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Abstract

Stepping from sentence-level to document-
level, the research on relation extraction (RE)
confronts increasing text length and more com-
plicated entity interactions. Consequently, it
is more challenging to encode the key infor-
mation sources—relevant contexts and entity
types. However, existing methods only implic-
itly learn to model these critical information
sources while being trained for RE. As a result,
they suffer the problems of ineffective super-
vision and uninterpretable model predictions.
In contrast, we propose to explicitly teach
the model to capture relevant contexts and
entity types by Supervising and Augmenting
Intermediate Steps (SAIS) for RE. Based on
a broad spectrum of carefully designed tasks,
our proposed SAIS method not only extracts
relations of better quality due to more effec-
tive supervision, but also retrieves the corre-
sponding supporting evidence more accurately
so as to enhance interpretability. By assess-
ing model uncertainty, SAIS further boosts the
performance via evidence-based data augmen-
tation and ensemble inference while reduc-
ing the computational cost. Eventually, SAIS
delivers state-of-the-art RE results on three
benchmarks (DocRED, CDR, and GDA) and
outperforms the runner-up by 5.04% relatively
in F1 score in evidence retrieval on DocRED.1

1 Introduction

Playing a crucial role in the continuing effort
of transforming unstructured text into structured
knowledge, RE (Bach and Badaskar, 2007) seeks
to identify relations between an entity pair based
on a given piece of text. Earlier studies mostly
pay attention to sentence-level RE (Zhang et al.,
2017; Hendrickx et al., 2019) (i.e., the targeting
entity pair co-occur within a sentence) and achieve
promising results (Zhang et al., 2019; Zhou et al.,
2020). Based on an extensive empirical analysis,

1Our code is available at https://github.com/
xiaoyuxin1002/SAIS.

Peng et al. (2020) reveals that textual contexts and
entity types are the major information sources that
lead to the success of prior approaches.

Given that more complicated relations are often
expressed by multiple sentences, recent focus of
RE has been largely shifted to the document level
(Yao et al., 2019; Cheng et al., 2021). Existing
document-level RE methods (Zeng et al., 2020;
Zhou et al., 2021) utilize advanced neural architec-
tures such as heterogeneous graph neural networks
(Yang et al., 2020) and pre-trained language models
(Xu et al., 2021b). However, although documents
typically include longer contexts and more intri-
cate entity interactions, most prior methods only
implicitly learn to encode contexts and entity types
while being trained for RE. As a result, they deliver
inferior and uninterpretable results.

On the other hand, it has been a trend that many
recent datasets support the training of more power-
ful language models by providing multi-task anno-
tations such as coreference and evidence (Yao et al.,
2019; Li et al., 2016; Wu et al., 2019). Therefore,
in contrast to existing methods, we advocate for
explicitly guiding the model to capture textual con-
texts and entity type information by Supervising
and Augmenting Intermediate Steps (SAIS) for RE.
More specifically, we argue that, from the input
document with annotated entity mentions to the
ultimate output of RE, there are four intermediate
steps involved in the reasoning process. Consider
the motivating example in Figure 1:
(1) Coreference Resolution (CR): Although Sen-

tence 0 describes the “citizenship" of “Carl
Linnaeus the Younger" and Sentence 1 dis-
cusses the “father" of “Linnaeus filius", the
two names essentially refer to the same person.
Hence, given a document, we need to first re-
solve various contextual roles represented by
different mentions of the same entity via CR.

(2) Entity Typing (ET): After gathering contex-
tual information from entity mentions, ET reg-

https://github.com/xiaoyuxin1002/SAIS
https://github.com/xiaoyuxin1002/SAIS


Document: Carl Linnaeus the Younger

[0] Carl Linnaeus the Younger, … was a 

Swedish naturalist.

[1] He is known as Linnaeus filius … to 

distinguish from his famous father, the 

systematist Carl Linnaeus.

[2] He was enrolled at the University of 

Uppsala at the age of nine …

[3] In 1763, …, he succeeded his father as 

the head of Practical Medicine at Uppsala.

Relation 

Extraction
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(A, D): eduated_at
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(C, A): father

(D, B): N.A.
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(A, B): [0]

(A, D): [0, 2]
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(D, B): []
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Evidence 
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(A, B): [0]

(A, D): [0, 2, 3]

(C, A): [1]

(D, B): []

Entity 

Typing

Entity A: 

PER

Entity B: 

ORG

Entity C: 

PER

Entity D: 

ORG

Coreference Resolution

Entity A:

Carl Linnaeus the Younger, 

Linnaeus filius

Entity B:

Swedish

Entity C:

Carl Linnaeus

Entity D:

University of Uppsala, Uppsala

Figure 1: Motivating example adapted from DocRED. From the input document with annotated entity mentions to
the RE output, there are four intermediate steps involved in the reasoning process. These steps are complementary
to RE, in the sense that CR, PER, and FER capture textual contexts while ET preserves entity type information.

ularizes entity representations with the cor-
responding type information (e.g., Entity A,
“Linnaeus filius", is of type “PER" (person)).
Within an entity pair, the type information of
the head and tail entities can be used to fil-
ter out impossible relations, as the relation
“year_of_birth" can never appear between two
entities of type “PER", for instance.

(3) Pooled and (4) Fine-grained Evidence Re-
trieval (PER and FER): A unique task for lo-
cating the relevant contexts within a document
for an entity pair with any valid relation is to
retrieve the evidence sentences supporting the
relation. Nonetheless, some entity pairs may
not express valid relations within the given
document (e.g., Entities D and B in the ex-
ample). Meanwhile some entity pairs possess
multiple relations (e.g., Entity A is both “ed-
ucated_at" and an “employee" of Entity D),
each with a different evidence set. Therefore,
we use PER to distinguish entity pairs with
and without valid supporting sentences and
FER to output more interpretable evidence
unique to each valid relation of an entity pair.

In this way, the four intermediate steps are comple-
mentary to RE, in the sense that CR, PER, and FER
capture textual contexts while ET preserves entity
type information. Consequently, by explicitly su-
pervising the model’s outputs in these intermediate
steps via carefully designed tasks, we extract rela-
tions of improved quality.

