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Abstract—The utilization of web search activity for pandemic
forecasting has significant implications for managing disease
spread and informing policy decisions. However, web search
records tend to be noisy and influenced by geographical location,
making it difficult to develop large-scale models. While regular-
ized linear models have been effective in predicting the spread of
respiratory illnesses like COVID-19, they are limited to specific
locations. The lack of incorporation of neighboring areas’ data
and the inability to transfer models to new locations with limited
data has impeded further progress.

To address these limitations, this study proposes a novel self-
supervised message-passing neural network (SMPNN) frame-
work for modeling local and cross-location dynamics in pandemic
forecasting. The SMPNN framework utilizes an MPNN mod-
ule to learn cross-location dependencies through self-supervised
learning and improve local predictions with graph-generated
features. The framework is designed as an end-to-end solution
and is compared with state-of-the-art statistical and deep learning
models using COVID-19 data from England and the US.

The results of the study demonstrate that the SMPNN model
outperforms other models by achieving up to a 6.9% im-
provement in prediction accuracy and lower prediction errors
during the early stages of disease outbreaks. This approach
represents a significant advancement in disease surveillance and
forecasting, providing a novel methodology, datasets, and insights
that combine web search data and spatial information. The
proposed SMPNN framework offers a promising avenue for
modeling the spread of pandemics, leveraging both local and
cross-location information, and has the potential to inform public
health policy decisions.

Index Terms—Web search activity, graph neural networks,
web-based disease surveillance

I. INTRODUCTION

Over the past decade, there has been an increasing interest
in using signals generated from online search activity to
predict infectious diseases, such as seasonal influenza and
the H1N1 pandemic [1]–[4]. Similarly, since the outbreak
of COVID-19, several studies have investigated using online
search activity to predict the increase in COVID-19 cases
based on the intuition that people with relevant symptoms will

search the Web for help [5]–[7]. For example, Fig. 1 shows two
time series of COVID-19 related symptom ”Rhinitis” search
activity and daily confirmed COVID-19 cases in Norfolk, UK
during March to May 2020. The peaks of these two curves
are highly synchronized and have a strong correlation. In
addition, by analyzing the Google search trends [8] and Twitter
data, Panuganti et al. [6] calculated the relative correlation
of online activity concerning different COVID-19 relevant
symptoms with the disease incidence and concluded that
Google search and tweet frequency regarding “fever” and
“shortness of breath” are more robust indicators than “smell
loss” for COVID-19 incidence. Meanwhile, Yom-Tov et al. [7]
analyzed searches for COVID-19 relevant symptoms on Bing
search queries from users in England and found that queries
for “fever” and “cough” symptoms were the most correlated
queries with future COVID-19 cases during the early stages
of the pandemic. These studies indicate the feasibility to build
COVID-19 forecasting models based on the search activity for
COVID-19 relevant symptoms.

Location-specific regression models are the most widely-
used method for pandemic forecasting using web search
activity. The well-known Google Flu Trends method (the
GFT method) applied a linear logit regression model on the
aggregated search volume of influenza-relevant queries [1].
Although the GFT method is effective in selecting disease
relevant queries, [9] reported that the GFT predictions could
be very inaccurate in practice. To overcome this limitation,
several studies propose to use linear autoregressive (AR)
models with the Elastic Net regularization to learn a sparse
model directly on the time series of disease-relevant search
queries [4], [5], [10]. For example, Lampos et al. [5] have
built supervised AR models on COVID-19 relevant search time
series and show that they could make predictions preceding
the reported confirmed cases and deaths several days ahead.
They also show that linear AR models could minimize the
concerns that no sufficient data exists at the initial stage of



disease outbreaks. Although linear AR models have been built
for several respiratory diseases, they have been questioned for
lacking the ability of making stable and accurate predictions,
mainly because location-specific models tend to be impaired
by the irregular change of search activity caused by short-term
change in news or media exposure [4].

Furthermore, it is imperative to note that linear logit
regression-based methodologies pose challenges in detecting
search novelty [11], user interactions [12], [13], and broader
geographical connections [14]. As a result, there is a pressing
need for research that surpasses location-specific limitations,
provides more abundant structure, and possesses the ability to
predict and analyze disease tracking effectively.

