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Abstract
Recent years have seen a growing interest in Graph Contrastive
Learning (GCL), which trains Graph Neural Network (GNN) model
to discriminate similar and dissimilar pairs of nodes without human
annotations. Most prior GCL work focuses on homogeneous graphs
and little attention has been paid to Heterogeneous Graphs (HGs)
that involve different types of nodes and edges. Moreover, earlier
studies reveal that the explicit use of structure information of un-
derlying graphs is useful for learning representations. Conventional
GCL methods merely measure the likelihood of contrastive pairs
according to node representations, which may not align with the true
semantic similarities. How to leverage such structure information
for GCL is not yet well-understood. To address the aforementioned
challenges, this paper presents a novel method dubbed STructure-
EnhaNced heterogeneous graph ContrastIve Learning, STENCIL
for brevity. At first, we generate multiple semantic views for HGs
based on metapaths. Unlike most methods that maximize the consis-
tency among these views, we propose a novel multiview contrastive
aggregation objective to adaptively distill information from each
view. In addition, we advocate the explicit use of structure embed-
ding, which enriches the model with local structural patterns of the
underlying HGs, so as to better mine true and hard negatives for
GCL. Empirical studies on three real-world datasets show that our
proposed method consistently outperforms existing state-of-the-art
methods and even surpasses several supervised counterparts.

1 Introduction
Many real-world complex interactive objectives can be
represented in Heterogeneous Graphs (HGs) or heterogeneous
information networks. Recent development in heterogeneous
Graph Neural Networks (GNNs) has achieved great success in
analyzing heterogenous data [27, 29]. However, most existing
models require a large amount of labeled data for proper
training [7, 14, 35, 36], which may not be accessible in reality.
As a promising strategy of leveraging abundant unlabeled
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Figure 1: A histogram of negatives and their semantic
similarity scores with an arbitrary anchor node. With the
similarity to the anchor node increasing, there are more
positive samples (false negatives), indicating a mismatch with
the true semantic relationship.

data, Graph Contrastive Learning (GCL) is proposed to
learn representations by distinguishing semantically similar
samples (positives) over dissimilar samples (negatives) in
the latent space without human annotations. Most existing
GCL models follow a multiview paradigm [35, 46, 47], where
multiple views of the input data are constructed via stochastic
augmentations and the model is then trained to maximize the
consistency of representations among these views.

Though multiview GCL has achieved promising perfor-
mance in many tasks, it is still non-trivial to adopt multiview
GCL on HG data. In HGs, multiple types of nodes and edges
convey rich semantic information. It is therefore natural to
construct multiple views based on metapaths. Then, following
the multiview contrastive objective [46, 47], its embeddings
in different views constitute positives and all other embed-
dings are regarded as negative examples. Nevertheless, this
scheme fails to consider the inter-view dependency of dif-
ferent views (e.g., complementary or redundant information
[28]) and may lead to suboptimal performance. For exam-
ple, consider an academic network, where nodes correspond
to four types of entities: Papers (P), Conferences (C), Top-
ics (T), and Authors (A). Two views created by APA and
APCPA share common co-authorship information, while two
other metapaths APCPA and APTPA connect authors from
two dissimilar sources: conferences and topics. Therefore,
it is insufficient to distill comprehensive information from
HGs by only contrasting node representations within each
metapath-induced view.

Furthermore, conventional GCL methods usually ran-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



domly select negative samples from other nodes and measure
the likelihood of contrastive pairs merely using node repre-
sentations, which may not well align with the true semantic
relationship [40, 45]. To see this phenomenon clearly, we
conduct an oracle-based analysis on DBLP, a widely-used
academic network. Specifically, we plot the relationship be-
tween negatives and their similarity scores with one arbitrary
anchor node. As shown in Figure 1, with the similarity of neg-
atives to the anchor increasing, there are more false negatives
samples (i.e. nodes sharing the same label with the anchor). A
possible explanation is that, when neighborhood aggregation
is performed in each semantic view [36], a heterogeneous
GNN produces similar embeddings within ego networks. Em-
beddings of neighboring nodes sharing the same label with
the anchor node thus tend to be similar to the anchor. In
addition, at the beginning of training, node embeddings are
suffered from poor quality, which may be another obstacle of
sampling true negatives.