In addition, based on the predicted evidence, we
filtrate relevant contexts by augmenting specific
intermediate steps with pseudo documents or at-
tention masks. By assessing model confidence,
we apply these two kinds of evidence-based data
augmentation together with ensemble inference,
only when the model is uncertain about its origi-
nal predictions. Eventually, we further boost the
performance with negligible computational cost.

Altogether, our SAIS method achieves state-of-
the-art RE performance on three benchmarks (Do-
cRED (Yao et al., 2019), CDR (Li et al., 2016), and
GDA (Wu et al., 2019)) due to more effective super-
vision and enhances interpretability by improving
the evidence retrieval (ER) F1 score on DocRED
by 5.04% relatively compared to the runner-up.

2 Background

2.1 Problem Formulation

Consider a document d containing sentences Sd =
{si}|Sd|i=1 and entities Ed = {ei}|Ed|i=1 where each en-
tity e is assigned an entity type c ∈ C and ap-
pears at least once in d by its mentions Me =

{mi}|Me|
i=1 . For a pair of head and tail entities

(eh, et), document-level RE aims to predict if any
relation r ∈ R exists between them, based on
whether r is expressed by some pair of eh’s and
et’s mentions in d. Here, C andR are pre-defined
sets of entity and relation types, respectively. More-
over, for (eh, et) and each of their valid relations
r ∈ Rh,t, ER aims to identify the subset Vh,t,r of
Sd that is sufficient to express the triplet (eh, et, r).

2.2 Related Work

Early research efforts on RE (Bach and Badaskar,
2007; Pawar et al., 2017) center around predict-
ing relations for entity pairs at the sentence level
(Zhang et al., 2017; Hendrickx et al., 2019). Many
pattern-based (Califf and Mooney, 1999; Qu et al.,
2018; Zhou et al., 2020) and neural network-based
(Cai et al., 2016; Feng et al., 2018; Zhang et al.,
2019) models have shown impressive results. A re-
cent study (Peng et al., 2020) attributes the success
of these models to their ability to capture textual
contexts and entity type information.

Nevertheless, since more complicated relations
can only be expressed by multiple sentences, there
has been a shift of focus lately towards document-
level RE (Yao et al., 2019; Li et al., 2016; Cheng



et al., 2021; Wu et al., 2019). According to how
an approach models contexts, there are two gen-
eral trends within the domain. Graph-based ap-
proaches (Nan et al., 2020; Wang et al., 2020; Zeng
et al., 2020; Li et al., 2020; Zeng et al., 2021; Xu
et al., 2021c,d; Sahu et al., 2019; Guo et al., 2019)
typically infuse contexts into heuristic-based docu-
ment graphs and perform multi-hop reasoning via
advanced neural techniques. Transformer-based
approaches (Wang et al., 2019; Tang et al., 2020;
Huang et al., 2020; Xu et al., 2021a; Zhou et al.,
2021; Zhang et al., 2021; Xie et al., 2022; Ye et al.,
2020) leverage the strength of pre-trained language
models (Devlin et al., 2019; Liu et al., 2019) to
encode long-range contextual dependencies. How-
ever, most prior methods only implicitly learn to
capture contexts while being trained for RE. Con-
sequently, they experience ineffective supervision
and uninterpretable model predictions.

On the contrary, we propose to explicitly teach
the model to capture textual contexts and entity
type information via a broad spectrum of carefully
designed tasks. Furthermore, we boost the RE
performance by ensembling the results of evidence-
augmented inputs. Compared to EIDER (Xie et al.,
2022), we leverage the more precise and inter-
pretable FER for retrieving evidence and present
two different kinds of evidence-based data augmen-
tation. We also save the computational cost by
applying ensemble learning only to the uncertain
subset of relation triplets. As a result, our SAIS
method not only enhances the RE performance due
to more effective supervision, but also retrieves
more accurate evidence for better interpretability.

3 Supervising Intermediate Steps

This section describes the tasks that explicitly su-
pervise the model’s outputs in the four intermediate
steps. Together they complement the quality of RE.

3.1 Document Encoding

Given the promising performance of pre-trained
language models (PLM) in various downstream
tasks, we resort to PLM for encoding the docu-
ment. More specifically, for a document d, we
insert a classifier token “[CLS]” and a separator
token “[SEP]” at the start and end of each sentence
s ∈ Sd, respectively. Each mention m ∈ Md is
wrapped with a pair of entity markers “*” (Zhang
et al., 2017) to indicate the position of entity men-
tions. Then we feed the document, with alternating

segment token indices for each sentence (Liu and
Lapata, 2019), into a PLM:

H,A = PLM(d), (1)

to obtain the token embeddings H ∈ RNd×H and
the cross-token attention A ∈ RNd×Nd . A is the
average of the attention heads in the last trans-
former layer (Vaswani et al., 2017) of the PLM.
Nd is the number of tokens in d, and H is the
embedding dimension of the PLM. We take the em-
bedding of “*" or “[CLS]" before each mention or
sentence as the corresponding mention or sentence
embedding, respectively.

3.2 Coreference Resolution (CR)
As a case study, it is reported by Yao et al. (2019)
that around 17.6% of relation instances in DocRED
require coreference reasoning. Hence, after encod-
ing the document, we resolve the repeated contex-
tual mentions to an entity via CR. In particular, con-
sider a pair of mentions (mi,mj), we determine the
probability of whether mi and mj refer to the same
entity by passing their corresponding embeddings
mi and mj through a group bilinear layer (Zheng
et al., 2019). The layer splits the embeddings into
K equal-sized groups ([m1

i , . . . ,m
K
i ] = mi, sim-

ilar for mj) and applies bilinear with parameter
Wk

m ∈ RH/K×H/K within each group:

PCR
i,j = σ

(
K∑
k=1

mk>
i Wk

mm
k
j + bm

)
, (2)

where bm ∈ R and σ is the sigmoid function.
Since most mention pairs refer to distinct entities

(each entity has only 1.34 mentions on average in
DocRED), we adopt the focal loss (Lin et al., 2017)
on top of the binary cross-entropy to mitigate this
extreme class imbalance:

`CR
d = −

∑
mi∈Md

∑
mj∈Md

(
yCR
i,j (1− PCR

i,j )
γCR

logPCR
i,j

+(1− yCR
i,j )(PCR

i,j )
γCR

log(1− PCR
i,j )
)
wCR
i,j , (3)

where yCR
i,j = 1 if mi and mj refer to the same en-

tity, and 0 otherwise. Class weight wCR
i,j is inversely

proportional to the frequency of yCR
i,j , and γCR is a

hyperparameter.

