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Abstract—The sparse interactions between users and items on
the web have aggravated the difficulty of their representations
in recommender systems. Existing approaches leverage tags
to alleviate the data sparsity problem, so as to enhance the
performance and interpretability of recommendation. However,
directly using flat item tags fails to fully exploit the hierarchical
relations in data, but tag taxonomies are not always available. To
this end, we propose TaxoRec to jointly construct a tag taxon-
omy automatically and perform recommendation accurately in
hyperbolic space. Specifically, we first leverage hyperbolic space
and enable the optimization of a discrete taxonomy structure
via a representation-aware scoring function and an adaptive
clustering algorithm, and preserve the hierarchical structure
for interpretability. Then, we propose to capture the complex
relations among users, items, and tags in a unified hyperbolic
metric space, where a novel tag-enhanced aggregation mechanism
and tag-enhanced metric learning algorithm for users and items
are defined. Extensive experiments on four real-world benchmark
datasets show drastic performance gains brought by our proposed
TaxoRec framework1, which constantly achieves an average of
7.76% improvement over the state-of-the-art baselines regarding
both Recall and NDCG metrics. Insightful case studies also show
that our automatically constructed tag taxonomies are highly
accurate and interpretable.

I. INTRODUCTION

In the era of information explosion, recommender systems
(RSs) play a pivotal role in helping users alleviate the problem
of information overload. Traditional collaborative filtering
methods that only implicitly model users’ preferences are
limited by the sparsity of user-item interactions. To address the
sparsity challenge in RSs, it is a common practice to combine
collaborative filtering with auxiliary data. Among them, tags
are one of the most commonly used types of data due to their
vast availability and clear semantics, which can help profile
users’ preferences and item’s properties [10], [28], [58], [29].
Existing approaches usually use the information of tags to
implicitly group items so as to alleviate the sparsity of user-
item interactions.

However, directly using flat item tags may fail to fully
exploit the hierarchical relations among tags. To address this
problem, a few studies [14], [22] start to take tag taxonomy
into consideration. As shown in Fig. 1, a tag taxonomy is a
tree-structured hierarchy, where parent nodes represent more
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Fig. 1. An illustrative example of recommendation with the tag taxonomy.
All solid lines are relations already in the data while the dotted lines refer to
the relations that we want to infer. All tags are marked with <>.

abstract concepts than their children (e.g., <Japanese food>
and <Chinese food> are children of <Asian food>, whereas
<Sushi> and <Sashimi> are children of <Japanese food>).

In this work, we propose to leverage the structured knowl-
edge captured by such tag taxonomies to enhance the recom-
mendation performance while providing valuable interpretabil-
ity. As shown in Fig. 1, although Hand Roll and Salmon
Sashimi are different kinds of food, both of them belong to
<Japanese food>. By leveraging this extra knowledge, we
may recommend Salmon Sashimi to Lisa who has interacted
with Hand roll and other types of Japanese food before.

Although several methods [14], [22] directly use existing
taxonomies to enhance recommendation, well-constructed tax-
onomies are not readily available in every situation and manual
taxonomy construction is often very costly [57], [42], [55],
[53]. Luckily, we find that user-item interactions and item-
tag relations can be helpful to construct a tag taxonomy from
scratch. As shown in Fig. 1, Jack has interacted with Hand
roll (labeled as <Japanese food> and <Sushi>) and Salmon
Sashimi (labeled as <Japanese food> and <Sashimi>), so
we know that Jack might like <Japanese food>. Therefore,
we can also infer the parent-child relations between <Japanese
food> → <Sushi> and <Japanese food> → <Sashimi> for
constructing the tag taxonomy.

Since taxonomy can enhance recommendation and user-item
interactions can also help to construct taxonomy, a natural
question is:



Can we simultaneously learn to construct taxonomy and
perform recommendation?

In this work, we first propose a joint tag Taxonomy
construction and Recommendation (TaxoRec) framework in
hyperbolic space rather than the traditional Euclidean space.
Existing studies about hyperbolic space [34], [35], [39] have
proven that the representation ability of Euclidean space is not
ideal to model complex patterns such as hierarchical structures.
Motivated by recent improvements achieved by hyperbolic
models [7], [48], [44], [54], we propose to leverage hyperbolic
embeddings for our TaxoRec framework, which captures both
the hierarchical relations among tags and the complex relations
among users, items, and tags without additional supervision
beyond the user-item and item-tag matrixes. Due to the dif-
ferent advantages of Poincaré [34] and Lorentz [35] models
in clustering and optimizing, respectively, we novelly exploit
these two types of hyperbolic models together and propose a
TaxoRec framework in hyperbolic space (Section IV-B).

In particular, we first formulate the tag taxonomy construc-
tion problem as finding a discrete tag tree structure through
optimizing the tag embeddings. Specifically, we propose a
representation-aware scoring function to properly rank the
tags. Then, we propose an adaptive clustering algorithm to
capture the hierarchies among tags and explicitly generate a
tag taxonomy in Poincaré model, where the Poincaré model is
suitable for hierarchical clustering [8], [33]. Finally, to further
leverage the constructed tag taxonomy for the modeling of
the tag space, we propose a taxonomy-aware regularization
objective (Section IV-C).

Based on the learned hyperbolic representations of tags,
we propose a novel tag-enhanced hyperbolic representation
of users and items by concatenating their corresponding tag-
irrelevant and tag-relevant embeddings in Lorentz model, due
to its effectiveness in optimization [25]. Since each item
can have multiple tags, we develop a hyperbolic aggregation
operation (i.e., local aggregation operation) for items based
on the Einstein midpoint method [17]. To model higher
order similarity across the user-item bipartite graph (e.g.,
neighbors-of-neighbors), we propose a global aggregation op-
eration based on graph convolution network (GCN) [18], [44],
[51]. The local and global aggregation operations form our
tag-enhanced aggregation mechanism. Moreover, we propose
a tag-enhanced metric learning algorithm to simultaneously
learn tag-enhanced representation by considering the structure
of the tag taxonomy (Section IV-D).

We evaluate the proposed TaxoRec with extensive experi-
ments on four real-world benchmark datasets for recommenda-
tion with implicit feedback. We compare TaxoRec with 14 rec-
ommendation methods focusing on the state-of-the-art metric
learning based, graph based, and tag based methods. Extensive
experimental results show that TaxoRec is able to significantly
improve the recommendation overall baselines (e.g., with up
to 13.83% relative improvements on Recall@10 over the best
baseline). More comprehensive results and discussions as well
as ablation studies, hyperparameter studies, and case studies
are all presented in Section V.

