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Abstract

In this project, we analyze different approaches for modeling brain networks, ranging
from traditional shallow graph kernel models to modern deep graph neural
networks. Our goal is for these models to aid in the analysis of mental disorders and
diseases such as bipolar disorder, HIV, PTSD, and depression. We adapt different
graph mining techniques for brain networks, statistically and visually analyze the
results, and quantitatively evaluate them in the standard graph classification setting.
We found that deep models (GNNs) outperformed shallow models (kernel methods),
and the most successful model was able to classify HIV patients with 81% accuracy.

Problem Formulation

• The standard graph classification task considers the problem of classifying graphs
into two or more categories; in this project, we perform binary classification on
neuroimaging data to classify patients as either diseased or healthy.

• Our datasets consist of brain networks, represented as weighted, undirected ad-
jacency matrices constructed from fMRI scans. For more details on network
construction, we refer you to Section 3 of a paper by Cui et al. [2].

• Depending on the classification model, we further preprocess the datasets with
various methods, such as threshold rounding.

Graph Kernels & SVM

Our first classification method is a ”shallow” model: computing graph kernels and
plugging them into support vector machines (SVM). We employ three graph ker-
nels: Weisfeiler-Lehman (WL), Weisfeiler-Lehman optimal assignment (WLOA), and
propagation (Prop) kernels. Figure 1 shows a high-level visualization of SVM. For
more details on graph kernels, we refer you to Section 2 of a recent paper proposing
a ”deep” graph kernel framework [6].

Fig. 1: Graph Kernel SVM.

Results

SVM Classification Accuracy
Dataset-Kernel Threshold = 0.5 Optimal Threshold*
HIV-WL (0.2*) 0.59±0.18 0.65±0.17

HIV-WLOA (0.2*) 0.59±0.18 0.64±0.15
HIV-Prop (0.2*) 0.63±0.18 0.66±0.15
BP-WL (0.4*) 0.53±0.14 0.63±0.19

BP-WLOA (0.4*) 0.54±0.15 0.63±0.18
BP-Prop (0.4*) 0.54±0.13 0.60±0.17

The highest mean classification accuracy is highlighted (for ties, we highlight the
accuracy with the lowest standard deviation).

Graph Neural Networks

Our second classification method is a ”deep”model: graph neural networks (GNNs). Specif-
ically, we implement message passing GNNs (MPGNN) using the BrainGB Python package,
which is built on the Pytorch and Pytorch Geometric libraries. Section 4 of the paper present-
ing the MPGNN framework by Cui et al. [2] gives further details on the MPGNN design choices.
Figure 2 visualizes the MPGNN architecture.

Fig. 2: BrainGB Framework. Adapted from p. 2 of [2]

Lastly, we seek to leverage any higher-order information given by graph kernels as well as local
information given by GNNs. To this end, we intend to combine both approaches and benchmark
the performance of graph neural networks that integrate graph kernels on our datasets. Of
particular interest to us are:

• the graph convolution layer (GKC) proposed by Cosmo et al. [1] and

• the kernel graph neural network (KerGNN) proposed by Feng et al. [4].

Figure 3 is a simplified overview of the KerGNN framework.

Fig. 3: KerGNN Framework. Adapted from p. 12 of [4]

Results

BrainGB Classification Performance
Dataset-GNN Accuracy F1 AUC

HIV-GCN (concat) 0.64±0.15 0.59±0.20 0.77±0.20
HIV-GAT (concat) 0.73±0.16 0.71±0.17 0.81±0.19

HIV-GCN (edge concat) 0.71±0.11 0.69±0.12 0.77±0.17
HIV-GAT (edge concat) 0.69±0.18 0.67±0.19 0.73±0.24

BP-GCN (concat) 0.53±0.13 0.51±0.14 0.54±0.16
BP-GAT (concat) 0.53±0.13 0.50±0.13 0.57±0.19

BP-GCN (edge concat) 0.63±0.12 0.61±0.13 0.61±0.17
BP-GAT (edge concat) 0.52±0.17 0.51±0.16 0.59±0.19

The highest AUC is highlighted (this measure is not sensitive to changes in the class distribution).
GCN (graph convolutional network) and GAT (graph attention network) indicate the GNN
implemented in the experiments. Concat and edge concat are different message passing schemes.

Findings and Discussion

• Graph Kernels & SVM

– The mean classification accuracy of both BP and HIV datasets is relatively
consistent for each kernel.

– The WL, WLOA, and propagation kernels iteratively update node labels
based on the node’s local information (e.g., subtrees in the WL kernel).

– From the generally poor performance, we are uncertain whether there is
higher-order information in brain networks useful for classification with
graph kernels.

• Graph Neural Networks

– While GNN’s capture local node information well, they are prone to over-
fitting and lack transparency in their predictions.

– It is clear that GNN’s are effective on the HIV data; however, its poor
performance on the BP data indicates a lack of generalizability.

– For a more thorough analysis on the performance of the BrainGB frame-
work, please refer to [2].

• Dataset Limitations

– Our datasets are prohibitively small for robust model training.
– The BP data shows consistently worse performance than the HIV data. Cui
et al. [3] observes that HIV significantly affects the connectivity within both
the visual network (VN) and default mode network (DMN), while bipolar
disorder mainly affects the bilateral limbic network (BLN).

– Because HIV patients’ data show less connectivity across two sub-networks
and BP patients’ data show less connectivity in only one sub-network, it is
harder to classify BP patients.

– Li et al. [5] found that using multimodal neuroimagery increased their SVM
model’s performance in classifying bipolar disorder, so only utilizing a single
modality (fMRI) rather than both fMRI data and MRI data may also limit
our model’s classification accuracy on the BP dataset.

Future Work

There are many ways to incorporate graph kernels with graph neural networks and
make them more interpretable. For example, we seek to integrate the GKC layer
from [1] into BrainGB’s MPGNN framework. We also hope to test the performance
of KerGNN architecture, illustrated by Figure 3, on our datasets to analyze the
effectiveness of incorporating WL graph kernels into GNN’s message passing process.
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