Graph neural network (GNN) models have been proposed
for exploring cross-location dependencies to make more robust
prediction for several infectious diseases [15]–[17]. Deng et
al. [15] propose a graph message neural network with cross-
location attention for long-term seasonal influenza prediction
with historical disease incidence time series as input and show
that the cross-location dependencies in the data improves the
model performance. Furthermore, Panagopoulos et al. [16]
consider the mass mobility data between multiple regions and
propose a message passing neural network (MPNN) model to
predict the development of COVID-19 based on past disease
incidence. In their study, mobility is used as an indicator of
spatial connectedness between locations. With MPNN, they
update each vertex (region) based on messages received from
neighboring regions. According to their results, MPNN has a
superior ability to predict the development of diseases com-
pared to multiple baseline models. Although cross-location
dependencies in past disease incidence have been explored by
prior studies for pandemic forecasting, there is limited work on
combining the web search data with geographical graphs for
pandemic forecasting, and it remains an open question whether
GNNs could outperform location-specific regression models
on the web search data.

Additionally, current models based on past disease incidence
and mobility data are limited in exploring cross-location
dependencies to make more robust predictions for infectious
diseases [18]. While Graph Neural Network (GNN) models
have been proposed to address this challenge and have shown
promising results, there is limited work on combining web
search data with geographical graphs for pandemic fore-
casting [19]. Furthermore, current models have limitations
in accurately predicting the development of diseases during
the early stages of outbreaks, which is a critical time for
taking preventive measures. These limitations have hindered
the advancements in pandemic forecasting and surveillance,
especially in the context of emerging infectious diseases where
timely and accurate predictions are crucial for controlling the
spread of the disease.

To address the aforementioned problems, we investigate a
novel problem setting, which is to predict the development of
disease based on the web search activity using geographical
relations between locations. Specifically, we propose a novel
self-supervised message passing neural network (SMPNN)

Fig. 1. Two time series from normalized google search volumes of ”Rhinitis”
and normalized daily confirmed cases in Norfolk, UK for March to May 2020.

framework for pandemic forecasting using the web search
activity and the corresponding geographical graph as the input.
Our results show that SMPNN extends state-of-the-art GNNs
while preserving the advantages of location-specific regression
models for pandemic forecasting at the early stage of disease
outbreaks. In summary, the main contributions of the paper
are:

• Identifying a new problem of combining web search ac-
tivity with a geographical graph for pandemic forecasting.

• Introduction of a novel framework SMPNN, with an
MPNN module to learn cross-location features and a
location-specific regression module to predict disease
incidence.

• Thorough experimental results on two open datasets
demonstrating the effectiveness of SMPNN over prior
SOTA models.

II. RELATED WORK

This section first outlines previous methods for epi-
demic forecasting using web search records, showcasing their
strengths and limitations. Then, we introduce the Graph Neu-
ral Network-based model, which is one of the key models
adapted in this paper to overcome the challenges in epidemic
forecasting.

A. Web-based epidemic forecasting methods

Google Trends is a widely used web-based epidemic signal
for monitoring and predicting outbreaks of infectious diseases.
It provides a simple and cost-effective way to track public
interest in various topics and keywords related to infectious
diseases, thereby offering a unique opportunity to monitor
early warning signals of emerging disease outbreaks. Over the
past few decades, research on infectious disease prediction
using Google Trends has been validated and has shown
promising results [1], [20]–[22].

One of the earliest studies to use Google Trends for pre-
dicting infectious diseases was published by Ginsberg et al.
in 2009 [1]. The authors demonstrated that by tracking search
volumes for specific keywords such as ”flu” and ”influenza,”
Google Trends could accurately follow the temporal and



Fig. 2. Illustration of the overall structure of SMPNN model.

Fig. 3. The illustration of the graph message passing.

geographic patterns of flu-like illnesses. They also found that
Google Trends data could predict the onset of flu-like illnesses
one to two weeks earlier than traditional surveillance systems,
such as the FluView program of the US Centers for Disease
Control and Prevention.

Since the release of Google Trends, web-based epidemic
forecasting methods have gained significant attention due to
the increasing availability of digital data and computational
power. Most recent studies on online crowd surveillance for
epidemic forecasting have employed various models, with
regularized regression models being the most widely used one
[4], [5], [10]. Despite their popularity, there have been attempts
to explore more sophisticated machine learning models such as
random forests and long short-term memory networks (LSTM)
[23]. However, these models have limitations in terms of
stability and accuracy when predicting disease incidence from
web search activity. This is because web search data can
be noisy and location-sensitive, and training these models

on multiple spatial resolutions may not produce more stable
results compared to regularized regression models built for
individual locations [23], [24].