The above discussion motivates us to quantify the like-
lihood of contrastive pairs from structural aspects. Previous
work has established that explicitly incorporating structure
information of underlying graphs is beneficial for learning
representations [3, 5, 15, 16, 42]. For sampling negative in-
stances in GCL, we argue that it is not only important to con-
sider individual node representations but also local structural
representations. These structural embeddings enhance the
graph model by encoding additional graph-based closeness
between nodes and thus carry local positional information
and context of the given graph-structured data.

In this paper, we propose STructure-EnhaNced hetero-
geneous graph ContrastIve Learning, STENCIL for brevity.
At first, our model works by constructing multiple views
corresponding to metapaths and obtaining node embeddings
within each view through a heterogeneous GNN. Then, we
propose a novel multiview contrastive aggregation objective
for HG data, whose aim is to ensure global consistency among
metapath-induced views and adaptively encode information
from each view. Thereafter, we propose to digest structural
characteristics of underlying HGs rather than simply assess-
ing similarity using node embeddings. In particular, we mea-
sure the similarity of each negative pair according to structure
embeddings. Then, we select negatives with largest similar-
ities and synthesize more negatives by randomly mixing up
these selected negatives. In this way, these synthesized sam-
ples upweight true and hard negative samples from both se-
mantic and structural aspects of HGs. Our structure-enhanced
GCL scheme enjoys another benefit of being irrespective of
the training progress, which could improve the selection of
negatives even in the initial training stage.

In summary, the main contribution of this work is
threefold:

• We propose a novel STENCIL model that enables self-
supervised training for HGs. Specifically, we propose a

novel contrastive aggregation objective that adaptively
learn information from each semantic view.

• To further improve the performance of negative sampling
in GCL for HGs, we propose to enrich the model with
structurally hard negatives.

• Extensive experiments on three real-word datasets
from various domains demonstrate the effectiveness
of the proposed method. Particularly, our STENCIL
method outperforms representative unsupervised base-
lines, achieves competitive performance with supervised
counterparts, and even exceeds several of them.

To foster reproducible research, we make all the code
publicly available at https://github.com/CRIPAC-
DIG/STENCIL.

2 Preliminaries
2.1 Problem Definition. We introduce several key defini-
tions of heterogeneous graphs and the problem of unsuper-
vised heterogeneous graph representation learning.

DEFINITION 2.1. A Heterogeneous Graph (HG), denoted
by G = (V, E ,X,R, ϕ, φ), is a graph with multiple types
of nodes and edges, where V, E denote the node set and
the edge set respectively. The node type mapping function
ϕ : V → S associates each node vi ∈ V with a node type
s = ϕ(vi), the edge type mapping function φ : E → R
associates each edge eij ∈ E with an edge type r = φ(eij),
with |S|+ |R| > 2. Moreover, each node vi and each edge
eij is possibly associated with attribute xi and rij . Note that
the edge type r = φ(eij) implicitly defines types of its two
end nodes vi and vj .

DEFINITION 2.2. A metapath p defines a path on the network
schema in the form of s1

r1→ s2
r2→ · · · rl→ sl+1. It represents a

composite relation r1 ◦ r2 ◦ · · · ◦ rl between two nodes v1 and
vl+1 that captures the proximity between the two nodes from
a particular perspective, where ◦ is the composite operator.
We further denote the set of all considered metapaths as P .

DEFINITION 2.3. Given a HG G, the problem of heteroge-
neous graph representation learning aims to learn node rep-
resentations H ∈ R|V|×d that encode both structural and
semantic information, where d ≪ |V| is the dimension of the
embedding space.

2.2 Heterogeneous Graph Neural Networks. Most het-
erogeneous GNNs [7, 36] learn node representations under
different views and then aggregate them using attention net-
works. Following their approaches, we first generate multiple
views, each corresponding to one metapath that encodes one
aspect of information. Then, we leverage an attentive net-
work to compute metapath-specific embedding hp

i for node
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vi under metapath p as

(2.1) hp
i =

K

∥
k=1

σ

 ∑
vj∈Np(vi)

αp
ijW

pxj

 ,

where ∥ concatenates K standalone node representations
in each attention head, Nr(vi) defines the neighborhood
of vi that is connected by metapath p, W p ∈ Rd×m is a
linear transformation matrix for metapath p, and σ(·) is the
activation function, such as ReLU(·) = max(0, ·). The
attention coefficient αp

ij can be computed by a softmax
function

(2.2) αp
ij =

exp(σ(a⊤
p [h

p
i ∥ hp

j ]))∑
vk∈Np(vi)

exp(σ(a⊤
p [h

p
i ∥ hp

k]))
,

where ap ∈ R2d is a trainable metapath-specific linear weight
vector.