In summary, we mainly make the following contributions:
• We propose a novel research problem of jointly constructing

tag taxonomy and enhancing recommendation based on only
user-item interactions and item-tag relations.

• We propose a TaxoRec framework, which can learn hyper-
bolic tag-enhanced representations of users and items along
with automated taxonomy construction, through exploiting
the individual strengths of Poincaré and Lorentz models
simultaneously.

• We conduct extensive experiments on four real-world
datasets, which demonstrate significant improvements of the
proposed TaxoRec framework on recommendation together
with highly accurate and interpretable taxonomy construc-
tion results.

II. RELATED WORK

A. Metric Learning for Recommendation

The metric learning methods for recommendation use Eu-
clidean distance to measure the similarity between users and
items. Compared with methods based on Matrix Factorization
(MF) that assumes linear relationships between users and items
and uses inner products to model the similarities of user-item
pairs [38], [30], [56], metric learning methods that satisfy the
triangle inequality can better model the complex interactions
in real-world applications [43], [21], [46], and thus can address
the limitations of MF. For example, [21] first proposed a
method called collaborative metric learning (CML), which
learns a metric space to encode not only users’ preferences but
also the user-user and item-item similarities. Since CML in the
Euclidean space limit the representation of users and items,
[36] turned this problem to one-to-one mappings between
Euclidean and hyperbolic spaces. Moreover, to capture higher
order graph structure for user (item) representation learning
such as neighbors-of-neighbors relations among users and
items, [44] measured the distance with hyperbolic graph con-
volutional neural networks model for collaborative filtering.

Although the above metric learning methods achieve
promising performance, the learned representations that rely
on user-item interactions only are limited by data sparsity.
Though CML tried to leverage auxiliary data to alleviate
sparsity, there is no metric learning work that has explicitly
leveraged the hierarchical structural information like taxonomy
for fine-grained user and item modeling.

B. Taxonomy-based Recommendation

Taxonomy has attracted tremendous attention in many ap-
plication domains, due to its fundamental utility and the tree-
structured hierarchy [55], [37], [53]. Previous methods in
recommendation usually use taxonomy data for resolving the
sparsity and costly computation problem. For example, [59]
exploited taxonomic background knowledge to infer users’
profiling effectively. [15] proposed to generate appropriate
explanations for recommendation results with the aid of the
taxonomy data. Besides taxonomies, many studies [49], [31]
based on knowledge graphs (KGs) are applied to alleviate the
sparsity problem. Although both KGs and tag taxonomies can
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be regarded as side information for recommender systems,
KGs cover various semantic relations while tag taxonomies
focus on the hierarchical relations. Compared with KGs, the
advantages of incorporating a taxonomy are that (1) KGs cover
lots of relations that are irrelevant to the recommendation task,
blindly incorporating which can lead to high computational
cost and even harm the recommendation performance, and (2)
by focusing on the hierarchical relations, we can leverage the
tree-structures of taxonomies and hyperbolic spaces to better
arrange user/item embeddings to achieve more accurate and
interpretable recommendations.

While the advantages of taxonomy seem eminent in rec-
ommendation, recent taxonomy-aware methods cannot work
once the taxonomy data is unavailable. Inspired by the works
in NLP that use machine learning algorithms to construct
taxonomies from unstructured data [55], [11], we propose
to automatically construct taxonomy from scratch to ensure
the availability of structural knowledge. As closest to us,
[57] proposed to discover a taxonomy from shopping data
automatically based on a latent factor model. However, they
only leverage the item-tag relations instead of the rich relations
among users, items, and tags.

Note that, automated tag taxonomy construction is different
from semantic annotation that mainly focuses on linking
entities in the texts to their semantic descriptions [1], [2],
[3]. Performing semantic annotation in recommender systems
corresponds to linking tags to items (based on item contents
such as review texts). However, in our setting, we already have
all tags of items given in the dataset which do not really need
semantic annotation. Instead, our goal is to organize these tags
with the underlying hierarchical structure (taxonomy).

C. Hyperbolic Embedding Learning

The semi-structured and unstructured data (e.g., text and
tags) often contain an underlying hierarchical structure that
is difficult to capture with representations in Euclidean space
[12], [48]. To mitigate this problem, [34] proposed to learn
representation in the Poincaré ball formulation of hyperbolic
space that naturally accommodates hierarchical structures. Ex-
panding on that work, [35] found that learning representations
based on the Lorentz formulation of the hyperbolic space are
well-suited for Riemannian optimization.

Recently, with the assumption that real-world data often
reside on implicit hierarchical structures, hyperbolic represen-
tation learning has been applied to different problems [9],
[17], [23], including recommendation [32], [12], [48]. For
example, [32] used a single layer autoencoder in hyperbolic
space to learn user and item embeddings. [48] studied metric
learning in hyperbolic space and its connection to recommne-
dation. [12] applied hyperbolic learning for point of interest
recommendation. Our approach is related to these works in
that we also learn user and item representations in hyperbolic
space. However, a key difference is that our approach can
learn the hierarchical structure explicitly through automated
tag taxonomy construction, which can further deliver accurate
and interpretable recommendation.

III. PRELIMINARIES

A. Recommender Systems
In recommender systems (RSs), we have historical interac-

tions between users and items, where the interaction data can
be represented as a bipartite graph G = {(u, v)|u ∈ U , v ∈ V}.
U and V denote the user and item sets. We consider recom-
mendation based on the implicit feedback matrix X, where
Xuv = 1 denotes a positive sample (u, vp), where user u
interacted with item vp, and Xuv = 0 denotes a negative
sample (u, vq), where the interaction between u and vq is
missing. To alleviate the sparsity problem in RSs, we adopt
tags t ∈ T based on the attribute matrix A, where Avt = 1
denotes that item v has tag t.

B. The Models of Hyperbolic Space
Poincaré model. The Poincaré model Pd = {x ∈ Rd :
∥x∥ < 1} is defined as a set of d-dimensional vectors with
Euclidean norm smaller than 1. The Poincaré distance metric
is defined as: dP(x,y) = cosh−1

(
1 + 2

∥x−y∥2
2

(1−∥x∥2
2)(1−∥y∥2

2)

)
.