Google Flu Trends was a Google project launched in 2008
with the aim of using Google search data to predict the spread
of flu. However, after several years of use, it was found to have
issues with false positives and over-reporting, as search data
may not necessarily reflect actual disease occurrence. With
these issues coming to light, Google Flu Trends was shut down
in 2015.

The main reason for the decreased accuracy of Google Flu
Trends’ predictions was that the model and algorithm it used
became increasingly different from actual flu outbreaks over
time. Specifically, Google Flu Trends used a model based on
the volume of keyword searches to predict flu outbreaks. This
model used time-series data of keyword searches related to
flu, such as ”flu symptoms,” ”cold medicine,” and so on. In
the past few years, the algorithm and model of Google Flu
Trends were based on previous flu trends. However, as time
passed, people’s search behavior and habits changed, and the
behavior of using keyword searches also changed. This led to
data bias in the predictive model, as the correlation with actual
flu outbreaks was no longer strong [25].

Therefore, to overcome these limitations, recent research
has focused on the use of data fusion techniques to combine
multiple sources of data, such as social media, news reports,
and healthcare data, to improve epidemic forecasting [26]–
[28]. These approaches have shown promise in capturing
different aspects of disease spread, such as symptom reporting
and healthcare-seeking behavior, and have the potential to
improve the accuracy of epidemic forecasting models. How-
ever, challenges remain in effectively integrating and modeling
these heterogeneous data sources, as they may have different
temporal and spatial resolutions and may contain biases and
noise.

Furthermore, recent studies in web-based epidemic fore-
casting also focus on real-time data and adaptive models



that can quickly adapt to changing epidemiological conditions
[16]. However, this requires the development of robust and
scalable methods for collecting, processing, and analyzing
large volumes of data in real-time, as well as the ability to
quickly update models and predictions based on new data.

The deployment and implementation of epidemic forecast-
ing models in real-world settings requires careful consideration
of ethical, legal, and social implications, as well as effective
communication and collaboration with public health officials
and other stakeholders. While web-based epidemic forecasting
methods have limitations, the use of machine learning models,
data fusion techniques, and real-time adaptation shows its po-
tential to improve the accuracy and effectiveness of epidemic
forecasting.

B. Graph Neural Network-based models

Infectious diseases are an important issue in the global
public health field. Over the past few decades, many studies
have been devoted to studying epidemic forecasting, where au-
toregressive models [29] and compartment models such as the
susceptible infected-recovered (SIR) models have been widely
applied [30]. However, these methods have limited accuracy
and generalization due to their oversimplified assumptions.
In recent years, deep learning models have achieved great
success in various fields and have been widely adopted in
epidemic prediction tasks, especially for graph neural network
models (GNNs). Using GNNs for infectious disease prediction
is a new and emerging research area that involves analyzing
disease spread patterns, social networks, and medical data.
These studies can not only help healthcare institutions predict
disease transmission trends but also provide timely health risk
alerts to the public [15], [16], [31], [32].

By design, GNNs utilize graph structures to represent data,
which effectively captures the relationships between nodes and
enables efficient processing of complex data. In infectious
disease prediction, GNNs can establish graph structures of
nodes such as cities and populations and model the connec-
tions between them to predict the spread of infectious diseases
[33].

Recent studies have shown that GNNs can be used to
model the spread of infectious diseases. For example, Deng et
al. proposed using a cross-location attention module in the
graph message passing models for long-term influenza-like
illness [15]. By modeling the spatial and temporal depen-
dencies in disease transmission, they were able to improve
the accuracy of epidemic forecasting. Panagopoulos et al.
proposed using a message-passing neural network (MPNN) for
pandemic forecasting in multiple locations [16]. They found
that their model was able to capture the complex relationships
between different locations and provide accurate predictions
of disease spread. In addition, Xie et al. proposed modeling
spatial transmission with graph neural networks for pandemic
forecasting with local and global encoding modules [32]. By
incorporating spatial information into their model, they were
able to improve the accuracy of their predictions.