3.3 Entity Typing (ET)
In a pair of entities, the type information can be
used to filter out impossible relations. Therefore,



we regularize entity embeddings via ET. More
specifically, we first derive the embedding of an
entity e by integrating the embeddings of its men-
tionsMe via logsumexp pooling (Jia et al., 2019):
e = log

∑
m∈Me

exp(m). Since entity e could
appear either at the head or tail in an entity pair, we
distinguish between the head entity embedding e′h
and the tail entity embedding e′t via two separate
linear layers:

e′h = Wehe+ beh , e′t = Wete+ bet , (4)

where Weh ,Wet ∈ RH×H and beh ,bet ∈ RH .
However, no matter where e appears in an entity

pair, its head and tail embeddings should always
preserve e’s type information. Hence, we calculate
the probability of which entity type e belongs to by
passing e′ν for ν ∈ {h, t} through a linear layer

PET
e = ς(Wc tanh(e

′
ν) + bc) , (5)

followed by the multi-class cross-entropy loss:

`ET
d = −

∑
e∈Ed

∑
c∈C

yET
e,c logPET

e,c , (6)

where Wc ∈ R|C|×H , bc ∈ R|C|, and ς is the
softmax function. yET

e,c = 1 if e is of entity type c,
and 0 otherwise.

3.4 Pooled Evidence Retrieval (PER)
To further capture textual contexts, we explicitly
guide the attention in the PLM to the support-
ing sentences of each entity pair via PER. That
is, we want to identify the pooled evidence set
Vh,t = ∪r∈Rh,t

Vh,t,r in d that is important to an
entity pair (eh, et), regardless of the specific rela-
tion expressed by a particular sentence s ∈ Vh,t. In
this case, given (eh, et), we first compute a unique
context embedding ch,t based on the cross-token
attention from Equation 1:

ch,t = H>
Ah ⊗At

1>(Ah ⊗At)
. (7)

Here, ⊗ is the element-wise product. Ah is eh’s
attention to all the tokens in the document (i.e.,
the average of eh’s mention-level attention). Sim-
ilar for At. Then we measure the probability of
whether a sentence s ∈ Sd is part of the pooled
supporting evidence Vh,t by passing (eh, et)’s con-
text embedding ch,t and sentence s’ embedding s
through a group bilinear layer:

PPER
h,t,s = σ

(
K∑
k=1

ck>h,tW
k
ps
k + bp

)
, (8)

where Wk
p ∈ RH/K×H/K and bp ∈ R.

Again, we face a severe class imbalance here,
since most entity pairs (97.1% in DocRED) do not
have valid relations or supporting evidence. As a
result, similar to Section 3.2, we also use the focal
loss with the binary cross-entropy:

`PER
d =−

∑
eh∈Ed

∑
et∈Ed

∑
s∈Sd

(
yPER
h,t,s(1− PPER

h,t,s)
γPER

logPPER
h,t,s + (1− yPER

h,t,s)(PPER
h,t,s)

γPER

log(1− PPER
h,t,s)

)
wPER
h,t,s , (9)

where yPER
h,t,s = 1{s ∈ Vh,t}, class weight wPER

h,t,s

is inversely proportional to the frequency of yPER
h,t,s,

and γPER is a hyperparameter.

3.5 Fine-grained Evidence Retrieval (FER)

In addition to PER, we would like to further refine
Vh,t, since an entity pair could have multiple valid
relations and, correspondingly, multiple sets of ev-
idence. As a result, we explicitly train the model
to recover contextual evidence unique to a triplet
(eh, et, r) via FER for better interpretability. More
specifically, given (eh, et, r), we first generate a
triplet embedding lh,t,r by merging eh, et, ch,t,
and r’s relation embedding r via a linear layer:

lh,t,r = tanh(Wl[eh‖et‖ch,t‖r] + bl) , (10)

where Wl ∈ RH×4H , bl ∈ RH , ‖ represents con-
catenation, and r is initialized from the embedding
matrix of the PLM.

Similarly, we use a group bilinear layer to assess
the probability of whether a sentence s ∈ Sd is
included in the fine-grained evidence set Vh,t,r:

PFER
h,t,r,s = σ

(
K∑
k=1

lk>h,t,rW
k
fs
k + bf

)
, (11)

where Wk
f ∈ RH/K×H/K and bf ∈ R.

Since FER only involves entity pairs with valid
relations, the class imbalance is milder here than
in PER. Hence, let yFER

h,t,r,s = 1{s ∈ Vh,t,r}, we
deploy the standard binary cross-entropy loss:

`FER
d =−

∑
ei∈Ed

∑
ej∈Ed

∑
r∈Rh,t

∑
s∈Sd

(
yFER
h,t,r,s logPFER

h,t,r,s

+(1− yFER
h,t,r,s) log(1− PFER

h,t,r,s)
)
. (12)



3.6 Relation Extraction (RE)
Based on the four complementary tasks introduced
above, for an entity pair (eh, et), we encode rele-
vant contexts in ch,t and preserve entity type infor-
mation in e′h and e′t. Ultimately, we acquire the
contexts needed by the head and tail entities from
ch,t via two separate linear layers:

c′h = Wchch,t + bch , c
′
t = Wctch,t + bct , (13)

where Wch ,Wct ∈ RH×H and bch ,bct ∈ RH ,
and then combine them with the type information
to generate the head and tail entity representations:

e′′h = tanh(e′h + c′h), e
′′
t = tanh(e′t + c′t). (14)

Next, a group bilinear layer is utilized to calcu-
late the logit of how likely a relation r ∈ R exists
between eh and et:

LRE
h,t,r =

K∑
k=1

e′′k>h Wk
re
′′k
t + br , (15)

where Wk
r ∈ RH/K×H/K and br ∈ R.