Finally, we combine node representation in each view to
an aggregated representation. We employ another attentive
network to obtain the aggregated representation hi that
combines information from every semantic space by

(2.3) hi =

|P|∑
p=1

βphp
i .

The coefficients are given by

βp =
exp(wp)∑

p′∈P exp(wp′)
,(2.4)

wp =
1

|V|
∑
vi∈V

q⊤ · tanh(Whp
i + b),(2.5)

where q ∈ Rdm is the aggregation attention vector, W ∈
Rdm×d, b ∈ Rdm is the weight matrix and the bias vector
respectively, and dm ∈ R is a hyperparameter.

3 The Proposed Method: STENCIL
In the following section, we present the proposed STENCIL
in detail. There are three major components in the proposed
STENCIL framework: (a) a heterogeneous graph encoder,
which embeds nodes under each metapath-induced view into
low-dimensional vectors and aggregates these embeddings
into a final representation, (b) a multiview contrastive aggre-
gation objective that adaptively encodes node representations
in a self-supervised manner, and (c) structure-enriched nega-
tive mining, which discovers and reweights structurally hard
samples.

3.1 Multiview Contrastive Aggregation. As described
in Section 2.2, we first generate multiple views according
to metapaths and learn node representations under these

p1 =

Heterogeneous graph

Metapath-induced views

p2 =

Aggregated views

Contrastive
aggregation

Figure 2: Illustrating the proposed multiview contrastive
aggregation scheme. We construct multiple views induced
by metapaths and learn representations with heterogeneous
GNNs. Then, we train the model with a multiview contrastive
aggregation objective that adaptively distills essential infor-
mation from each view.

views independently using heterogeneous GNN models.
Then, to comprehensively learn the information encoded in
different metapaths, we propose a novel multiview contrastive
aggregation objective, which aims to maximize the agreement
between the node representation under a specific metapath
view and an aggregated representation for all metapaths.
This contrastive aggregation scheme is shown in Figure 2. Its
learning objective can be mathematically expressed as
(3.6)

max
1

|V|
∑
vi∈V

 1

|P|
∑
p∈P

1

2
(I(hp

i ;hi) + I(hi;h
p
i ))

 ,

where hp
i is a metapath-specific embedding for node vi under

metapath p and hi is the aggregated embedding for node vi
that collects information of all its relations.

Following previous work [10, 32, 45], to estimate the
mutual information I(hp

i ;hi) in Eq. (3.6), we empirically
choose the InfoNCE estimator. Concretely, for node represen-
tation hp

i in one specific metapath-induced view, we construct
its positive sample as the aggregated representation hi, while
embeddings of all other nodes in the semantic and the aggre-
gated embeddings are considered as negative samples. The
contrastive loss can be expressed by
(3.7)

L(hp
i ,hi) = − log

eθ(h
p
i ,hi)/τ

eθ(h
p
i ,hi)/τ +

∑
j ̸=i

(
eθ(h

p
i ,hj)/τ + eθ(h

p
i ,h

p
j )/τ

) ,
where τ ∈ R is a temperature parameter. We define the critic
function θ(·, ·) by

θ(hi,hj) =
g(hi)

⊤g(hj)

∥g(hi)∥∥g(hi)∥
,

where g(·) is parameterized by a non-linear multilayer
perceptron to enhance the expressive power [2].
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Anchor
Negatives
Structurally hard negatives
Synthetic negatives

Metapath-induced view

Figure 3: The proposed structure-enhanced negative mining
scheme, which discovers hard negatives in each metapath-
induced view using structure embeddings.

