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ABSTRACT
Visual question answering (VQA) is a challenging problem in ma-

chine perception, which requires a deep joint understanding of

both visual and textual data. Recent research has advanced the au-

tomatic generation of high-quality scene graphs from images, while

powerful yet elegant models like graph neural networks (GNNs)

have shown great power in reasoning over graph-structured data.

In this work, we propose to bridge the gap between scene graph

generation and VQA by leveraging GNNs. In particular, we design a

new model called Conditional Enhanced Graph ATtention network

(CE-GAT) to encode pairs of visual and semantic scene graphs with

both node and edge features, which is seamlessly integrated with

a textual question encoder to generate answers through question-

graph conditioning. Moreover, to alleviate the training difficulties

of CE-GAT towards VQA, we enforce more useful inductive biases

in the scene graphs through novel question-guided graph enrich-

ing and pruning. Finally, we evaluate the framework on one of

the largest available VQA datasets (namely, GQA) with ground-

truth scene graphs, achieving the accuracy of 77.87%, compared

with the state of the art (namely, the neural state machine (NSM)),

which gives 63.17%. Notably, by leveraging existing scene graphs,

our framework is much lighter compared with end-to-end VQA

methods (e.g., about 95.3% less parameters than a typical NSM).

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Visual
content-based indexing and retrieval; Image representations;
Learning latent representations; • Information systems→ Multi-
media information systems.
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1 INTRODUCTION
Recently, visual question answering (VQA) has drawn increasing

attention from researchers across different domains, due to its chal-

lenging requirement of understanding in vision, language, and

commonsense knowledge [1, 6, 10, 14, 20, 25, 36]. Currently, most

VQA systems are end-to-end, integrating deep neural networks

such as CNNs [4] and RNNs [19] to model visual images and tex-

tual questions in the same latent space. Some of the state-of-the-art

end-to-end methods even explicitly construct scene graphs (SGs)

with objects and their relations in the raw image, and then reason

over such graphs with neural network models (see, e.g., [8, 36]).

Meanwhile, active research is being conducted on the more spe-

cific task of automatic generation of SGs from raw images, and the

field has reached rather satisfactory results [10, 12, 15, 16, 21, 22,

24, 27, 33, 35]. Furthermore, many major VQA datasets have been

populated with ground-truth SGs [7, 13], ready to be leveraged by

appropriate structured learning methods. However, to our knowl-

edge, no current VQA model directly utilizes existing SGs, and the

SGs that they construct within the parameter-heavy end-to-end

VQA pipeline may not have a satisfactory quality, which can further

degrade the VQA performance.

Present work. In this work, we bridge the gap between VQA and

SGs through developing a novel and lightweight model based on

graph neural networks (GNNs), called CE-GAT, and two question-

guided graph editions to further facilitate the learning of CE-GAT.

The direct leverage of existing SGs allows us to base our model

on lightweight GNNs with manifested neat superiority in various

downstream tasks thanks to their ability of learning representations

from structured data [3, 5, 11, 17, 23, 28–32, 34]. Despite being

intriguing, the idea of applying GNNs on SGs for VQA (SG-VQA in

short) has not been materialised due to the limitations of existing

GNNs regarding the gap between traditional graph mining tasks

and SG-VQA. Moreover, information in the SGs is often agnostic of

the questions (see, e.g., [7, 13]), whose insufficiency and redundancy

can pose significant challenges for GNNs. The main contributions

of this paper can thus be briefly summarized as follows:

Contribution 1: Conditional Enhanced Graph ATtention network
(CE-GAT). To address the limitations of existing GNNs when ap-

plied on SGs, we design paired graph attention networks to encode

the visual and semantic graphs in parallel, and design three-way

attentions to additionally model predicate semantics as edge fea-

tures. Moreover, we leverage a textual question encoder to generate

conditions for the edge-enhanced GATs.
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Contribution 2: Question-Guided Graph Editions. To facilitate the

training of GNNs, we propose to edit the SGs according to each

particular question by enriching the SGs with negative entities

and predicates that appear in the question but not in the SGs, and

pruning SGs by removing entities and predicates that are far away

from the entities that appear in the questions.