Another advantage of Poincaré model is the convenience of
mapping with Klein model Kd = {xK ∈ Rd : ∥xK∥ < 1}
[54] via f(x) = 2x

1+||x||2 , where the hyperbolic embeddings
can be aggregated via the Einstein midpoint method [23] as

HypAve
(
xK
1 , . . . ,xK

N

)
=

N∑
i=1

γix
K
i /

N∑
i=1

γi, (1)

where γi = 1/
√
1− ||xi||2 is the Lorentz factor [23].

Lorentz model. The Lorentz model is the only unbounded
hyperbolic model [54] and is defined as Ld = (Hd, gL)
with points constrained by Hd = {x ∈ Rd+1 : ⟨x,x⟩L =
1,x0 ≥ 0}, where ⟨x,y⟩L is the Lorentzian scale inner
product: ⟨x,y⟩L = −x0y0 +

∑d
i=1 xiyi, and the metric

tensor is: gL(x) = diag(−1, 1, . . . , 1). The associated distance
function in the Lorentz model is given as: dH(x,y) =
cosh−1(−⟨x,y⟩L).
Strengths and limitations. The metric in Poincaré model sat-
isfies all the properties of a distance metric and is interpretable
for visualization [35]. However, it is unstable to update the
latent embeddings through this metric directly, especially when
||x|| ∼ 1 or ||y|| ∼ 1 [25]. The Lorentz allows for an efficient
closed-form computation of the geodesics on the manifold, and
can avoid numerical instabilities that arisen from the Poincaré
distance [35], [5], [25]. Therefore, Lorentz model is better-
suited for Riemannian optimization than Poincaré model [35].

Luckily, due to the equivalence of Poincaré and Lorentz
models [35], we can exploit the models’ individual strengths
simultaneously. In particular, points in Lorentz model can be
mapped into Poincaré model via diffeomorphism p as:

p(x0,x1, · · · ,xd) =
(x1, · · · ,xd)

x0 + 1
. (2)

Furthermore, points in Poincaré model can be mapped into
Lorentz model via diffeomorphism p−1 as:

p−1 (x1, · · · ,xd) =

(
1 + ∥x∥2, 2x1, · · · , 2xd

)
1− ∥x∥2

. (3)
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Fig. 2. The overall framework of TaxoRec.

IV. THE TAXOREC FRAMEWORK

In this section, we present our joint tag Taxonomy con-
struction and Recommendation (TaxoRec) framework in detail.
We first give an overview of TaxoRec. Then, we construct
tag taxonomy in Poincaré model. Furthermore, we propose
a tag-enhanced representation method for users and item. To
measure the similarity between users and items, we propose
a hyperbolic tag-enhanced metric learning algorithm. Finally,
we propose a hyperbolic optimization strategy to effectively
train our model.

A. Method Overview

As shown in Fig. 2, the proposed TaxoRec framework
includes two parts: (1) tag taxonomy construction in Poincaré
model based on the item-tag matrix and tag embeddings;
and (2) tag-enhanced recommendation in Lorentz model (Sec-
tion IV-B).

To build a tree-structured tag taxonomy, we first initial-
ize tag embeddings in Poincaré model and denote them as
T P = {tP1 , . . . , tPS }, where tPi ∈ PDt and S is the number
of tags. Starting from the root node that includes all tags, we
generate fine-grained tag sets level by level via representation-
aware scoring function and adaptive top-down clustering algo-
rithm. Based on the constructed taxonomy, we update the tag
embeddings T P via taxonomy-aware regularization (denoted
as Lreg) (Section IV-C).

To model users and items from both tag-relevant and tag-
irrelevant perspectives, we denote tag-irrelevant embedding for
a user (i.e., uir′ ∈ HDi ) and an item (i.e., vir

′ ∈ HDi ), and
tag-relevant embedding for a user (i.e., utg′ ∈ HDt ), where
Di and Dt are the embedding dimensions. Considering that
an item can be represented by its tags whose embeddings
are learned from the tag taxonomy, we denote a tag-relevant
embedding vtg

′
for an item based on tag embedding T P

(a) Euclidean space (b) Hyperbolic space

<Asian food>
<Japanese food>
<Sushi>

A

B
C

Fig. 3. The comparison between Euclidean and hyperbolic spaces. The
volume of Euclidean space is polynomial, whereas the volume expands
exponentially in hyperbolic spaces. Therefore, the sum of the distances
between the points and the origin in hyperbolic space is much larger than the
Euclidean distance, providing a better arrangement to separate embeddings of
data points in more fine-grained levels of the hierarchy.

by a local aggregation operation. Then, to capture higher
order similarity across user-item bipartite graphs and rep-
resent users, items, and tags more precisely, we propose a
global aggregation operation and obtain uir,vir,utg , and
vtg . By combining the tag-irrelevant embeddings with tag-
relevant ones, we obtain a tag-enhanced representation, i.e.,
u = [uir,utg] ∈ HDi×HDt and v = [vir,vtg] ∈ HDi×HDt .
Finally, we compute the tag-enhanced similarity g(u,v) be-
tween user u and item v via the objectives of the tag-enhanced
metric learning (denoted as LMetric) (Section IV-D).

B. Modelling in Hyperbolic Space

Existing studies [34], [35], [39] have found flaws in Eu-
clidean spaces, where the polynomial expansion has bounded
the ability of the model to represent complex patterns by the
dimensionality of embedding space. The problem is especially
concerning in our joint tag taxonomy construction and rec-
ommendation framework due to the consideration of latent
hierarchies.

Taking tags modeling for example, the limited sum of the
distances between the tags and the origin will make it hard to
arrange all hierarchical tags properly [40], [23]. As shown
in Fig. 3, when representing a tag taxonomy with a two-
dimensional embedding in Euclidean space, the model can
only arrange the tag sets that reside near the origin in the
taxonomy, where we can observe clear boundaries among
tag sets in light blue, light green, and light yellow shallow.
However, the Euclidean space fails to model the relations
among tags that are embedded near the edge of unit ball (i.e.,
||t||2 ∼ 1), where we can observe some overlaps between two
light orange shallows. In this case, it is unclear which tag sets
should the tag in the overlap area belong to.

Furthermore, the suboptimal tag embedding optimization in
Euclidean space will lead to suboptimal taxonomy construc-
tion, where the embeddings of some child tags can reside even
closer to the origin compared with the one of their parent.
For example, in Fig. 3(a), though <Japanese food> acts as
<Sushi>’s parent for a more general concept, the embedding
of <Sushi> near the edge of unit ball can be closer to root
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compared with the one of <Japanese food>. Due to the
unclear relations among tags near the edge of the unit ball,
the constructed tag taxonomy is weak due to the incorrect
hierarchical relations.