TABLE I
MATHEMATICAL SYMBOLS IN THIS PAPER

Symbol Remarks

Rl l-dimensional Euclidean space
x,x,X Scalar, Vector, Matrix

G A geographical graph
V,E the sets of nodes/edges respectively
S {si | vi ∈ V } the set of nodes attributes
ei,j an edge between vi and vj
wi,j the edge weight between vi and vj
H the learned representations
d, l number of days, number of search terms
Dr The dropout function
BN Batch Normalization

ReLu The ReLU activation function
Lin The linear dense layer

Although GNNs have shown great potential in capturing
complex relationships in data and improving the accuracy of
predictions for epidemic forecasting, training GNNs requires
a large amount of labeled data, which is a key bottleneck
to achieving better predictive performance. Unsupervised and
semi-supervised self-learning methods have been increasingly
attracting attention in deep learning, as they do not require
much labeled data. Unlike supervised learning, unsupervised
learning extracts information from unlabeled data, which
can greatly reduce the workload of manual labeling. Self-
supervised learning is an unsupervised learning method in
which the model learns information from the data itself, rather
than relying on annotated data, which has been applied in the
training of GNNs in recent studies [34], [35].

Using self-supervised learning methods has another advan-
tage in that it can handle missing and noisy epidemic data.
These issues are common in real-world epidemic data, such as
low data quality or missing data due to privacy concerns. Using
self-supervised learning methods can alleviate these issues and
improve prediction accuracy. Therefore, it is promising to ap-
ply self-supervised learning methods to epidemic forecasting
tasks in graph neural networks. These methods could help us
better understand the process of epidemic transmission and
evolution, and improve prediction accuracy and generalization
ability.

III. METHODOLOGY

In this section, we first formulate the problem. Then we
present the proposed neural network architecture and how it
aggregates features for predicting the development of COVID-
19. The important notations are summarized in Table I.

A. Problem Formulation

Input. We construct the daily snapshot of the search activity
network as a (geographical) Graph G = (V,E), where n =
|V | denotes the number of nodes and the weight w(u, v) of
the edge (u, v) represents spatial connectedness index between
vertex u and vertex v. Specifically, for a given country, the
nodes represent its subregions, and the edge weights are



calculated by the mobility and social connectedness between
the nearby sub-regions.

Spatial Aggregation. Given that people in nearby regions
could move and contact with each other, the search activity in
one region could be influenced by nearby regions. Therefore,
the spatial connectedness index between the regions u and
v at time t could be multiplied by the search activity s

(t)
u

of region u at time t to generate a relative value which
represents the extent to which search activity in region v

is influenced by region u at time t. Specifically, let x
(t)
u =(

s
(t−d)
u , . . . , s

(t)
u

)⊤
∈ Rd∗l, where s

(t)
u ∈ Rl is a vector of

node features, which consists of the normalized search volume
of l search terms of the past d days in region u. We use
the search volumes of multiple days rather than considering
only the previous day for prediction because search volumes
vary greatly between days. In summary, the spatial aggregation
process could compute a feature vector for each region with
the following formula:
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w
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1,1 w
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x
(t)
1
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x
(t)
n

 =


z1
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...
zn


(1)

where A is the spatial connectedness matrix of G(t) and X(t)

is a matrix whose rows consists of the node features of each
region. After spatial aggregation, zu ∈ Rd∗l is a vector that
aggregates the search activity within and towards region u.

Output. The goal of our work is to predict yt+k
u , which

is the reported number of COVID-19 cases for region u at k
days after day t.

B. Model Designs

The main aim of our work is to model people’s web
search activity in graph G from real-time data, and measure
the deviations from their search behavior to facilitate disease
surveillance. To meet this goal, we design a two-stage frame-
work as shown in Fig. 2: (1) Self-supervised MPNN module
to generate cross-location features. and (2) Location-specific
regression module for disease prediction based on past search
volumes and graph-generated search features.

1) Self-supervised MPNN module: MPNN framework rep-
resents a family of graph neural network models which use the
message, update and readout functions to learn representation
from the nodes in the graph [36]. As shown in Fig. 3, we
apply two neighborhood aggregation layers in the network
and each layer learns from the graph structure and the node
representation from the previous layer. We calculate the node
representation for each layer using the following formula [31]:

Hi+1 = f
(
ÃHiWi+1

)
, (2)

where Hi denotes the node representation matrix of the
previous layer. H0 = X, represents the initial feature matrix.
Wi denotes the parameter matrix of layer i and f is ReLU

TABLE II
DATASET STATISTICS FOR ENGLAND AND USA.