Contribution 3: Comprehensive Experimental Analysis. We con-

duct extensive experiments on a popular VQA dataset called GQA

[7], where we mainly compare our results with the state-of-the-art

method called NSM [8]. Comprehensive ablation studies demon-

strate the effectiveness of our proposed SG-VQA framework and

each of its novel components, which outperforms NSM by 23.27%

with ground-truth SGs. Moreover, as we avoid a direct modeling of

all raw images, the model size and training time of our framework

are significantly smaller than end-to-end VQA models like NSM.

2 SG-VQA
2.1 Problem Definition
In this work, we focus on the task of SG-VQA, i.e., scene-graph-

based visual question answering. Besides a textual question, the

input includes the scene graph, which consists of a pair of visual

and semantic graphs [7, 13]. Specifically, the scene graph (SG) G =

{G𝑣,G𝑠 }, where G𝑣 = {V𝑣, E𝑣, 𝜙𝑣,𝜓𝑣} is the visual graph, and

G𝑠 = {V𝑠 , E𝑠 , 𝜙𝑠 ,𝜓𝑠 } is the semantic graph. V , E, 𝜙 , and 𝜓 are

the node (entity) set, edge (predicate) set, node features, and edge

features, respectively. 𝜙𝑣/𝜓𝑣 are visual features in the bounding

boxes, whereas 𝜙𝑠 /𝜓𝑠 are semantic features from word embeddings.

The common availability of such scene graphs can be justified

by the fact that many VQA datasets nowadays are already equipped

with ground-truth scene graphs (e.g., GQA [7] and Visual Genome

[13]), and many algorithms have been developed, which keeps

pushing the accuracy of the automatic generation of scene graphs

from raw images [10, 12, 15, 16, 21, 22, 24, 27, 33, 35].

The output of our SG-VQA is an answer, which is either a pre-

dicted categorical label or generated short text. In the general case

of textual answers, we aim to model the following probability

𝑝 (𝐴|𝑄,G) =
𝑚∏
𝑖=1

𝑝 (𝑎𝑖 |𝑎1:𝑖−1, 𝑄,G), (1)

where 𝑝 (𝐴|𝑄,G) is the probability of generating the answer 𝐴

(sequence of words 𝑎𝑖 ) given the question 𝑄 and scene graph G.

2.2 Conditional Enhanced Graph Attention
Network

As shown in Figure 1, our SG-VQA framework follows a standard

encoder-decoder architecture. To generate answers as categorical

labels or sequential texts, we use the state-of-the-art attention-

based greedy search sequence generator widely used in machine

translation [2]. Therefore, the novelty of our work mostly resides

in the encoder architecture.

In SG-VQA, the encoder takes a question and a pair of visual

and semantic graphs as input. Several unique challenges naturally

arise for our encoder: (1) the joint modeling of pairs of visual and

semantic graphs, (2) the modeling of both node and edge features in

the graphs, and (3) the modeling of graphs under the consideration

of different questions. To deal with these challenges, we design

the novel encoder of the Conditional Enhanced Graph Attention

Network (CE-GAT) model, which builds on the powerful GNN of

the graph attention network (GAT) model [23].

Paired GAT. As shown in Figure 1, our scene graph encoder needs

to jointly model a pair of visual and semantic graphs for each image,

while highlighting important entities and predicates to generate the

answer. To allow this, we devise paired GATs to encode both graphs

with separate propagation functions and attention mechanisms.