3.2 Structure Embeddings for Metapath-Induced Views.
In the context of HGs, we observe that metapath-level node
representations are not sufficient to calculate the similarity
of each negative pair. Therefore, in this work, to effectively
measure the likelihood of each negative sample with respect to
the anchor, we propose to digest the structural characteristics
of the underlying graphs.

In this paper, we propose two model variants STEN-
CIL-PPR and STENCIL-PE, which use Laplacian positional
embeddings and personalized PageRank scores for model-
ing local structural patterns of the metapath-induced view,
respectively. Note that in order to empower the model with
inductive capabilities, we prefer a local measure to a global
one. Specifically, we introduce a structural metric s(i, j, p)
representing the distance measure of a negative node vi to the
anchor vj given structural embeddings in metapath-induced
view p.

• The Personalized PageRank (PPR) score [12, 18] of
node v is defined as the stationary distribution of a
random walk starting from and returning to node v at a
probability of c at each step. Formally, the PPR vector
of node v under semantic view p satisfies the following
equation

(3.8) spv = (1− c)Apspv + cIpv,

where c is the returning probability and pv is the
preference vector with (pv)i = 1 when i = v and
all other entries set to 0. Ap denotes the adjacency
matrix induced by metapath p. The structural similarity
s(v, k, p) between node v and k can be represented by
the PPR score of node k with respect to v, i.e. (spv)k.

• The Laplacian positional embedding of one node is
defined to be its k smallest non-trivial eigenvectors [5].
We simply define the structure similarity s(v, k, p) as
the inner product between spv and spk.

3.3 Structure-Enhanced Negative Mining. Previous stud-
ies [1, 25, 41] demonstrate that CL benefits from hard nega-
tive samples, i.e. samples close to the anchor node such that

cannot be distinguished easily. As illustrated in Figure 3, after
obtaining structural embeddings for each metapath-induced
view, we perform negative mining by giving larger weights
to structurally harder negative samples. To be specific, we
sort negatives according to the hardness metric s(i, j, p) and
pick the top-T negatives to form a candidate list for metapath-
induced view p. Then, we synthesize M ≪ |V| samples by
creating a convex linear combination of them. The generated
sample h̃p

m can be written as

(3.9) h̃p
m = αmhp

i + (1− αm)hp
j ,

where hp
i ,h

p
j ∈ Bp are randomly picked from the memory

bank, αm ∼ Beta(α, α), and α ∈ R is a hyperparameter,
fixed to 1 in our experiments. These interpolated samples
will be added into negative bank when estimating mutual
information I(hp

i ;hi), as given in sequel

(3.10) L′(hp
i ,hi) = − log

eθ(h
p
i ,hi)/τ

eθ(h
p
i ,hi)/τ +

∑
h∈Bp

eθ(h
p
i ,h)/τ

,

where the negative bank

(3.11) Bp = {hp
j}j ̸=i ∪ {hj}j ̸=i ∪ {h̃p

m}Mm=1

consists of all inter-view and intra-view negatives as well as
synthesized hard negatives.

3.4 Model Training and Complexity Analysis. The con-
trastive objective ℓ(hi;h

p
i ) for the aggregated node represen-

tation hi can be defined similarly as Eq. (3.10). The final
objective is an average of the losses from all contrastive pairs,
formally given by
(3.12)

J =
1

|V|
∑
vi∈V

 1

|P|
∑
p∈P

1

2
(L′(hp

i ;hi) + L′(hi;h
p
i ))

 .

We use stochastic gradient descent algorithms to update all
model parameters. We summarize the training procedure in
Appendix A in the supplementary material.

Most computational burden of the STENCIL framework
lies in the contrastive objective, which involves computing
(|V|2|P|) node embedding pairs. For structure-enhanced
negative mining, the synthesized samples incur an additional
computational cost of O(M |V||P|), which is equivalent
to increasing the memory size by M ≪ |V|. Since the
construction of the candidate list of hard negatives only
depends on metapath-induced views, it can be regarded as a
preprocessing step and will not incur heavy computation.

3.5 Discussions. The proposed multiview contrastive ag-
gregation objective Eq. (3.6) conceptually relates to con-
trastive knowledge distillation [31], where several teacher
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Table 1: Statistics and sources of the public datasets.