To address these problems, we propose to leverage hyper-
bolic space for our TaxoRec, which is inspired by the recent
studies about hyperbolic space [54], [48], [7], [44]. Recall
that hyperbolic space has five models, which are isometric to
each other [6], [13]. Among them, Poincaré model provides
an intuitive way to layout the tags and thus is suitable for
hierarchical clustering [35], [44]. Lorentz model is found to
be more stable for numeric optimization [35], [44]. In light
of these, we propose to construct a tag taxonomy in Poincaré
model, whose goal is to mine hierarchical relations among
tags. Then, we leverage the stable property of Lorentz model
to optimize the whole TaxoRec framework.

In particular, we leverage Poincaré model for a better
arrangement of tags with hierarchical structure inspired by
[40], [23]. Since the volume in Poincaré model expands
exponentially, the sum of the distances between the points and
the origin is larger than that in Euclidean space. Therefore,
we can represent a tag taxonomy in Poincaré model such that
its structure is clearly reflected in tag embeddings even when
||t||2 ∼ 1. For example, we can observe clear hierarchies of
<Asian food> → <Japanese food> → <Sushi> in Fig. 3(b)
but not in Fig. 3(a). More importantly, we can observe that
tag A can be closer to its immediate parent B while distant
from its sibling C. Such clear hierarchical structures meet our
goal of properly arranging tags in a taxonomy.

C. Tag taxonomy Construction

As motivated in Section I and IV-B, it is important to
construct tag taxonomy in Poincaré model. In this way, we
can leverage the hierarchies among tags to enhance the per-
formance of recommendation while providing valuable inter-
pretability. Though the idea of combining tag embedding and
hierarchical clustering is intuitive by itself, two key challenges
as follows need to be addressed for building high-quality tag
taxonomies.

Fisrtly, the tag data lack pre-defined lexico-syntactic pat-
terns (e.g., <Asian food> contains <Japanese food>) to
extract hypernym-hyponym tag pairs. For example, in Fig. 1,
we only know Hand Roll is tagged with <Asian food>,
<Japanese food>, and <Sushi>, where we do not know the
relations among these three tags. In this case, it is challenging
to properly represent tags and the relations among them for
taxonomy construction.

Secondly, it is nontrivial to determine the proper granularity
levels for different tags. When splitting a general tag set
node into fine-grained ones, not all the tags should be pushed
down to the child level. For example, when splitting a tag set
{<Asian food>, <Chinese food>, and <Japanese food>. . .}
in Fig. 1, the general tag <Asian food> should remain in the
parent instead of being allocated into any child sets. Therefore,
it is problematic to directly split parent tags to form child tag
sets by general clustering.

… …

< Asian food >
< Japanese food >
< Sushi >
< Sashimi >

< Chinese food >
< Korean food >

<Japanese food>

< Chinese food>

< Asian food>

< Korean food>

< Tempura >

Item-tag matrix !

Tag set !!

Tag taxonomy Taxo

Node C
Tag embedding *!

Poincar"́model

Fig. 4. The illustration of constructing tag taxonomy.

To address the above two challenges, we propose a
representation-aware scoring function and an adaptive clus-
tering algorithm. In this way, we can iteratively detect the
hierarchies among tags without additional supervision beyond
user-item interactions and item-tag matrix. Fig. 4 shows how
these two components work together and we describe each
component in detail below.

1) Representation-aware scoring function: To select a rep-
resentative object in one node, we should ensure that this
object’s frequency and relevance are higher in the current node
than that in its sibling [55]. Inspire by the above argument,
we propose a representation-aware scoring function. Suppose
a node C has a set of children GC = {G1, G2, . . . , GK}, then
each Gk(1 ≤ k ≤ K) should be a tag subset of C, and have
the same semantic granularity with its siblings in GC . Through
item-tag matrix Ψ, we can obtain EC = {E1, E2, . . . , EK},
where each Ek is a set of item corresponds to the tag set Gk.

To properly represent tags, we first define two factors,
namely Context and Structure as follows.

Context: Since a representative tag for Gk should appear
frequently in corresponding item set Ek, we define con(t, Gk)
as the normalized frequency of tag t in Gk:

con(t, Gk) =
log(tf(t, Ek) + 1)

log(tf(Ek))
, (4)

where tf(t, Ek) is number of occurrences of tag t in Ek, and
tf(Ek) is the total number of tags in item set Ek.

Structure: Since one node’s representative tag should be
more relevant to the current node than that of its sibling, we
define the concentration of tag t on Gk based on its relevance
to the item set Ek:

stru (t, Gk) =
exp (rank (t, Ek))

1 +
∑

1≤j≤K exp (rank (t, Ej))
, (5)

where rank(t, Ek) is a retrieval function that ranks a set of
items based on the query tags appearing in each item, which
is defined as follow:

rank(t, Ek) =
idf(t) · tf (t, Ek) · (k1 + 1)

tf (t, Ek) + k1 ·
(
1− b+ b · tf(Ek)

avgdl

) , (6)

where avgdl is the average tag number of each item in Ek. k1
and b are parameters and are empirically set as 1.2 and 0.5,
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Algorithm 1: Tag taxonomy construction.
Data: The item-tag matrix Ψ, the number of children

K, the tag score threshold δ.
Result: K sets of tags.

1 Tsub ← T ;
2 while True do
3 G1, G2, . . . , GK ← Poincaré-KMEANS(Tsub,K);
4 for k from 1 to K do
5 for t ∈ Tk do
6 s(t, Gk)← socre of tag t for Gk in Eq. 7;
7 if s(t, Gk) < δ then
8 Gk ← Gk − t;

9 T ′

sub ← G1 ∪G2 ∪ · · · ∪GK ;
10 if T ′

sub = Tsub then
11 Break;

12 Tsub ← T
′

sub

respectively. Similar to [55], we calculate the inverse document
frequency weight as idf (t) = ln

(
tf(Ek)−tf(t,Ek)+0.5

tf(t,Ek)+0.5 + 1
)

.
Based on the above context and structure factors, we pro-

pose a representation-aware scoring function for a tag t in a
tag set Gk. To ensure the selected representative tags to satisfy
both factors, we have the following design similar to [41]:

s(t, Gk) =
√

con(t, Gk) · stru(t, Gk). (7)

2) The adaptive clustering algorithm: Though we can mea-
sure the relations among tags via s(t, Gk), the challenge about
how to determine the level of tags still remains. If general tags
co-occur with some fine-grained tags in the taxonomy, their
embeddings tend to fall on the boundaries of different subsets,
making it harder to discover clear subset of tags.