COUNTRY TIME AVG CASE MAX CASE SD
ENGLAND 3/20-5/20 25.04 152.58 20.17

USA 9/20-12/21 279.56 10682.70 477.91

activation function. We train the parameter matrix using fol-
lowing loss function:

L =
1

n

∑
u∈V

(
s(t+k)
u − ŝ(t+k)

u

)2

, (3)

where st+k
u denotes the search volume of the search terms for

region u at day t+ k and ŝ
(t+k)
u denotes the predicted search

volume of the search terms at day t+ k.
2) Location-specific regression module: At the second

stage, we apply location-specific regression models f(·) to
predict disease incidence based on past search volumes and
graph-generated search features for L symptoms. We predict
the disease incidence according to the formula as shown
below:

ŷu = f(Su, βu) + ϵu. (4)

When we use linear autoregressive model as the regression
module, we optimize the model according to the following
formula:

arg min
wu,bu

(
∥yu − Suwu − bu∥22

)
, (5)

where yu ∈ R is the reported cases in region u, and wu ∈
R2∗l∗d, bu ∈ R denote the feature weights and regression
intercept, respectively. Note that the time index of Su is
omitted for the simplicity of notation. In fact, for a specific
search term out of l search terms, we use the search volumes
of past d days and the graph-generated features from MPNN
module of past d days.

3) End-to-end training pipeline: As mentioned above, we
have two options for training the SMPNN model. The first way
is to train SMPNN algorithm in an end-to-end way, where we
apply a regression layer on top of the MPNN module. The
pseudocode of the end-to-end SMPNN algorithm is described
in Algorithm 1. The second way is to train the self-supervised
MPNN module and location-specific regression module sep-
arately. Compared to end-to-end training of SMPNN, the
second option preserves more location-specific information
and has the flexibility to choose different regression models
for location-specific regression.

IV. EXPERIMENTS

A. Dataset

In this subsection, we introduce how we build our datasets
from England and the US. Specifically, we collect England
data from an open benchmark dataset provided by Panagopou-
los et al. [16] and collect the US data from the Google COVID-
19 open dataset [8]. Their data statistics are shown in Table II.
All disease cases are normalized as cases per million people.



TABLE III
MEAN ABSOLUTE ERROR FOR COVID-19 FORECASTING IN NUMBER OF CASES PER MILLION PEOPLE PER REGION.

Model England USA
Days ahead (k) 1 2 3 4 5 6 7 1 2 3 4 5 6 7

ARMA 17.45 16.81 17.17 17.46 17.60 16.55 15.77 233.1 235.2 237.2 237.5 235.2 228.8 226.8
RF 13.07 14.03 14.79 14.35 13.99 13.34 13.03 245.5 243.9 247.0 242.8 245.2 239.4 234.9

SVR 15.11 14.21 14.07 14.00 14.23 13.95 13.60 215.0 219.7 223.0 220.3 217.1 209.1 207.4
MPNN 18.19 17.52 18.07 18.71 18.35 18.03 18.96 221.7 221.3 221.6 215.8 226.0 217.8 222.2

end-to-end SMPNN 19.20 19.00 19.28 19.95 18.71 19.28 20.33 221.4 226.9 226.6 227.3 213.9 221.7 219.7

SMPNN
w/ ARMA 16.26 16.50 16.53 17.18 16.78 15.76 16.34 228.7 239.5 232.6 227.6 224.7 216.7 216.7

w/ RF 12.83 14.02 14.62 13.99 13.36∗ 12.67∗ 12.81 250.6 244.5 241.4 238.1 237.6 233.4 233.6
w/ SVR 14.40 13.85 14.25 14.13 14.07 13.57 13.45 212.1 228.7 216.4 207.0∗ 202.2∗ 198.4∗ 197.2∗

Relative Improvement ↑1.8% ↑1.3% ↓1.3% ↑0.1% ↑4.5% ↑5.0% ↑1.7% ↑1.4% ↓4.1% ↑2.4% ↑4.1% ↑6.9% ↑5.1% ↑4.9%
Notes: The numbers are computed as the average of 21 runs/days for the UK and 11 runs/months for the USA, where ∗p < .05