Dataset Node Relations Metapaths

Paper (14,328)
Author (4,057)

Conference (20)DBLP1

Term (8,789)

P–A (19,645)
P–C (14,328)
P–T (88,420)

APA
APCPA
APTPA

Paper (3,025)
Author (5,835)ACM2

Subject (56)

P–A (9,744)
P–S (3,025)

PAP
PSP

Movie (4,780)
Actor (5,841)IMDb3

Director (2,269)

M–A (14,340)
M–D (4,780)

MAM
MDM

1 http://ews.uiuc.edu/~jinggao3/doc/BGCM.zip
2 https://github.com/Jhy1993/HAN/blob/master/data/acm/
ACM.mat
3 https://github.com/Jhy1993/HAN/blob/master/data/IMDb
/movie_metadata.csv

models (the metapath-induced views) and one student model
(the aggregation view) are employed. By forcing the embed-
dings between several teachers and a student to be the same,
these aggregated embeddings adaptively collect information
of all relations.

Moreover, the proposed structure-enhanced negative
mining scheme generally resembles many studies in domains
of metric learning [9, 41] and visual contrastive learning
[1, 13, 23, 39]. Nevertheless, none of these methods can
be directly applied to graph-structured data, as the hardness
score defined simply by inner product of node representations
is not sufficient to distinguish negative nodes in graphs and
even results in amplifying false negatives.

4 Experiments
We empirically evaluate the effectiveness of our proposed
STENCIL in this section. The purpose of empirical studies is
to answer the following questions.

• RQ1. How does our proposed STENCIL outperform
representative baseline models?

• RQ2. How does the proposed structure-enhanced
negative mining scheme affect the model performance?

4.1 Datasets. For a comprehensive comparison, we use
three widely-used heterogeneous datasets from various do-
mains: DBLP, ACM, and IMDb, where DBLP and ACM are
two academic networks, and IMDb is a movie network. The
statistics of these three used datasets is summarized in Table
1. For details on datasets, please refer to Appendix B in the
supplementary material.

4.2 Baselines. We compare our model against a compre-
hensive set of baselines, including both traditional and deep
graph representation learning methods.

• DeepWalk [20] generates several sequences by random
walk and training the embeddings using the skip-gram
objective [17].

• ESim [26] captures node semantics from sampled meta-
path instances with a preset weight. In our experiments,
we simply treat all metapaths equally.

• metapath2vec [4] performs metapath-based random
walks and learns node representations using the skip-
gram model similar to DeepWalk. Since metapath2vec
only utilizes one metapath, we experiment with all
available metapaths and report the best preformance.

• HERec [27] converts the heterogeneous graph into
metapath-based graphs and utilizes the skip-gram model
to embed them. Similarly, we test all metapaths and
report the best performance.

• GCN [14] is a deep semi-supervised baseline for homo-
geneous graphs, which works by aggregating informa-
tion from neighborhoods.

• GAT [34] is also a homogeneous graph model. It
further leverages the self-attention mechanism to model
anisotropic neighborhood information.

• HAN [36] is a semi-supervised baseline for heteroge-
neous graphs, which proposes node- and semantic-level
attention for learning node representations. We also
include the unsupervised version of HAN (denoted by
HAN-U) trained with link prediction loss, for further
comparison with our proposed contrastive objective.

• DGI [35] is a deep contrastive learning model for
homogeneous graphs, which maximizes the agreement
of node representations and a global summary vector.

• GRACE [46] is the state-of-the-art contrastive learning
model for homogeneous graphs. It uses a node-level
contrastive objective by generating two graph views and
maximizing the agreement between them.

• HeCo [37] is the state-of-the-art heterogeneous con-
trastive learning model. HeCo constructs two views
with metapaths and the network schema and leverages a
collective contrastive scheme to align the two views.

Among these baselines, DeepWalk, DGI, GRACE, GCN,
and GAT are designed for homogeneous graphs, and the
others are for heterogeneous graphs. Following HAN [36], for
DeepWalk, we simply discard node and edge types and treat
the heterogeneous graph as a homogeneous graph; for DGI,
GRACE, GCN, and GAT, we construct homogeneous graphs
according to all metapaths and report the best performance.