To address the above challenge, we propose an adaptive
clustering algorithm in Poincaré model (shown in Fig. 4).
Since the Poincaré model allows efficiently learning latent
hierarchies among tags [33], we leverage the learned embed-
dings for iteratively clustering. To make the boundaries of
clusters clearer, we first identify general tags and then refine
the tag subset after pushing general tags back to the parent.

Algorithm 1 shows the way how to construct tag taxonomy
via representation-aware scoring and adaptive clustering in
hyperbolic space. Given a parent tag set T , it first puts all
the tags of T into the subset of tags Tsub. Then it iteratively
identifies general tags and refines the subset of tags. In each
iteration, it computes the representativeness score of a tag t for
the subset of tags Gk, and excludes t if its representativeness
is smaller than a threshold δ. After pushing up general tags,
it reforms the subset of tags Tsub and prepares for the
next Poincaré-KMEANS operation [34]. The iterative process
terminates when no more general tags can be detected, and
the final subset of tags G1, G2, . . . , GK are returned.

Finally, to leverage our constructed tag taxonomy and better
model the reality of tags, we propose a taxonomy-aware
regularization objective. Recall that the tag taxonomy con-
struction is conducted in Poincaré model, where we denote tag
embeddings as T P . By calculating scores for tags, we can split
tags into different levels and different tag sets. Based on the
constructed taxonomy, we can regularize the tag embeddings
to be closer to the weighted center of the nodes that they
belong to. In this way, there exist the positive correlation
between the level of tags and degree of regularization, where
the general tags that show up only in top levels will be less
regularized than the fine-grained tags that appear in many
tag sets in different levels. Based on the above intuition, we
propose a taxonomy-aware regularization loss by traversing all
nodes in the tag taxonomy as follows

Lreg =
∑

Gk∈Taxo

∑
ti∈Gk

dP(T
P
i ,

∑
tj∈Gk

s(tj , Gk)T
P
j∑

tl∈Gk
s(tl, Gk)

),

(8)
where dP(x,y) = cosh−1

(
1 + 2

∥x−y∥2
2

(1−∥x∥2
2)(1−∥y∥2

2)

)
measure

the distance in Poincaré model. S is the number of tags. Gk ∈
Taxo represent a node in the tag taxonomy and is formed by
a set of tags.

D. Tag-enhanced Recommendation

Since we cannot identify whether a user interacts with
an item because of its tags, it is important to model users
and items from both tag-irrelevant and tag-relevant perspec-
tives [52], [46]. For example, in Fig. 1, Jack may be easily
attracted by items’ tags, and his interacted Hand roll and
Salmon Sashimi are both labeled as <Japanese food>.
In this case, the interacted tags can reflect Jack’s prefer-
ence. However, the reason that Mary interacted with Salmon
Sashimi and Cheese Pizza may be recommended from her
friends. In this case, it is not suitable to model Mary as she
like <Japanese food> and <Italian food>. To comprehen-
sively model users and items, a straightforward idea is to
directly combine the output of the tag taxonomy with learnable
user and item embeddings in Euclidean space. However, this
method not only separates the taxonomy construction and
recommendation, but also ignores the latent hierarchies that
exist in users and items [22]. Therefore, it fails to leverage
user-item interactions for refining tag embeddings and further
enhance recommendation.

To jointly achieve taxonomy construction and recommen-
dation in a unified tag-enhanced framework, we propose to
leverage tags as connections in hyperbolic space. The insight
is that, an item can be represented by their tags that are
learned from the hierarchical Taxo. By representing items
via their tags, we can update the representation of users, items,
and tags simultaneously. Specifically, we first denote learnable
tag-irrelevant embeddings (i.e., uir′ and vir

′
) to capture the

collaborative latent representations of users and items. Since
the tag information of users is missing, we propose to learn
tag-relevant embeddings for users (i.e., utg′

) together with the
tag-irrelevant embeddings.
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Note that items can have multiple tags, only keep one of
them may harm the recommendation performance. As shown
in Fig. 1, if we profile Jack with the only <Sushi> instead of
using the combination of <Asian food>, <Japaneses food>,
and <Sushi>, he may fail to share preference with the one
who enjoys <Asian food> but have only interacted with some
<Chinese food> before.

To accurately represent items’ tag-relevant embeddings and
obtain tag-enhanced representation for both users and item, we
propose a tag-enhanced aggregation mechanism to properly
aggregate tag embeddings T P via local aggregation operation
and aggregate the higher order similarities among users and
items via global aggregation operation.

Different from traditional Euclidean space, hyperbolic space
with a negative curvature cannot simply apply the Euclidean
aggregation to obtain the centroid properties. To this end, we
propose a local aggregation operation in hyperbolic space for
items based on Einstein midpoint aggregation [17]. Specifi-
cally, we first map the tag embeddings T P in Poincaré model
to the Klein model, and obtain the tag embeddings in Klein
model (denoted as TK) via:

TK =
2T P

1 + ||T P ||2
. (9)

A hyperbolic aggregation of tag embeddings in Klein coordi-
nates is computed as:

µ = local(Ψ,TK) =

∑
i γiψiT

K
i∑

i γiψi

(10)

where γi = 1/
√
1− ||TK

i ||2 is the Lorentz factor and ψi ∈ Ψ
is from item-tag matrix. After that, we map the aggregated tag
embeddings from Klein model to Lorentz model via:

vtg
′
= p−1(

µ

1 +
√
1− ∥µ∥2

), (11)

where p−1 (x1, · · · , xd) can be referred in Eq. 3 in Sec-
tion III).

To capture similarity across user-item bipartite graphs and
encode such information into the final representation, we
propose to leverage higher order information via a global
aggregation operation global, which is under the graph con-
volutional setting [18], [44], [51] to produce tag-enhanced
representations. Since we cannot apply Euclidean mean ag-
gregation in hyperbolic space, we first project the embeddings
to the corresponding tangent space as [44]. Taking user’s tag-
relevant embedding for example, we project utg′

to ToHd via
the logarithmic map logo : HD → ToHD as follows:

logo(u
tg′

) = arcosh
(
−⟨o,utg′

⟩L
) utg′

+ ⟨o,utg′⟩Lo
∥utg′ + ⟨o,utg′⟩Lo∥L

,

(12)
where o = (1, 0, . . . , 0) ∈ HD is the referred origin and
∥utg′∥L =

√
< utg′ ,utg′ >L.