As discussed earlier, only a small portion of en-
tity pairs have valid relations, among which multi-
ple relations could co-exist between a pair. There-
fore, to deal with the problem of multi-label imbal-
anced classification, we follow Zhou et al. (2021)
by introducing a threshold relation class TH and
adopting an adaptive threshold loss:

`RE
d =−

∑
eh∈Ed

∑
et∈Ed ∑

r∈Ph,t

log

(
expLRE

h,t,r∑
r′∈Ph,t∪{TH} LRE

h,t,r′

)

+ log

(
expLRE

h,t,TH∑
r′∈Nh,t∪{TH} LRE

h,t,r′

)]
. (16)

In essence, we aim to increase the logits of valid
relations Ph,t and decrease the logits of invalid
relations Nh,t, both relative to TH.

Overall, with the goal of improving the model’s
RE performance by better capturing entity type in-
formation and textual contexts, we have designed
four tasks to explicitly supervise the model’s out-
puts in the corresponding intermediate steps. To
this end, we visualize the entire pipeline SAISO

All
in Appendix A and integrate all the tasks by mini-
mizing the multi-task learning objective

` =
∑

d∈Dtrain

(
`RE
d +

∑
Task

ηTask`Task
d

)
, (17)

where Task ∈ {CR, ET, PER, FER}. ηTask’s are
hyperparameters balancing the relative task weight.

During inference with the current pipeline
SAISO

All, we predict if a triplet (eh, et, r) is valid
(i.e., if relation r exists between entity pair (eh, et))
by checking if its logit is larger than the correspond-
ing threshold logit (i.e., LRE

h,t,r > LRE
h,t,TH). For each

predicted triplet (eh, et, r), we assess if a sentence
s belongs to the evidence set Vh,t,r by checking if
PFER
h,t,r,s > αFER where αFER is a threshold.

4 Augmenting Intermediate Steps

We further improve RE after training the pipeline
SAISO

All by augmenting the intermediate steps in
SAISO

All with the retrieved evidence from FER.

4.1 When to Augment Intermediate Steps

The evidence predicted by FER is unique to each
triplet (eh, et, r). However, consider the total num-
ber of all possible triplets (around 40 million in
the develop set of DocRED), it is computation-
ally prohibitive to augment the inference result of
each triplet with individually predicted evidence.
Instead, following the idea of selective prediction
(El-Yaniv et al., 2010), we identify the triplet subset
U for which the model is uncertain about its rela-
tion predictions with the original pipeline SAISO

All.
More specifically, we set the model’s confidence
for (eh, et, r) as LO

h,t,r = LRE
h,t,r − LRE

h,t,TH. Then,
the uncertain set U consists of triplets with the
lowest θ% absolute confidence |LO

h,t,r|. Conse-
quently, we reject the original relation predictions
for (eh, et, r) ∈ U and apply evidence-based data
augmentation to enhance the performance (more
details in Section 4.2).

To determine the rejection rate θ% (note that
θ% is NOT a hyperparameter), we first sort all the
triplets in the develop set based on their absolute
confidence |LO

h,t,r|. When θ% increases, the risk
(i.e., inaccuracy rate) of the remaining triplets that
are not in U is expected to decrease, and vice versa.
On the one hand, we wish to reduce the risk for
more accurate relation predictions; on the other
hand, we want a low rejection rate so that data
augmentation on a small rejected set incurs little
computational cost. To balance this trade-off, we
set θ% as the rate that achieves the minimum of
risk2 + rejection rate2. As shown in Figure 2, we
find θ% ≈ 4.6% in the develop set of DocRED. In
practice, we can further limit the maximum number
of rejected triplets per entity pair. By setting it as
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where Rejection Rate θ% ≈ 4.6%

Figure 2: Trade-off between risk and rejection rate on
the develop set of DocRED.

10 in experiments, we reduce the size of U to only
1.5% of all the triplets in the DocRED develop set.

4.2 How to Augment Intermediate Steps

Consider a triplet (eh, et, r) ∈ U . We first assume
its validity and calculate the probability PFER

h,t,r,s of a
sentence s being part of Vh,t,r based on Section 3.5.
Then in a similar way to how LO

h,t,r is generated
with SAISO

All, we design two types of evidence-
based data augmentation as follows:
Pseudo Document-based (SAISD

All): Construct
a pseudo document using sentences with
PFER
h,t,r,s > αFER and feed it into the original

pipeline to get the confidence LD
h,t,r.

Attention Mask-based (SAISM
All): Formulate a

mask PFER
h,t,r ∈ RNd based on PFER

h,t,r,s and
modify the context embedding to ch,t =

H>
Ah⊗At⊗PFER

h,t,r

1>(Ah⊗At⊗PFER
h,t,r)

. Maintain the rest of

the pipeline and get the confidence LM
h,t,r.

Following Xie et al. (2022), we ensemble LD
h,t,r,

LM
h,t,r, and the original confidence LO

h,t,r with a
blending parameter τr ∈ R (Wolpert, 1992) for
each relation r ∈ R as

PB
h,t,r = σ(LB

h,t,r)

= σ(LO
h,t,r + LD

h,t,r + LM
h,t,r − τr). (18)

These parameters are trained by minimizing the
binary cross-entropy loss on U of the develop set:

`B = −
∑

(eh, et, r)∈U

(
yRE
h,t,r logPB

h,t,r

+ (1−yRE
h,t,r) log(1− PB

h,t,r)
)
, (19)

where yRE
h,t,r = 1 if (eh, et, r) is valid, and 0 oth-

erwise. When making relation predictions for

(eh, et, r) ∈ U , we check whether its blended con-
fidence is positive (i.e., LB

h,t,r > 0).
In this way, we improve the RE performance

when the model is uncertain about its original pre-
dictions and save the computational cost when the
model is confident. The overall steps for evidence-
based data augmentation and ensemble inference
SAISB

All are summarized in Appendix B. These
steps are executed only after the training of SAISO

All
and, therefore, adds negligible computational cost.