4.3 Performance Comparison (RQ1)

4.3.1 Evaluation Protocols. For comprehensive evaluation,
we follow HAN [36] and perform experiments on two
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Table 2: Performance comparison on three datasets. We report node classification performance in terms of Macro-F1 (Ma-F1)
and Micro-F1 (Mi-F1) and node clustering performance in terms of Normalized Mutual Information (NMI) and Adjusted
Rand Index (ARI). Available training data is shown in the second column, where A denotes adjacency matrices according
to metapaths, X denotes node features, and Y denotes ground-truth labels. The highest performance of unsupervised and
supervised models is boldfaced and underlined, respectively.

Method Training
Data

Node Classification Node Clustering

ACM IMDb DBLP ACM IMDb DBLP

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 NMI ARI NMI ARI NMI ARI

DeepWalk A 76.92 77.25 46.38 40.72 79.37 77.43 41.61 35.10 1.45 2.15 76.53 81.35
ESim A 76.89 77.32 35.28 32.10 92.73 91.64 39.14 34.32 0.55 0.10 66.32 68.31

metapath2vec A 65.00 65.09 45.65 41.16 91.53 90.76 21.22 21.00 1.20 1.70 74.30 78.50
HERec A 66.03 66.17 45.81 41.65 92.69 91.78 40.70 37.13 1.20 1.65 76.73 78.50

HAN-U A,X 82.63 81.89 43.98 40.87 90.47 89.65 39.84 32.98 3.92 4.10 74.17 79.98
DGI A,X 89.15 89.09 48.86 45.38 91.30 90.69 58.13 57.18 8.31 11.25 60.62 60.42

GRACE A,X 88.72 88.72 46.64 42.41 90.88 89.76 53.38 54.39 7.52 9.16 62.06 64.13
HeCo A,X 88.15 88.25 51.69 50.75 91.56 91.02 59.53 57.59 10.11 11.74 70.99 76.67

STENCIL-PE A,X 90.76 90.72 58.98 54.48 92.81 92.33 67.93 72.65 15.09 17.23 76.60 81.58
STENCIL-PPR A,X 90.75 90.70 58.96 54.47 92.78 92.30 68.10 73.15 15.03 17.09 76.52 81.49

GCN A,X,Y 86.77 86.81 49.78 45.73 91.71 90.79 51.40 53.01 5.45 4.40 75.01 80.49
GAT A,X,Y 86.01 86.23 55.28 49.44 91.96 90.97 57.29 60.43 8.45 7.46 71.50 77.26
HAN A,X,Y 89.22 89.40 54.17 49.78 92.05 91.17 61.56 64.39 10.31 9.51 79.12 84.76

tasks: node classification and node clustering. For node
classification, we run a k-NN classifier with k = 5 on the
learned node embeddings. We report performance in terms of
Micro-F1 and Macro-F1 for evaluation of node classification.
For dataset split, we randomly select 20% nodes in each
dataset for training and the remaining 80% for test. Regarding
node clustering, we run the k-Means algorithm on the learned
node embeddings with k set to the number of ground-truth
classes. We choose NMI and ARI of the obtained clusters
with respect to ground-truth classes as the evaluation metrics
for clustering. All experiments are repeated for 10 times and
the averaged performance is reported.

4.3.2 Performance and Analysis. Experiment results are
presented in Table 2. Overall, our proposed STENCIL
achieves the best unsupervised performance on almost all
datasets on both node classification and clustering tasks. It is
worth mentioning that our STENCIL is competitive to and
even better than several supervised counterparts.

The performance difference of two variants STENCIL-
PE and STENCIL-PPR is negligible, which demonstrates
that both Laplacian positional embedding and Personalized
PageRank scores that calculate local structural similarities are
suitable for structure-enhanced negative mining.

Compared with traditional approaches based on random
walks and matrix decomposition, our proposed GNN-based
STENCIL outperforms them by large margins. Particularly,
STENCIL improves metapath2vec and HERec by over 25%
on ACM, which demonstrates the superiority of GNN that

can leverage rich node attributes to learn high quality node
representations for heterogeneous graphs.