Algorithm 1 SMPNN algorithm
Require: Time series data {X, y} from multiple regions,

spatial connectedness matrix A
Ensure: Model parameters Θ, prediction result y

1: for each epoch do
2: Randomly sample a mini-batch
3: for each region i do ▷ Self-supervised process
4: hi ← Graph Message Passing (xi:, A)
5: ŝi ← Output ([hi;xi:])
6: end for
7: for each region i do ▷ Location-specific regression
8: ŷi ← Linear Regression (xi:; ŝi)
9: end for

∆L(Θ)← BackProp(L(Θ),y, ŷ,Θ)
Θ← Θ− η∆L(Θ)

10: end for

• England This dataset contains daily COVID-19 con-
firmed cases from 48 regions in England, ranging from
March 13, 2020 to May 12, 2020. We consider this
dataset as COVID-19 forecasting at very early stage.
Locations are represented as the NUTS3 regions. The
spatial connectedness matrix is calculated based on the
mobility between regions, which is collected from the
movement data of meta Data For Good disease prevention
maps [37].

• USA This dataset contains daily COVID-19 confirmed
cases from 60 counties in the US, ranging from Septem-
ber 1, 2020 to December 31, 2021. This dataset contains
three most populated counties in the US (i.e. Kings
county in New York, Cook county in Chicago and Los
Angeles county in Los Angeles) and their nearby coun-
ties, ranging from September 2020 to December 2021.
We consider this dataset for COVID-19 forecasting in a
longer period. Locations are represented as the GADM
level 2 regions. The spatial connected matrix is calculated
from the social connectedness dataset of meta data for
good project [38].

We collected county-level search data from Google COVID-19
search trends symptoms dataset [8]. Specifically, according to
the existing publications, we consider several symptoms, i.e.
‘fever’, ‘cough’, ‘hay fever’, ‘fatigue’, ‘diarrhea’, ‘rhinitis’ and
‘shortness of breath’. For England, we track five symptoms

including ‘fever’, ‘cough’, ‘hay fever’, ‘rhinitis’ and ‘short-
ness of breath’. For the US, we also track ‘fever’, ‘cough’,
‘hay fever’, ‘fatigue’ and ‘diarrhea’ because ‘rhinitis’ and
‘shortness of breath’ volumes are missing for US counties.
Search volumes of each symptom is normalized to 0-100 as
the normalized popularity of a symptom.

B. Experimental Setup

We train the models using the data from day 1 to day
T to predict disease incidence at day T + k. [39] reports
that certain search symptoms (e.g. ‘fever’) could reach the
highest prediction performance when k is equal or larger than
5. Therefore, we set k from 1 to 7 days in this study. For
England, we increase T one day at a time with T initially
set to 30 days and a validation set of last 10 days. For the
US, we increase T one month at a time with T initially set
to 2 months and validation set of last one month. With this
experiment setup, we can predict disease incidence as early as
possible.

We evaluate the performance of the models using the mean
absolute error (MAE) since absolute changes in the disease
cases are most widely-used metrics in pandemic forecasting
task:

MAE =
1

n

∑
u∈V

∣∣∣ŷ(t)u − y(t)u

∣∣∣ (6)

Note that all reported cases are normalized with the population
of that region throughout the experiments (i.e. cases per
million people).

C. Baselines

We compare our model with several state-of-the-art methods
as listed below:

• Autoregressive Moving Average (ARMA) [40] repre-
sents the linear autoregressive model. ARMA contains
the autoregressive terms and moving-average terms to-
gether. The order of the moving average is set to 2 in
implementation.

• Random Forest (RF) [41] is a non-linear regression
model, which is a meta estimator that fits a number
of regression decision trees on various sub-samples of
the dataset and uses averaging to improve the predictive
accuracy and control over-fitting.



Fig. 4. Monthly predictions for the US.

TABLE IV
THE SETTING OF HYPERPARAMETERS

Hyperparameter Value

Maximum number of epochs 100
Initial learning rate 1e− 3

Batch size 32
Dropout rate 0.5

Feature window/days 2
Graph window/days 7
Early stop epochs 50

Validation days for UK 10
Validation days for USA 30

• Support Vector Regression (SVR) [42] is a non-linear
regression model, which is a nonparametric technique
which relies on kernel functions to make predictions.