Specifically, a standard GAT can be implemented as follows:

ℎ𝑙+1𝑖 = 𝜎 (
∑
𝑗 ∈𝑁𝑖

𝛼𝑖 𝑗Wℎ𝑙𝑗 ), (2)

𝛼𝑖 𝑗 = softmax𝑗 (𝑒𝑖 𝑗 ) =
exp(𝑒𝑖 𝑗 )∑

𝑘∈𝑁𝑖
exp(𝑒𝑖𝑘 )

, (3)

𝑒𝑖 𝑗 = 𝑎(Wℎ𝑙𝑖 ,Wℎ𝑙𝑗 ), (4)

where ℎ𝑙
𝑖
, ℎ𝑙

𝑗
∈ R𝐹 are the node embeddings with dimension size

F at the 𝑙-th GAT layer, ℎ𝑙+1
𝑖

∈ RF′ is the node feature with F′

feature dimension at the 𝑙 + 1
𝑡ℎ

layer, 𝜎 is a non-linear function,

W are the learnable GAT parameters for embedding projections

among layers, 𝑁𝑖 is the neighbourhood of the node i, 𝛼𝑖 𝑗 are the
normalized attention coefficients, 𝑒𝑖 𝑗 are the attention coefficients,

and 𝑎 : R𝐹
′ × R𝐹 ′ → R is a single-layered feed-forward neural

network whose parameterized weight matrix is 𝑎, which represents

a shared attention mechanism. Moreover, ℎ0 is set to 𝜙𝑠 and 𝜙𝑣 in

the visual and the semantic graph, respectively.

After computing the node embeddings on each of the two graphs,

a readout function is devised on both GATs as follows:

ℎG =
∑
𝑣∈V

ℎ𝐿𝑣 , (5)

where node embeddings in the last (𝐿-th) GAT layer are aggregated

through the element-wise sum to yield a scene graph embedding

ℎG , where G is to be replaced by G𝑠 or G𝑣 on the semantic and the

visual graph, respectively. The final scene graph representations

from both GATs on the semantic and the visual graphs are then the

concatenation as a whole ℎG = ℎG𝑠
⊙ ℎG𝑣

.

Edge-Enhanced GAT. The traditional GAT can only model node

features [23]. However, as illustrated in Figure 1, the edges in both

visual and semantic graphs are associated with corresponding fea-

tures. To enable the modeling of such edge features (i.e.,𝜓𝑣/𝜓𝑠 ), we

design a novel edge-enhanced GAT by revising Eqs. (3)–(4) into

𝛼𝑖 𝑗 =

exp

(
𝑎𝑇 [Wℎ𝑖 ⊙ Wℎ 𝑗 ⊙𝜓𝑖 𝑗 ]

)
∑
𝑘∈𝑁𝑖

exp

(
𝑎𝑇 [Wℎ𝑖 ⊙ Wℎ𝑘 ⊙𝜓𝑖𝑘 ]

) , (6)

where the attention weights are computed with the edge features𝜓

taken into consideration.

Conditional GAT. Existing GNNs including GATs are mostly un-

conditional, i.e., they compute a universal node or graph representa-

tion for each graph [26]. However, our scene graph representation

should be conditioned on the current questions, so as to capture the

most important information to generate relevant answers. To en-

able this, we design a novel question-conditional GAT. Specifically,



Figure 1: An illustration of our SG-VQA framework with CE-GAT.

we first use the multi-layer gated recurrent unit (GRU) to encode

the question as ℎ𝑞 = 𝐺𝑅𝑈 (𝑄), where 𝑄 is the question consisting

of question tokens {𝑞𝑖 }.
After that, we concatenate ℎ𝑞 to the original node features 𝜙𝑣

and 𝜙𝑠 in both the visual and the semantic graphs to allow the GATs

to be aware of the question, which we call conditional GATs. As

a simplified ablation, we can also directly concatenate ℎ𝑞 to the

scene graph embeddings ℎG after GATs without question, which

we study in the experiments.