Then, by taking ztg,0u = logo(u
tg′

) as the input to the first
GCN layer in Euclidean space, we can aggregate neighborhood
representation from the previous layer as:

ztg,l+1
u = ztg,lu +

∑
v∈Nu

1

|Nu|
ztg,lv ,

ztg,l+1
v = ztg,lv +

∑
u∈Nv

1

|Nv|
ztg,lu ,

(13)

where Nu = {v|Ruv = 1} ∈ V is the item set that user u in-
teracts with. Similarly, Nv = {u|Ruv = 1} ∈ U is the user set
who interact with item v. Finally, we aggregate representation
from all intermediate layers via global aggregation as:

ztgu = global(utg′
) =

L∑
l=1

ztg,lu ,

ztgv = global(vtg
′
) =

L∑
l=1

ztg,lv ,

(14)

where L is the total number of layers. To project the final
embedding back into Lorentz model, we apply an exponential
map as follow:

utg = expo(z
tg
u )

= cosh
(
∥ztgu ∥L

)
o+ sinh

(
∥ztgu ∥L

) ztgu
∥ztgu ∥L

.
(15)

Similarly, we can obtain the represetation of vtg , uir and vir

by replacing the inputs of Eq. 14 with uir′ and vir
′
, and then

apply the exponential as Eq. 15.
By combining the tag-irrelevant embeddings with tag-

relevant ones, i.e., u = [uir, utg] ∈ HDi × HDt and v =
[vir, vtg] ∈ HDi × HDt , we represent users and items via
tag-enhanced representation u and v.

Note that users have different levels of being attracted by
tags, modeling all users with equal weights of tag-relevant
and tag-irrelevant representation may lead to suboptimal per-
formance of recommendation. However, existing similarity
measurements are not designed for such tag-enhanced repre-
sentation. To model users’ personalized preferences towards
tags, we propose to adaptively set users’ personalized weights
for tag-relevant embeddings as follows:

αu =

∑
v∈Vu

|Tv|
|Vu|| ∪v∈Vu

Tv|
, (16)

where Vu denotes the set of items that user u interacts with and
|Vu| denotes the number of items. Tv denotes the set of tags
that item v interacts with. ∪ represents an union operation for
sets. We have αu ∈ [0, 1]. The idea behind Eq. 16 is to leverage
the tripartite user-item-tag graph to calculate the ratio of the
repeated tags in the whole interacted tag sets, i.e., the more
repeated tags of user u have, the more consistent preference of
u towards these tags, and thus the more weights of tag-relevant
should be considered for user u.

With such personalized weights αu, we formulate the tag-
enhanced user-item similarity by g as follows:

g(u,v) = d2H(uir,vir) +αud
2
H(utg,vtg), (17)
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where dH(x,y) = cosh−1(−⟨x,y⟩L) is a distance measure-
ment in Lorentz model.

To learn a tag-enhanced similarity, we utilize the largest
margin nearest neighbour algorithm (LMNN) for optimizing:

LMetric =
∑

(u,vp)∈I

∑
(u,vq)/∈I

[m+ g(u,vp)− g(u,vq)]+ ,

(18)
where I is the set of positive user-item pairs derived from
the implicit feedback data X. m is the margin to enforce the
difference between triplets. [(x)]+ = max(x, 0) denotes the
standard hinge loss.

The final objective function of the proposed TaxoRec is
given by considering the taxonomy-aware regularization (cf.,
Section IV-C) as follows:

min
uir,vir,utg,TP

LMetric + λLreg, (19)

where λ is a weight hyperparameter to control the regulariza-
tion for tags.

E. Riemannian Optimization
Different to traditional Euclidean gradient descend opti-

mization, we apply the Riemannian RSGD [4] for optimiza-
tion. Denoting the X as the variable set, the parameters are
updated by Xt+1 = expXt

(−αt grad(L(Xt))), where the
exp operations in Poincaré model and Lorentz model are
different and will be introduced later. The Riemannian gradient
grad(L(Xt)) can be obtained by

grad(L(Xt)) = (I −XtX T
t )∇(L(Xt)). (20)

Optimizating Lreg . In this scenario, tags are embedded in the
Poincaré model, therefore we use Möbius exponential map:

expTP (η) = T P ⊕
(
tanh

(
∥η∥
2

)
η

∥η∥

)
= T P ⊕ y, (21)

where T P ⊕ y denotes the Möbius addition:

T P ⊕ y =

(
1 + 2⟨T P ,y⟩+ ∥y∥2

)
T P +

(
1− ∥T P ∥2

)
y

1 + 2⟨T P ,y⟩+ ∥T P ∥2∥y∥2
.

(22)
Optimizating LMetric. In this scenario, the embeddings are
computed by Lorentz model, where X = {uir,vir,utg,T P }.
We take vir for example and show how to optimize in Lorentz
model. The exponential map is defined as:

expvir (η) = cosh(∥η∥L)vir + sinh(∥η∥L)
η

∥η∥L
. (23)

V. EXPERIMENTS

In this section, we evaluate our proposed TaxoRec frame-
work focusing on the following four research questions:
• RQ1: How does TaxoRec framework perform compared to

state-of-the-art recommendation methods?
• RQ2: What are the effects of the model components?
• RQ3: How do the hyperparameters affect the recommenda-

tion performance and how to choose optimal values?
• RQ4: Can TaxoRec construct hierarchical tag taxonomy?
• RQ5: How does TaxoRec provide interpretability for rec-

ommendation?

TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

Dataset #User #Item #Interaction Density(%) #Tag
Ciao 5,180 8,836 104,905 0.229 28

Amazon-CD 32,589 20,559 515,562 0.077 331
Amazon-Book 79,368 62,385 4,614,162 0.094 510

Yelp 97,462 48,294 2,242,997 0.048 1138

A. Experimental Setup

1) Datasets: In order to comprehensively verify the ef-
fectiveness of compared methods, we use four real-world
datasets from different application domains with different sizes
and interaction densities, i.e., Ciao2, Amazon CDs & Vinyl
(Amazon-CD)3, Amazon Books (Amazon-Book)3, and Yelp4.
These datasets have been widely adopted in previous literature
[36], [48], [45], and their statistics are summarized in Table I.