• MPNN [16] by design, could serve as an end-to-end
model to predict the disease incidence from the search
activity graph. Comparing to the location-specific regres-
sion models, we follow a similar design as described in
section III-B1 while replacing the loss function as below:

L =
1

n

∑
u∈V

(
y(t+k)
u − ŷ(t+k)

u

)2

(7)

where yt+k
u denotes the reported number of cases for

region u at day t + k and ŷ
(t+k)
u denotes the predicted

number of cases.

Hyper-parameter Setting For all the models, we use the
same validation set to select the best model as decribed in sec-
tion IV-B. Specifically, for RF model, we explore the tree depth
from 3 to 9 to control model complexity. For SVR model, we
use polynomial kernel and explore the regularization term C
from 0.1 to 2. For all the neural network models, as shown in
Table IV, we use two neighborhood aggregation layers with
the number of hidden units equals to 64 and store the model
that achieves highest validation accuracy. To control model
complexity, we apply batch normalization and dropout with
ratio set to 0.5 to every neighborhood aggregation layer.

Fig. 5. Feature importance for SMPNN (k=7).

Fig. 6. Intermediate training errors when training SMPNN model.

D. Prediction Performance

Table III summarizes the comparison between SMPNN and
baselines for the pandemic forecasting tasks on England and
US datasets. We investigate the different settings of predicting
disease incidence one to seven days ahead (k = 1, 2, . . . , 7).
For the regression tasks, we report the mean absolute error
(MAE) of disease cases for two countries. For England, the
models are trained and predict daily in a two-month window.
SMPNN outperforms all the baseline methods in 6/7 tasks,
with MAE reduction up to 5.0% when k equals to 6. For the
US, the models are trained the predict daily in a sixteen-month
window. SMPNN outperforms all the baseline methods in 6/7
tasks, with MAE reduction up to 6.9% when k equals to 5.
For England and the US, the lowest MAE is achieved when k
equals 6 and 7 respectively, which is consistent with previous
studies [5], [39].

E. Contribution of Models and Features

The baseline ARMA, RF and SVR models rely on location-
specific dynamics for training, while end-to-end MPNN replies
on cross-location dynamics with graph as the input. By design,
SMPNN learns from both location-specific and cross-location
dynamics, thus achieving lowest prediction errors as shown
in in Table III. We further investigate how different models
perform at different stages after disease outbreaks. As shown
in Fig. 4, the box plots show the distribution of monthly
new COVID-19 cases and the line plots represent the mean



TABLE V
PEARSON CORRELATION OF TOP TEN SEARCH TERMS FOR UK AND USA

ACROSS ALL REGIONS.

Search Term in UK Correlation Search Term in USA Correlation
Rhinitis 0.446∗∗ Ageusia 0.640∗∗∗

Hay fever 0.442∗∗ Anosmia 0.604∗∗∗

Hair loss 0.390∗ Low grade fever 0.548∗∗∗

Allergy 0.366∗ Fever 0.527∗∗∗

Abdominal obesity 0.362∗ Pneumonia 0.501∗∗∗

Dermatitis 0.359∗ Hypoxemia 0.468∗∗∗

Itch 0.358∗ Chills 0.466∗∗∗

Sleep disorder 0.347∗ Common cold 0.459∗∗∗

Rosacea 0.305∗ Shivering 0.416∗∗

Insomnia 0.297 Dysgeusia 0.409∗∗

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

TABLE VI
PEARSON CORRELATION OF BOTTOM TEN SEARCH TERMS FOR UK AND

USA ACROSS ALL REGIONS.

Search Term in UK Correlation Search Term in USA Correlation
Pericarditis 0.003 Myalgia 0.172

Tumor 0.003 Xerostomia 0.166
Rheum 0.002 Infection 0.164
Bunion 0.002 Erectile dysfunction 0.151
Ataxia 0.002 Hypochondriasis 0.151

Anemia 0.002 Grandiosity 0.137
Petechia 0.001 Bradycardia 0.136
Blushing 0.0003 Periorbital puffiness 0.136

Varicose veins 0.0001 Burning chest pain 0.130
Hypoglycemia 0.00006 Palpitations 0.127