2.3 Question-Guided Scene Graph Enriching
and Pruning

The scene graph of each image contains an average of 16 objects

and 50 predicates. However, many of them can be irrelevant to the

particular questions, which adds an unnecessary burden to the deep

learning models, making them hard to train and possibly easy to

overfit. To this end, we aim to explicitly help our CE-GAT model

through simple question-guided scene graph editions, which essen-

tially generate a question-oriented scene graph for each question

based on enriching and pruning the original scene graphs.

SG Enriching. Consider again our toy example in Figure 1. Ques-

tion A is asking about bird, while there is no bird at all in the

image. However, this straightforward knowledge of “no bird in the
image” is not directly available in the scene graphs, and likely the

visual and semantic features of a bird are indeed close to those

of an airplane, which is indeed in the image. The lack of such

straightforward knowledge can really confuse the model. To deal

with this, we propose to enrich the scene graphs with negative
entities and predicates that appear in the questions but not in the

scene graphs.

Specifically, we extract part-of-speech tags from questions, and

select all nouns as question-relevant nodes. For each semantic graph

and question pair, we compute the cosine similarity score for each

pair of semantic graph node and question-relevant node. By thresh-

olding at 0.5, we get all matched and unmatched pairs of nodes. We

regard question-relevant nodes that are not matched to any seman-

tic graph node as the negative nodes (V1

𝑠 ), and add them into the

semantic graph together with a self-link of “does not exist” for each

of them (E1

𝑠 ). After such question-guided scene graph enriching, our

populated semantic graph would be G𝑒𝑛
𝑠 = {V𝑒𝑛

𝑠 , E𝑒𝑛
𝑠 , 𝜙𝑒𝑛𝑠 ,𝜓𝑒𝑛

𝑠 },

where V𝑒𝑛
𝑠 = V𝑠 ∪ V1

𝑠 , E𝑒𝑛
𝑠 = E𝑠 ∪ E1

𝑠 , 𝜙
𝑒𝑛
𝑠 = 𝜙𝑠 ∪ 𝜙1𝑠 , and

𝜓𝑒𝑛
𝑠 = 𝜓𝑠 ∪𝜓1

𝑠 .

SGPruning.Consider again our toy example in Figure 1. To answer

Question B, one only needs to look at the triple of “(airplain, above,

sea)”, instead of the whole scene graph. In fact, to answer most

questions, it is intuitive that one only needs the local information

around the entities and predicates mentioned in the question, and

most other things far away in the scene graphs are just confusing

and misleading for the model. To deal with this, we propose to

prune the scene graphs by removing the irrelevant entities and
predicates that are not within the k-hop neighbourhoods of those

mentioned in the question.

Specifically, continuing with the procedures that we employ in

the SG enrichment, we pick the unmatched nodes in the semantic

graph as our candidates for pruning. Then, we expand the local k-

hop neighbourhood of each matched node based on the connecting

predicates (of either directions) and only prune nodes V2

𝑠 that

are outside all such k-hop neighbourhoods (e.g., k=1 or 2). We

remove V2

𝑠 together with all predicates E2

𝑠 that have them on at

least one end from the semantic graph. That is, we only searched

for pruning nodes (V”

𝑠 ) in the expanded local neighbourhood, and

selected any connected edges as pruning predicates (E”

𝑠 ). In this

way, our pruning step results in a refined semantic graph G𝑝𝑟
𝑠 =

{V𝑠 \ V2

𝑠 , E𝑠 \ E2

𝑠 , 𝜙𝑠 \ 𝜙2𝑠 ,𝜓𝑠 \𝜓2

𝑠 }.

3 EXPERIMENTS
Experimental settings.We use GQA [7] to comprehensively eval-

uate our proposed framework. Compared to other publicly available

VQA datasets [9, 13, 18, 37], GQA consists of high-quality ground-

truth image scene graphs that can be used for compositional and

semantic understanding of real-world images. The dataset is avail-

able with 113K images with ground-truth scene graphs and 22M

question-answer pairs, which we use to evaluate our models. It is

also possible to evaluate our model on automatically inferred scene

graphs in future work.