2) Evaluation protocols: We split the data into training,
validation, and testing sets based on timestamps given in
the datasets to provide a recommendation evaluation setting.
For each user, we use the first 60% of data as the training
set, 20% data as validation set, and 20% data as the testing
set. We evaluate the recommendation performance using two
metrics: Recall@K and NDCG@K instead of sampled metrics
as suggested in [24]. Intuitively, the Recall metric considers
whether the ground-truth is ranked amongst the top K items
while the NDCG metric is a position-aware ranking metric.

3) Methods for comparison: The following representative
state-of-the-art baselines can be divided into four groups:
general recommendation methods (BPRMF, NMF, NeuMF),
metric learning methods (CML, TransCF, LRML, SML, Hy-
perML), graph based methods (NGCF, LightGCN, HGCF),
and tag based methods (CMLF, AMF, AGCN):

• BPRMF [38]: The Bayesian personalized ranking (BPR)
model is a popular method for Top-N recommendation and
we adopt matrix factorization as the prediction component.

• NMF [26]: Non-negative matrix factorization (NMF) is a
classic model that learns latent factors from interaction data.

• NeuMF [19]: NeuMF is a framework for applying neural
networks to collaborative filtering, which combines multiple
perceptrons with matrix factorization in its framework.

• CML [21]: Collaborative metric learning (CML) is the first
model to use metric learning to solve the collaborative
filtering problem of recommender systems.

• TransCF [36]: TransCF calculates the distance metric by
learning the relationship vector between users and items.

• LRML [47]: Latent relational metric learning (LRML)
employs an augmented memory module to induce a latent
relation for each user-item interaction.

• SML [27]: Symmetric metric learning (SML) with learn-
able margins introduces a symmetrical positive item-centric
metric to pull and push items via the dynamic margins.

2https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
3http://jmcauley.ucsd.edu/data/amazon/
4https://www.yelp.com/dataset
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• HyperML [48]: Hyperbolic metric learning (HyperML)
aims to bridge the gap between Euclidean and hyperbolic
geometry in recommender systems through metric learning
approach.

• NGCF [50]: NGCF is a graph based collaborative filtering
model that follows the standard Graph convolutional neural
network (GCN) [16], which iteratively learns user and item
representations from aggregating neighbors’ embeddings in
the previous layers.

• LightGCN [18]: LightGCN devises a light graph convolu-
tion for training efficiency and generation ability.

• HGCF [44]: HGCF is a hyperbolic GCN architecture for
collaborative filtering.

• CMLF [21]: CMLF integrates tags through a probabilistic
interpretation of the mode that is based on CML.

• AMF [20]: Aspect-based Matrix Factorization model
(AMF) is a MF-based model that decomposes the rating
matrix with reviews.

• AGCN [51]: Adaptive Graph Convolutional Network
(AGCN) leverage an attributed user-item bipartite graph for
joint item recommendation and attribute inference.

• TaxoRec: TaxoRec is our proposed framework, which
jointly learns a recommender system and tag taxonomy in
hyperbolic space.
4) Implementation Details: We implement the proposed

TaxoRec framework with Pytorch. The full code for this work
is available5. Implementations of the general recommendation
methods are either from open-source project or the original au-
thors (BPRMF/CML6, NMF7, NeuMF8, TransCF9, LRML10,
SML11, HyperML12, NGCF13, LightGCN14, and HGCF15).
Implementations of the tag-based methods are constrained
to leverage item tags only according to the original authors
(CMLF6, AMF16, and AGCF17). We optimize the compared
Euclidean baselines with standard SGD and the hyperbolic
ones with Riemannian SGD. We tune all hyperparameters
through grid search. In particular, learning rate in {1e-5, 5e-
5, 1e-4, 5e-4, 1e-3}, the number for splitting tag sets K in
{2, 3, 4}, the tag score threshold δ in {0.25, 0.50, 0.75},
the number of graph layer L in {1, 2, 3, 4}, the margin m
in {0.1, 0.2, 0.3, 0.4}, and the weight λ in {0, 0.01, 0.1,
1.0}. We set the embedding dimension D to 64 for those
algorithms that do not include tags information. As for tag-
based models (i.e., CMLF, AMF, and our proposed TaxoRec),
we set the tag embeddings Dt to 12 and the total embedding

5https://github.com/Melinda315/TaxoRec
6https://github.com/cheungdaven/DeepRec
7https://github.com/ninghaohello/Polysemous-Network-Embedding/
8https://github.com/hexiangnan/neural collaborative filtering
9https://github.com/pcy1302/TransCF
10https://github.com/vanzytay/WWW2018 LRML
11https://github.com/MingmingLie/SML
12https://github.com/lucasvinhtran/hyperml
13https://github.com/xiangwang1223/neural graph collaborative filtering
14https://github.com/gusye1234/LightGCN-PyTorch
15https://github.com/layer6ai-labs/HGCF
16https://github.com/cthurau/pymf
17https://github.com/yimutianyang/AGCN

dimension D is still 64. The batch size is set to 10000. We also
carefully tuned the hyperparameters of all baselines through
cross-validation as suggested in the original papers to achieve
their best performance.

B. Overall Performance Comparison (RQ1)

In general, the proposed TaxoRec outperforms all 14 base-
lines across all evaluation metrics on all datasets, whose im-
provements are significant according to the Wilcoxon signed-
rank test on 5% confidence level. This answers RQ1, showing
that the joint learning of taxonomy construction and recom-
mendation framework is capable of effective collaborative
ranking. In particular, the performance gains of TaxoRec
on Ciao, Amazon-CD, Amazon-Book, and Yelp range from
reasonably large (3.01% achieved with NDCG@10 on Ciao)
to significantly large (13.83% achieved with Recall@10 on
Yelp). Note that the improvements of TaxoRec are more
significant when the numbers of tags are larger and the
hierarchies of tags are deeper, like with Yelp, which supports
the appropriate design of our model to leverage the explicit
hierarchical structure of associative tags. This result also shows
that TaxoRec is effective in modeling hierarchical tags, as we
will further demonstrate in the ablation study.

Moreover, by considering latent hierarchies in hyperbolic
space, HGCF performs better than AGCN in many cases.
However, their learned latent hierarchies do not always per-
fectly match the reality without the help of tag information,
and thus AGCN can sometimes achieve better performance
by considering flat item tags directly. Compared with AGCN,
TaxoRec not only takes hierarchical tags into consideration
but also aggregates tag-relevant embeddings with personalized
weights in hyperbolic space. Therefore, TaxoRec outperforms
AGCN by up to 19.26% in Recall@10 on Amazon-CD.
The main differences between TaxoRec and HGCF reside in
properly constructing and leveraging the hierarchical tags for
recommendation. Specifically, TaxoRec can outperform HGCF
by up to 15.16% in Recall@20 on Yelp.