5 Experiments

5.1 Experiment Setup

We evaluate the proposed SAIS method on the
following three document-level RE benchmarks.
DocRED (Yao et al., 2019) is a large-scale crowd-
sourced dataset based on Wikipedia articles. It con-
sists of 97 relation types, seven entity types, and
5,053 documents in total, where each document has
19.5 entities on average. CDR (Li et al., 2016) and
GDA (Wu et al., 2019) are two biomedical datasets
where CDR studies the binary interactions between
disease and chemical concepts with 1,500 docu-
ments and GDA studies the binary relationships
between gene and disease with 30,192 documents.
We follow Christopoulou et al. (2019) for splitting
the train and develop sets.

We run our experiments on one Tesla A6000
GPU and carry out five trials with different seeds
to report the mean and one standard error. Based
on Huggingface (Wolf et al., 2019), we apply cased
BERT-base (Devlin et al., 2019) and RoBERTa-
large (Liu et al., 2019) for DocRED and cased
SciBERT (Beltagy et al., 2019) for CDR and GDA.
The embedding dimensionH of BERT or SciBERT
is 768, and that of RoBERTa is 1,024. The number
of groups K in all group bilinear layers is 64.

For the general hyperparameters of language
models, we follow the setting in (Zhou et al., 2021).
The learning rate for fine-tuning BERT is 5e−5,
that for fine-tuning RoBERTa or SciBERT is 2e−5,
and that for training the other parameters is 1e−4.
All the trials are optimized by AdamW (Loshchilov
and Hutter, 2019) for 20 epochs with early stop-
ping and a linearly decaying scheduler (Goyal et al.,
2017) whose warm-up ratio = 6%. Each batch
contains 4 documents and the gradients of model
parameters are clipped to a maximum norm of 1.

For the unique hyperparameters of our method,
we choose 2 from {1, 1.5, 2} for the focal hyper-
parameters γCR and γPER based on the develop



DocRED Dev DocRED Test

Model Relation Evidence Relation Evidence

Ign F1 F1 F1 Ign F1 F1 F1

HeterGSAN-BERTbase (Xu et al., 2021d) 58.13 60.18 - 57.12 59.45 -
GAIN-BERTbase (Zeng et al., 2020) 59.14 61.22 - 59.00 61.24 -
DRN-BERTbase (Xu et al., 2021c) 59.33 61.39 - 59.15 61.37 -
SIRE-BERTbase (Zeng et al., 2021) 59.82 61.60 - 60.18 62.05 -

BERTbase (Wang et al., 2019) - 54.16 - - 53.20 -
E2GRE-BERTbase (Huang et al., 2020) 55.22 58.72 47.14 - - -
SSAN-BERTbase (Xu et al., 2021a) 57.03 59.19 - 56.06 58.41 -
ATLOP-BERTbase (Zhou et al., 2021) 59.22 61.09 - 59.31 61.30 -
DocuNet-BERTbase (Zhang et al., 2021) 59.86 61.83 - 59.93 61.86 -
Eider-BERTbase (Xie et al., 2022) 60.51 62.48 50.71 60.42 62.47 51.27

SAISB
All-BERTbase (Ours) 59.98 ± 0.13 62.96 ± 0.11 53.70 ± 0.21 60.96 62.77 52.88

RoBERTalarge (Ye et al., 2020) 57.19 59.40 - 57.74 60.06 -
SSAN-RoBERTalarge (Xu et al., 2021a) 60.25 62.08 - 59.47 61.42 -
E2GRE-RoBERTalarge (Huang et al., 2020) - - - 60.30 62.50 50.50
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.32 63.18 - 61.39 63.40 -
DocuNet-RoBERTalarge (Zhang et al., 2021) 62.23 64.12 - 62.39 64.55 -
Eider-RoBERTalarge (Xie et al., 2022) 62.34 64.27 52.54 62.85 64.79 53.01

SAISB
All-RoBERTalarge (Ours) 62.23 ± 0.15 65.17 ± 0.08 55.84 ± 0.23 63.44 65.11 55.67

Table 1: RE and ER results (%) on DocRED. Ign F1 refers to the F1 score excluding the relation instances men-
tioned in the train set. Baselines using BERTbase are separated into the graph-based (upper) and transformer-based
(lower) groups. We report the test scores from the official scoreboard and the baseline scores from the correspond-
ing papers. SAISB

All achieves state-of-the-art performance on both RE and ER. Full details in Appendix C.

set. We also follow Xie et al. (2022) for set-
ting the FER prediction threshold αFER as 0.5
and all the relative task weights ηTask for Task ∈
{CR,ET,PER,FER} as 0.1.

5.2 Quantitative Evaluation

Besides RE, DocRED also suggests to predict
the supporting evidence for each relation instance.
Therefore, we apply SAISB

All to both RE and ER.
We report the results of SAISB

All as well as exist-
ing graph-based and transformer-based baselines
in Table 12 (full details in Appendix C). Generally,
thanks to PLMs’ strength in modeling long-range
dependencies, transformer-based methods perform
better on RE than graph-based methods. More-
over, most earlier approaches are not capable of
ER despite the interpretability ER adds to the pre-
dictions. In contrast, our SAISB

All method not only
establishes a new state-of-the-art result on RE, but
also outperforms the runner-up significantly on ER.

Since neither CDR nor GDA annotates evidence
sentences, we apply SAISO

RE+CR+ET here. It is

2For a fair comparison, we report the scores of SSAN (Xu
et al., 2021a) without being pretrained on an extra dataset.

trained with RE, CR, and ET and infers without
data augmentation. As shown in Table 2 (full de-
tails in Appendix C), our method improves the prior
best RE F1 scores by 2.7% and 1.8% absolutely on
CDR and GDA, respectively. It indicates that our
proposed method can still improve upon the base-
lines even if only part of the four complementary
tasks are annotated and operational.