GQA has two different data settings based on imbalanced and

balanced question-answer pairs. The balanced training and evalua-

tion dataset is ten times smaller than the imbalanced one. Besides,

the balanced evaluation dataset is not publicly available and cannot

be used for rapid model development. For these reasons, we used

the imbalanced data setting and limited the training sample size to



Table 1: Performance of our model variants on GQA in comparison to human judgements and the SOTA VQA framework.

Model Binary Open Consistency Validity Plausibility Accuracy

Human judgements [7] 91.20 87.40 98.40 98.90 97.20 89.30

Neural State Machine [8] 78.94 49.25 93.25 96.41 84.28 63.17

CE-GAT on visual graph alone 74.17 50.54 86.06 96.96 96.28 71.02

CE-GAT on semantic graph alone 75.43 47.26 86.05 96.79 96.04 71.68

CE-GAT w/o graph edge attention 72.95 49.94 83.56 96.89 96.04 69.89

CE-GAT w/o question conditioning 70.02 49.80 81.74 96.54 95.59 67.33

CE-GAT Full 76.99 50.96 85.55 96.84 96.14 73.52

CE-GAT Full w. question-guided enriching 78.97 54.19 87.98 96.93 96.30 75.67

CE-GAT Full w. question-guided pruning 78.21 55.78 87.92 96.95 96.31 75.22

CE-GAT Full w. both editions 77.91 77.63 87.43 97.13 96.61 77.87

Figure 2: Case studies on the effectiveness of question-guided scene graph enriching and pruning.

10M question-answer pairs. We evaluated the trained models on

a testing set of 2M question-answer pairs. Following [8], we use a

similar set of evaluation metrics
1
in Table 1.

Quantitative evaluations. Table 1 shows the performance of dif-

ferent CE-GAT variants compared with the state-of-the-art VQA

model of NSM and human judgement. In terms of accuracy, our

CE-GAT Full model is able to achieve a significantly better perfor-

mance compared with NSM, not only due to its direct access to

the scene graphs but also its appropriate modeling of them. Such

improvements are consistent almost across all other evaluation

metrics as well, indicating the overall effectiveness of CE-GAT.

Moreover, we comprehensively evaluated different ablations of

CE-GAT, including CE-GAT on the visual/semantic graph alone, CE-

GAT without graph edge attention, and CE-GAT without question

conditioning. As we can observe from the results, given accuracy

as the major metric, applying paired GATs on visual and semantic

graphs brings around 3.5% relative gains, applying edge attention

brings around 5.2% relative gains, and applying node-level question

conditioning brings around 9.2% relative gains. Such results clearly

corroborate the sanity of our model designs.

Finally, we evaluate the CE-GAT Full model with the novel

question-guided graph editions. We can observe that using either

of the two approaches alone can bring around 2.3% and 2.7% im-

provements in accuracy on top of the CE-GAT Full model, while

combining the two approaches together can further boost that im-

provement to 5.8%. The results are also consistent across other

1
https://cs.stanford.edu/people/dorarad/gqa/evaluate.html

evaluation metrics, which demonstrates the effectiveness of our

novel yet simple graph edition operations.

Case Studies. Figure 2 illustrates two cases where question-guided
enriching and pruning allow the CE-GAT model to correct the

otherwise wrong answers on two specific questions and images. In

the first case, there is no stop-sign in the image or the scene graph,

while the question mentions stop-sign. Our framework enriches the

scene graph by adding a node of “stop-sign” and a self-link of “does

not exist”, which helped the model to notice its absence and predict

the correct answer of “no”. In the second case, there are too many

nodes and links in the original scene graph, while the question is

focused on the “child”. Our framework prunes the scene graph by

removing many irrelevant nodes and links far away from the node

“child”, which helped the model to get rid of the distractions which

may lead to noisy answers such as “camera” and predict the correct

answer of “phone”.
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