Compared to other deep unsupervised methods, our
STENCIL obtains promising improvements as well. The per-
formance of the unsupervised version HAN-U trained with a
simple reconstruction loss is even inferior to HERec on IMDb
and DBLP despite its utilization of node attributes. This indi-
cates that the reconstruction loss is insufficient to fully exploit
the structural and semantic information for node-centric tasks
such as node classification and clustering. Compared to DGI,
GRACE, and HeCo, state-of-the-art graph contrastive learn-
ing methods, STENCIL accomplishes excelled performance
on all datasets and evaluation tasks, which validates the ef-
fectiveness of our proposed contrastive aggregation objective
and structure-enhanced negative mining.

Furthermore, experiments show that STENCIL even
outperforms its supervised baselines on ACM and IMDb
datasets. It remarkably improves HAN by over 4% in terms of
node classification Micro-F1 score on IMDb. The outstanding
performance of STENCIL certifies the superiority of our
proposed framework such that it can distill useful information
from each metapath-induced view.

4.4 Close Inspections on Structure-Enhanced Negative
Mining Module (RQ2)

4.4.1 Effectiveness of the Module. We modify the nega-
tive bank in our contrastive objective to study the impact of
structure-enhanced negative mining component:
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Table 3: Effectiveness of the structure-enhanced negative mining module.

Method

Node Classification Node Clustering

ACM IMDb DBLP ACM IMDb DBLP

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 NMI ARI NMI ARI NMI ARI

STENCIL– 88.62 88.43 57.94 52.97 92.42 91.85 58.08 61.80 14.15 15.98 76.23 81.43
STENCIL-Sem 90.24 90.18 58.95 52.38 92.73 92.21 51.63 48.85 15.17 17.25 76.22 81.15
STENCIL-PE 91.40 91.45 58.96 53.73 92.77 92.28 66.57 72.30 15.36 17.30 76.59 81.56

• STENCIL– denotes the model with synthesized hard
samples {h̃p

m}Mm=1 removed, where the negative bank
Bp = {hp

j}j ̸=i ∪ {hj}j ̸=i consists of only inter- and
intra-view negatives.

• STENCIL-Sem discovers and synthesizes semantic neg-
ative samples using inner product of node embeddings,
which is similar to earlier visual contrastive learning
work MoChi [13].

The results are presented in Table 3. It is observed that
STENCIL improves all two model variants consistently on
three datasets for both node classification and clustering tasks.
Especially for node clustering task on ACM, the gain reaches
up to 15%. This verifies the effectiveness of our synthesizing
hard negative sample strategy using structure embeddings.
Secondly, we see that the performance of STENCIL-Sem oc-
casionally improves the base model, which demonstrates the
importance of hard negative mining in effective contrastive
learning. However, its performance is still inferior to that of
our proposed model. The outstanding performance of STEN-
CIL compared to the model variant STENCIL-Sem further
justifies the superiority of our proposed structure-enhanced
negative mining, which exploits the abundant structural infor-
mation of HGs.

4.4.2 The Impact of Two Key Parameters in the Module.
We study how the two key parameters in the negative mining
module affect the performance of STENCIL: the number
of synthesized hard negatives M and the threshold T in
selecting top-T candidate hard negatives. We perform node
classification on the ACM dataset under different parameter
settings by only varying one specific parameter and keeping
all other parameters the same.

As is shown in Figure 4a, the performance of STENCIL
improves as the number of synthesized negatives M increases,
which indicates that the learning of STENCIL benefits from
more synthesized hard negatives. For the parameter T , as
presented in Figure 4b, the model performance first rises
with a larger T , but soon the performance levels off and
decreases as T increases further. We suspect that this is
because a larger T will result in the selection of less hard
negatives, reducing the benefits brought by our proposed
structure-enhanced negative mining strategy.

0 10 20 30 40 50
#Synthesized hard negatives M

88

89

90

88

89

90

Mi-F1

Ma-F1

(a) Synthesized hard negatives

101 102 103

Top-T hard negatives

88
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90

91

88

89

90

Mi-F1

Ma-F1

(b) Candidate hard negative samples

Figure 4: Node classification performance with varied
numbers of synthesized hard negatives and candidate hard
negative samples T on the ACM dataset.

5 Related Work
This section reviews previous related work on heterogeneous
graph embedding methods. Following that, we discuss recent
work on graph contrastive learning.