5.3 Ablation Study

To investigate the effectiveness of each of the four
complementary tasks proposed in Section 3, we
carry out an extensive ablation study on the Do-
cRED develop set by training SAIS with all pos-
sible combinations of those tasks. As shown in
Table 3, without any complementary tasks, the RE
performance of SAIS is comparable to ATLOP
(Zhou et al., 2021) due to similar neural archi-
tectures. When only one complementary task is
allowed, PER is the most effective single task, fol-
lowed by ET. Although FER is functionally anal-
ogous to PER, since FER only involves the small
subset of entity pairs with valid relations, the perfor-
mance gain brought by FER alone is limited. When



Model CDR GDA

LSR (Nan et al., 2020) 64.8 82.2
SciBERT (Beltagy et al., 2019) 65.1 82.5
DHG (Zhang et al., 2020) 65.9 83.1
SSAN-SciBERT (Xu et al., 2021a) 68.7 83.7
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9
SIRE-BioBERT (Zeng et al., 2021) 70.8 84.7
DocuNet-SciBERT (Zhang et al., 2021) 76.3 85.3

SAISO
RE+CR+ET-SciBERT (Ours) 79.0 ± 0.8 87.1 ± 0.3

SAISO
RE+ET-SciBERT 75.9± 0.9 86.1± 0.5

SAISO
RE+CR-SciBERT 74.5± 0.4 85.4± 0.2

SAISO
RE-SciBERT 72.8± 0.6 84.5± 0.3

Table 2: RE F1 results (%) on the CDR and GDA
test sets. The baseline scores are from the correspond-
ing papers. SAISO

RE+CR+ET scores the highest on both
datasets. Full details in Appendix C.

two tasks are used jointly, the pair of PER and ET,
which combines textual contexts and entity type
information, delivers the most significant improve-
ment. The pair of PER and FER also performs well,
which reflects the finding in (Peng et al., 2020) that
context is the most important source of information.
The version with all tasks except CR sees the least
drop in F1, indicating that CR’s supervision signals
on capturing contexts can be covered in part by
PER and FER. Last but not least, the SAIS pipeline
with all four complementary tasks achieves the
highest F1 score. Similar trends are also recog-
nized on CDR and GDA in Table 2, where SAIS
trained with both CR and ET (besides RE) scores
higher than its single-task counterpart.

Moreover, as compared to the original pipeline
SAISO

All, pseudo document-based data augmenta-
tion SAISD

All acts as a hard filter by directly re-
moving predicted non-evidence sentences, while
attention mask-based data augmentation SAISM

All
distills the context more softly. Therefore, we ob-
serve in Table 4 that SAISD

All earns a higher preci-
sion, whereas SAISM

All attains a higher recall. By
ensembling SAISO

All, SAISD
All, and SAISM

All, we im-
prove the RE F1 score by 0.57% absolutely on the
DocRED develop set.

5.4 Qualitative Analysis

To obtain a more insightful understanding of how
textual contexts and entity type information help
with RE, we present a case study in Figure 3
(a). Here, SAISO

RE+ET is trained with the task
(i.e., ET) related to entity type information while
SAISO

RE+CR+PER+FER is trained with the tasks (i.e.,
CR, PER, and FER) related to textual contexts.

CR ET PER FER RE F1

3 61.18± 0.09

3 3 61.41± 0.11
3 3 61.52± 0.10

3 3 61.68± 0.04
3 3 61.44± 0.07

3 3 3 61.65± 0.12
3 3 3 61.79± 0.08
3 3 3 61.64± 0.10

3 3 3 61.88± 0.05
3 3 3 61.81± 0.04

3 3 3 61.85± 0.10

3 3 3 3 62.13± 0.04
3 3 3 3 62.06± 0.09
3 3 3 3 61.91± 0.06
3 3 3 3 61.98± 0.05

3 3 3 3 3 62.39± 0.08

Table 3: Ablation study (%) using SAISO-BERTbase
to assess the effectiveness of the four complementary
tasks (i.e., CR, ET, PER, and FER) for RE based on the
DocRED develop set.

SAISO
All SAISD

All SAISM
All Precision Recall F1

3 66.58 58.70 62.39
3 73.21 45.59 56.19

3 53.14 67.49 59.46

3 3 71.14 54.35 61.62
3 3 61.61 62.90 62.25

3 3 3 67.76 58.79 62.96

Table 4: Ablation study (%) using BERTbase to assess
the effectiveness of data augmentation (i.e., original
(SAISO

All), pseudo document-based (SAISD
All), and at-

tention mask-based (SAISM
All)) for RE based on the Do-

cRED develop set.

Compared to SAISO
All, which is trained with all

four complementary tasks, they both exhibit draw-
backs qualitatively. In particular, SAISO

RE+ET can
easily infer the relation “country" between Enti-
ties E and C based on their respective types “ORG"
and “LOC", whereas SAISO

RE+CR+PER+FER may mis-
interpret Entity E as of type “PER" and infer the
relation “citizenship" wrongly. On the other hand,
SAISO

RE+CR+PER+FER can directly predict the rela-
tion “place_of_birth" between Entities A and B by
pattern matching, while overemphasizing the type
“LOC" of Entity B may cause SAISO

RE+ET to deliver
the wrong relation prediction “location". Last but



(a) Case Study on the Effectiveness of Textual Contexts and Entity Type Information:

Document: Eleazar Lipsky

[0] Eleazar Lipsky … was a … playwright 

born in Bronx, …, United States.

[1] He wrote the novels that formed the 

basis of two … films, Kiss of Death …  

and The People Against O’Hara … 

[3] Lipsky, …, was an assistant district 

attorney … and served as legal counsel to 

the Mystery Writers of America.

Entity A (PER): Eleazar Lipsky, Lipsky Entity B (LOC): Bronx Entity C (LOC): United States

Entity D (MISC): The People Against O’Hara Entity E (ORG): Mystery Writers of America

Entity Pair: (E, C)   Relation: Truth  : country                                  SAISRE+ET
O : country

SAISAll
O  : country                                  SAISRE+CR+PER+FER

O : citizenship

Entity Pair: (A, B)     Relation: Truth : place_of_birth SAISRE+ET
O : location

SAISAll
O  : place_of_birth SAISRE+CR+PER+FER

O : place_of_birth

Entity Pair: (D, C)     Relation: Truth  : country_of_origin                 SAISRE+ET
O : no_relation

SAISAll
O  : country_of_origin                 SAISRE+CR+PER+FER

O : no_relation

Document: Carl Buchheister

[0] Carl Buchheister … was a German 

constructivist artist … 

[1] which he began in 1925.

