not reflect the opinions or views
of the NIH or ABCD consortium investigators. The ABCD data
repository grows and changes over time. The ABCD data used
in this report came from NIMH Data Archive Release 4.0 (DOI
10.15154/1523041). DOIs can be found at https://nda.nih.gov/abcd.

https://abcdstudy.org/consortium_members/
https://nda.nih.gov/abcd
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