5.1 Heterogeneous Graph Embedding. The purpose of
Heterogeneous Graph Embedding (HGE) is to project nodes
in a heterogeneous graph into a low-dimensional embedding
space that preserves structural and semantic information.

Proximity-preserving methods. Inspired by network
embedding methods for homogeneous graphs, traditional
HGE methods roughly fall into two lines: random-walk-based
approaches and methods based on preserving first-/second-
order proximity. On the one hand, originated from random-
walk-based methods for homogeneous graphs [8, 20], meta-
path2vec [4] models node context via metapath-based ran-
dom walks and learns node embeddings using the skip-gram
model [17]. Similarly, HERec [27] transforms a heteroge-
neous graph into a homogeneous one through metapath-based
neighborhood and learns representations using DeepWalk-
like strategies. HIN2Vec [6] further proposes a multitask
learning objective to learn representations for nodes and meta-
paths simultaneously. On the other hand, the pioneering
proximity-preserving method PTE [30] extends LINE [30] to
heterogeneous text graphs. HEER [28] further improves PTE
by considering type closeness via edge representations. These
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aforementioned traditional approaches could be regarded as
shallow embedding and thus have difficulty in leveraging
rich node attributes, due to the fact that they are essentially
factorizing a preset proximity matrix [21].

Deep learning approaches. There has been many at-
tempts adopting GNNs into HGs. R-GCN [24] introduces
multiple graph convolutional layers, each corresponding to
one edge type. GTN [43] firstly generates all possible con-
nections via graph transformer layers and performs graph
convolution on the new graph afterwards. Following GAT
[34], HAN [36] introduces self-attention mechanisms [33] to
aggregate features from metapath-based neighborhoods and
weigh different metapaths. Similarly, HetGNN [44] adopts
node-type-based neighborhood aggregation, where the neigh-
borhood is sampled using random walk with restart. More-
over, MAGNN [7] further proposes to aggregate intermediate
node features along each metapath. When performing neigh-
borhood aggregation, HGT [11] implicitly learns metapaths
by modeling heterogeneous attention over each edge.

5.2 Graph Contrastive Learning. Recently, considerable
attention has grown up around the theme of Graph Contrastive
Learning (GCL), which marries the power of GNN and
unsupervised learning. We refer readers to [38] for a
comprehensive survey.

The very first work DGI [35] proposes to maximizes
mutual information (ML) between node embeddings and a
global summary embedding. To be specific, DGI constructs
negative graphs by random shuffling node attributes. Then,
it requires an injective readout function to produce a graph-
level embedding. Mirroring DGI, HDGI [22] adopts CL
into heterogeneous graphs. DMGI [19] proposes to align
the original network and a corrupted network on each view
induced by metapaths and designs a consensus regularization
term to aggregate different metapaths. However, the injective
property is hard to fulfill in practice and thus these methods
may cause information loss due to non-injectivity. Follow-up
work GRACE [46] eschews the need of an injective readout
function and propose a node-level contrastive framework.
Following their work, GCA [47] further proposes stronger
adaptive augmentation schemes.

For HG data, prior work proposes various strategies for
the contrastive objective. HeCo [37] constructs two views
based on metapaths and the network schema and proposes a
co-contrastive objective to learn high-level semantic informa-
tion. Nevertheless, these methods fail to explicitly leverage
structural information for GCL, leading to suboptimal perfor-
mance. We argue that inner product of node embeddings is
inefficient to encode similarity between nodes. In our work,
we propose to define similarity of examples via structural
embeddings, which yields true and hard negative samples in
the context of HGs.

6 Conclusion
This paper has developed a novel heterogeneous graph
contrastive learning framework. To alleviate the label scarcity
problem, we leverage contrastive learning techniques that
enables self-supervised training for HGs. Specifically, we
propose a novel multiview contrastive aggregation objective
that encodes information adaptively from each semantic
view. Furthermore, we propose a novel hard negative
mining scheme to improve the embedding quality, considering
the complex structure of HGs and smoothing nature of
heterogeneous GNNs. The proposed structure-aware negative
mining scheme discovers and reweights structurally hard
negatives so that they contribute more to contrastive learning.
Extensive experiments show that our proposed method not
only consistently outperforms representative unsupervised
baseline methods, but also achieves on par performance with
supervised counterparts and even surpasses several of them.
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