[2] He was born in Hanover, Germany.

[6] He died in Hanover in 1964.

Entity A (PER): Carl Buchheister Entity B (LOC): Hanover, Hanover

Entity Pair: (A, B)     Relation: place_of_birth

Evidence: Truth: [0, 2]                    FER: [0, 2]                    PER: [0, 1, 2, 6]

Entity Pair: (A, B)     Relation: place_of_death

Evidence: Truth: [0, 6]                    FER: [0, 6]                    PER: [0, 1, 2, 6]

(b) Case Study on the Difference between FER and PER:

Figure 3: (a) Case study on the effectiveness of textual contexts and entity type information based on models’
extracted relations from the DocRED develop set. By capturing contexts across sentences and regularizing them
with entity type information, SAISO

All extracts relations of better quality. (b) Case study on the difference between
FER and PER based on retrieved evidence from the DocRED develop set. FER considers evidence unique to each
relation for better interpretability. Irrelevant sentences are omitted here.

not least, SAISO
All effectively models contexts span-

ning multiple sentences and regularizes them with
entity type information. As a result, it is the only
SAIS variant that correctly predicts the relation
“country_of_origin" between Entities D and C.

Furthermore, to examine why SAIS (which uses
FER for retrieving evidence) outperforms Eider
(Xie et al., 2022) (which uses PER) significantly
on ER in Table 1, we compare the performance
of FER and PER based on a case study in Fig-
ure 3 (b). More specifically, PER identifies the
same set of evidence for both relations between
Entities A and B, among which Sentence 2 de-
scribes “place_of_birth" while Sentence 6 dis-
cusses “place_of_death". In contrast, FER con-
siders an evidence set unique to each relation and
outputs more interpretable results.

6 Conclusion

In this paper, we propose to explicitly teach the
model to capture the major information sources
of RE—textual contexts and entity types by
Supervising and Augmenting Intermediate Steps
(SAIS). Based on a broad spectrum of carefully de-
signed tasks, SAIS extracts relations of enhanced
quality due to more effective supervision and re-
trieves more accurate evidence for improved inter-
pretability. SAIS further boosts the performance
with evidence-based data augmentation and ensem-
ble inference while preserving the computational
cost by assessing model uncertainty. Experiments
on three benchmarks demonstrate the state-of-the-
art performance of SAIS on both RE and ER.

If given a plain document, we shall utilize exist-
ing tools (e.g., spaCy) to get noisy annotations and
apply our method afterward. It is also interesting
to investigate how other tasks (e.g., named entity
recognition) could be incorporated into the multi-
task learning pipeline of our SAIS method. We
plan to explore these extensions in future works.
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A Multi-Task Learning Pipeline by Supervising Intermediate Steps (SAISO
All)

To explicitly teach the model to capture relevant contexts and entity type information for RE, we design
four tasks to supervise the model’s outputs in the corresponding intermediate steps. We illustrate the
overall multi-task pipeline SAISO

All in Figure 4.
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Figure 4: The overall multi-task learning pipeline of the proposed SAIS method (SAISO
All). By explicitly supervis-

ing the model’s outputs in the intermediate steps via carefully designed tasks, we improve the RE performance.



B Ensemble Inference Algorithm with Evidence-based Data Augmentation (SAISB
All)

After training the multi-task pipeline SAISO
All proposed in Section 3, we further boost the model per-

formance by evidence-based data augmentation and ensemble inference as discussed in Section 4. The
detailed steps are explained in Algorithm 1 below.

Algorithm 1: Evidence-based Data Augmentation and Ensemble Inference (SAISB
All)

input: trained pipeline SAISO
All from Section 3, FER threshold αFER, develop set Ddev, test set Dtest

for D ∈ {Ddev,Dtest} do
Original RE Prediction with SAISO

All (Section 3.6):
For (eh, et, r) ∈ D, get LO

h,t,r from SAISO
All.

Identify the Uncertain Set U (Section 4.1):
If D is Ddev, calculate θ% by minimizing (risk2 + rejection rate2).
U contains triplets with the lowest θ% absolute confidence |LO

h,t,r|.
Predict Evidence Probability for (eh, et, r) ∈ U with SAISO

All (Section 3.5):
For (eh, et, r) ∈ U and s ∈ Sd in the corresponding document d, get PFER

h,t,r,s from SAISO
All.

Pseudo Document-based Data Augmentation SAISD
All (Section 4.2):

For (eh, et, r) ∈ U , get LD
h,t,r by feeding the corresponding pseudo document into SAISO

All.
Attention Mask-based Data Augmentation SAISM

All (Section 4.2):
For (eh, et, r) ∈ U , get LM

h,t,r by applying the corresponding attention mask to SAISO
All.

Ensemble Inference SAISB
All (Section 4.2):

If D is Ddev, train τr for r ∈ R based on LO
h,t,r, L

D
h,t,r, and LM

h,t,r for (eh, et, r) ∈ U .
For (eh, et, r) ∈ U , get LB

h,t,r = LO
h,t,r + LD

h,t,r + LM
h,t,r − τr.

Ultimate RE Prediction with SAISB
All and SAISO

All (Section 4.2 and 3.6):
For (eh, et, r) ∈ U , extract relation r for entity pair (eh, et) if LB

h,t,r > 0.
For (eh, et, r) /∈ U , extract relation r for entity pair (eh, et) if LO

h,t,r > 0.
Ultimate ER Prediction with SAISO

All (Section 3.5):
For predicted (eh, et, r), retrieve s ∈ Sd in the corresponding document d if PFER

h,t,r,s > αFER.
output: sets of predicted triplet (eh, et, r) and corresponding evidence Vh,t,r for Ddev and Dtest



C Experiment Details

We compare the proposed SAIS method against existing baselines based on three benchmarks: CDR (Li
et al., 2016) and GDA (Wu et al., 2019) in Table 5, and DocRED (Yao et al., 2019) in Table 6. The details
are explained in Section 5.