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

absolute error for SVR, MPNN and SMPNN models. At
the early stage of prediction (i.e. the earliest predictions in
11/2020, 12/2020 and 01/2021), SMPNN model outperforms
all other models. SMPNN and SVR achieve the lowest MAE
in 03/2021 while MPNN achieves the lowest MAE four
months later in 07/2021. We also investigate how the location-
specific features and the graph-generated features contribute
to SMPNN model by calculating their average weights. As
shown in Fig. 5, ‘fever past’ and ‘cough past’ (location-
specific features) contribute most to SMPNN model, which
is consistent with previous studies where search relevant to
”fever” and ”cough” contributes most to COVID-19 prediction
[6], [39]. ’fever graph’, ’diarrhea graph’ and ’cough graph’
(graph-generated features) are ranked third to fifth out of
ten features, which shows cross-location dynamics is also
important for COVID-19 forecasting.

F. Search Terms Analysis

Aside from the predictive capability of the model, we
also explored the impact of the search terms on the model’s
performance during training stage. Two perspectives have been
taken into consideration when evaluating these terms. As a first
step, we proposed several term combinations which would be
fed into the model and training errors would then be measured.
The dataset from the UK is used to measure training errors
in our analysis. For single term, we used the ‘rhinitis’, and
‘fever’, ‘cough’, ‘hay fever’, ‘rhinitis’ and ‘shortness of breath’
five terms as multiple terms. Furthermore, we also compared
these different data representations (i.e., utilizing the moving
average in our case) at the same time. As shown in Fig.

6, it’s clear that using only one of the terms (i.e. ’rhinitis’)
could introduce the most training error during the training
phase. The training error decreases as the number of terms
increases, which could be interpreted as evidence that COVID-
19 involves a wide variety of symptoms. A moving average is
more likely to provide a lower training error when compared
to a time series representation.

In addition, we compared the Pearson correlation between
the top ten and lowest ten search terms in the UK and the
USA. From Table V and VI, it can be seen that search terms
vary between countries, which highlights the importance of
location-specific regression. It has been found that search
terms with a high Pearson correlation are relevant to the
symptoms of COVID-19 within a country. In the future, we
will also explore the potential of these terms and leverage them
as part of our work.

Furthermore, to validate our model, we also visualize the
search term trends within UK and USA in Fig. 7 and Fig.
8. This COVID-19 Search Trends Symptoms dataset [43]
provides aggregated, anonymous trends in the Google searches
for over 400 health symptoms, signs, and conditions, such as
cough, fever, difficulty breathing, and other health conditions
that are commonly searched for online. For each region, the
dataset gives a time series of the number of searches that
have been conducted for each of the symptoms over time.
These charts about symptom searches in the United Kingdom
could display various types of data related to the frequency
and distribution of online searches for COVID-19 symptoms
across different regions in the country. We can observe that
the conditions ’Rhinitis’, ’Hay fever’ for UK and ’Ageusia’,
’Anosmia’ for USA contribute a higher frequency with time,
which aligns with our model’s use. We also observe ’Varicose
veins’, ’Hyperglycemia’ for UK and ’Burning chest pains’,
’Palpitations’ for USA contribute lower frequency with time,
which aligns with our observations with their low Pearson
correlation with COVID-19 cases. Fig. 7 and Fig. 8 show the
search terms trend along with time. On these charts, the peak
indicates that there have been more searches related to the
search term. According to the search trends across all sub-
regions, we observe that they share a similar trend during the
progress of COVID-19, which validates our design to include
geographical proximity information in our model design.

V. CONCLUSION

In this paper, a novel approach to pandemic forecasting is
introduced, combining web search activity data and location
relationships in a graph. The proposed framework, SMPNN,
merges the best of existing message passing networks and
location-based regression models. The method was validated
using two real-world COVID-19 datasets and was shown
to outperform prior state-of-the-art models, particularly in
the early stages of outbreaks, by incorporating spatial graph
features. This work makes significant advancements in the
field of disease surveillance and forecasting, offering a new
approach, methodology, datasets, and insights that integrate
web search data and spatial information.



Fig. 7. Normalized search volume ratios for search terms across all sub-regions in the UK (COVID-19 Search Trends symptom dataset [43]).

Fig. 8. Normalized search volume ratios for search terms across all sub-regions in the USA (COVID-19 Search Trends symptom dataset [43]).
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