In particular, DocRED uses the MIT License, CDR is freely available for the research community,
and GDA uses the GNU Affero General Public License. DocRED is constructed from Wikipedia and
Wikidata and, therefore, contains information that names people. However, since our research focuses on
identifying relations among real-world entities (including public figures) based on a given document, it is
impossible to fully anonymize the dataset. We ensure that we only use publicly available information in
our experiments. Our use of these datasets is consistent with their intended use. Although our method
achieves state-of-the-art performance for RE and ER, using the predicted relations and evidence directly
for downstream tasks without manual validation may increase the risk of errors carried forward due to the
incorrect predictions. The experiments in this paper focus on English documents from biomedical and
general domains, but our proposed framework can be easily extended to documents of other languages.

Model CDR GDA

BRAN (Verga et al., 2018) 62.1 -
CNN (Nguyen and Verspoor, 2018) 62.3 -
EoG (Christopoulou et al., 2019) 63.6 81.5
LSR (Nan et al., 2020) 64.8 82.2
SciBERT (Beltagy et al., 2019) 65.1 82.5
DHG (Zhang et al., 2020) 65.9 83.1
GLRE (Wang et al., 2020) 68.5 -
SSAN-SciBERT (Xu et al., 2021a) 68.7 83.7
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9
SIRE-BioBERT (Zeng et al., 2021) 70.8 84.7
DocuNet-SciBERT (Zhang et al., 2021) 76.3 85.3

SAISO
RE+CR+ET-SciBERT (Ours) 79.0 ± 0.8 87.1 ± 0.3

SAISO
RE+ET-SciBERT 75.9± 0.9 86.1± 0.5

SAISO
RE+CR-SciBERT 74.5± 0.4 85.4± 0.2

SAISO
RE-SciBERT 72.8± 0.6 84.5± 0.3

Table 5: RE F1 results (%) on the CDR and GDA test sets. We report the baseline performances from the cor-
responding papers. SAISO

RE+CR+ET using three training tasks (i.e., RE, CR, and ET) scores the highest on both
datasets and better than its variants with fewer training tasks.



DocRED Dev DocRED Test

Model Relation Evidence Relation Evidence

Ign F1 F1 F1 Ign F1 F1 F1

CNN (Yao et al., 2019) 41.58 43.45 - 40.33 42.26 -
GAT (Veličković et al., 2018) 45.17 51.44 - 47.36 49.51 -
BiLSTM (Yao et al., 2019) 48.87 50.94 44.07 48.78 51.06 43.83
GCNN (Sahu et al., 2019) 46.22 51.52 - 49.59 51.62 -
EoG (Christopoulou et al., 2019) 45.94 52.15 - 49.48 51.82 -
AGGCN (Guo et al., 2019) 46.29 52.47 - 48.89 51.45 -

GEDA-BERTbase (Li et al., 2020) 54.52 56.16 - 53.71 55.74 -
GLRE-BERTbase (Wang et al., 2020) - - - 55.40 57.40 -
LSR-BERTbase (Nan et al., 2020) 52.43 59.00 - 56.97 59.05 -
HeterGSAN-BERTbase (Xu et al., 2021d) 58.13 60.18 - 57.12 59.45 -
GAIN-BERTbase (Zeng et al., 2020) 59.14 61.22 - 59.00 61.24 -
DRN-BERTbase (Xu et al., 2021c) 59.33 61.39 - 59.15 61.37 -
SIRE-BERTbase (Zeng et al., 2021) 59.82 61.60 - 60.18 62.05 -

BERTbase (Wang et al., 2019) - 54.16 - - 53.20 -
BERT-TSbase (Wang et al., 2019) - 54.42 - - 53.92 -
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 - 53.70 55.60 -
CorefBERTbase (Ye et al., 2020) 55.32 57.51 - 54.54 56.96 -
E2GRE-BERTbase (Huang et al., 2020) 55.22 58.72 47.14 - - -
SSAN-BERTbase (Xu et al., 2021a) 57.03 59.19 - 56.06 58.41 -
ATLOP-BERTbase (Zhou et al., 2021) 59.22 61.09 - 59.31 61.30 -
DocuNet-BERTbase (Zhang et al., 2021) 59.86 61.83 - 59.93 61.86 -
Eider-BERTbase (Xie et al., 2022) 60.51 62.48 50.71 60.42 62.47 51.27

SAISB
All-BERTbase (Ours) 59.98 ± 0.13 62.96 ± 0.11 53.70 ± 0.21 60.96 62.77 52.88

BERTlarge (Ye et al., 2020) 56.51 58.70 - 56.01 58.31 -
CorefBERTlarge (Ye et al., 2020) 56.82 59.01 - 56.40 58.83 -
RoBERTalarge (Ye et al., 2020) 57.19 59.40 - 57.74 60.06 -
CorefRoBERTalarge (Ye et al., 2020) 57.35 59.43 - 57.90 60.25 -
SSAN-RoBERTalarge (Xu et al., 2021a) 60.25 62.08 - 59.47 61.42 -
E2GRE-RoBERTalarge (Huang et al., 2020) - - - 60.30 62.50 50.50
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.32 63.18 - 61.39 63.40 -
DocuNet-RoBERTalarge (Zhang et al., 2021) 62.23 64.12 - 62.39 64.55 -
Eider-RoBERTalarge (Xie et al., 2022) 62.34 64.27 52.54 62.85 64.79 53.01

SAISB
All-RoBERTalarge (Ours) 62.23 ± 0.15 65.17 ± 0.08 55.84 ± 0.23 63.44 65.11 55.67

Table 6: RE and ER results (%) on the develop and test sets of DocRED. Ign F1 refers to the F1 score excluding the
relation instances mentioned in the train set. Baselines using BERTbase are separated into the graph-based (upper)
and transformer-based (lower) groups. We report the test set scores from the official scoreboard and the baseline
scores from the corresponding papers. SAISB

All achieves state-of-the-art performance on both RE and ER.