Note that, the most time-consuming part of TaxoRec is the
graph convolutional layer, which has also been used in the
second runners (e.g., HGCF and ACGN) to capture higher
order graph structure. Relative to that, the overhead from
our automated tag taxonomy construction is quite minor.
Specifically, the time complexity of constructing tag taxonomy
is O(S), where S is the number of tags and is far less than
the number of users and items. In our experiments, we also
found the runtimes of TaxoRec are in the same scale with the
most graph based baselines.

C. Model Ablation (RQ2)

To better understand our proposed techniques, i.e., tag-
enhanced aggregation (Agg), taxonomy-aware regularization,
and hyperbolic space setting, we study TaxoRec as follows:
• CML is the basic metric learning model in Euclidean space;
• CML + Agg is the model with tag-enhanced aggregation

mechanism in Euclidean space, which consider item tags
and the higher order relations in representation;

9



TABLE II
EXPERIMENTAL RESULTS (%) ON FOUR BENCHMARK DATASETS, WHERE * DENOTES A SIGNIFICANT IMPROVEMENT ACCORDING TO THE WILCOXON

SIGNED-RANK TEST. THE BEST PERFORMANCES ARE IN BOLDFACE AND THE SECOND RUNNERS ARE UNDERLINED.

Method Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
Ciao Amazon-CD

BPRMF 3.18±0.13 4.90±0.15 2.26±0.10 3.15±0.16 6.18±0.21 9.55±0.26 4.42±0.20 5.37±0.24
NMF 3.05±0.11 4.72±0.16 2.14±0.09 3.09±0.11 4.99±0.16 7.68±0.14 3.85±0.13 4.77±0.15
NeuMF 3.27±0.18 5.13±0.20 2.73±0.19 3.26±0.20 6.06±0.21 8.44±0.23 4.19±0.23 4.96±0.22
CML 3.67±0.23 5.84±0.26 2.68±0.19 3.40±0.21 6.22±0.15 9.60±0.17 4.55±0.14 5.66±0.19
TransCF 3.50±0.18 5.41±0.19 2.53±0.15 3.37±0.16 6.28±0.18 9.81±0.16 4.66±0.19 5.87±0.18
LRML 3.34±0.19 4.92±0.24 2.48±0.21 3.28±0.17 6.32±0.21 9.77±0.19 4.65±0.21 5.92±0.24
SML 3.60±0.17 5.76±0.19 2.75±0.16 3.44±0.15 6.33±0.25 9.83±0.22 4.92±0.18 6.06±0.20
HyperML 3.81±0.21 6.17±0.26 2.96±0.16 3.74±0.21 7.89±0.25 12.03±0.21 5.79±0.21 7.11±0.26
NGCF 4.71±0.14 7.39±0.19 3.78±0.18 4.66±0.21 7.99±0.20 11.70±0.20 6.08±0.18 7.37±0.20
LightGCN 5.17±0.18 7.86±0.14 4.17±0.15 5.10±0.15 9.77±0.14 14.22±0.15 7.47±0.14 9.02±0.17
HGCF 5.98±0.13 9.35±0.11 4.80±0.13 5.90±0.11 10.01±0.12 14.56±0.12 7.58±0.16 9.21±0.17
CMLF 3.73±0.21 5.92±0.24 2.79±0.18 3.52±0.18 6.32±0.25 9.71±0.23 4.72±0.24 5.79±0.24
AMF 3.56±0.21 5.46±0.23 2.65±0.24 3.41±0.28 6.25±0.27 9.61±0.25 4.72±0.22 5.82±0.24
AGCN 6.10±0.08 9.14±0.11 4.99±0.06 5.86±0.10 9.07±0.13 13.63±0.12 7.11±0.10 8.35±0.11
TaxoRec 6.33±0.07* 9.71±0.12* 5.14±0.08* 6.19±0.10* 10.82±0.12* 15.47±0.10* 8.34±0.11* 9.84±0.09*

Amazon-Book Yelp
BPRMF 4.14±0.14 7.26±0.13 5.34±0.12 6.23±0.18 3.25±0.14 5.56±0.11 2.83±0.16 3.04±0.10
NMF 3.99±0.12 6.58±0.11 4.72±0.15 5.61±0.11 2.25±0.13 3.75±0.18 1.74±0.09 2.28±0.08
NeuMF 4.22±0.15 7.28±0.16 5.41±0.14 6.31±0.15 3.28±0.11 5.74±0.18 2.89±0.14 3.24±0.14
CML 4.53±0.11 7.64±0.15 5.85±0.09 6.92±0.06 3.56±0.13 6.24±0.16 3.24±0.16 4.21±0.15
TransCF 4.27±0.18 7.32±0.15 5.49±0.17 6.38±0.14 3.44±0.12 6.50±0.13 3.07±0.18 4.17±0.12
LRML 4.34±0.15 7.45±0.19 5.50±0.16 6.41±0.11 3.39±0.19 5.70±0.15 2.95±0.18 3.84±0.17
SML 4.42±0.18 7.57±0.11 5.65±0.11 6.62±0.14 3.67±0.14 6.40±0.13 3.16±0.11 4.35±0.15
HyperML 4.79±0.21 7.94±0.23 6.18±0.17 7.20±0.18 4.01±0.19 6.81±0.17 3.25±0.14 4.10±0.16
NGCF 4.19±0.15 6.84±0.13 5.34±0.12 6.23±0.13 3.12±0.11 5.47±0.12 2.42±0.11 3.25±0.16
LightGCN 4.36±0.10 7.11±0.09 5.53±0.09 6.44±0.12 3.81±0.10 6.70±0.09 3.01±0.09 4.11±0.12
HGCF 4.84±0.12 7.99±0.11 6.15±0.15 7.18±0.15 4.04±0.11 6.92±0.13 3.28±0.14 4.20±0.17
CMLF 4.63±0.14 7.66±0.13 5.87±0.07 6.95±0.12 3.99±0.14 6.62±0.15 3.36±0.09 4.27±0.10
AMF 4.57±0.13 7.60±0.19 5.79±0.18 6.73±0.14 3.58±0.13 6.13±0.18 3.02±0.13 4.18±0.12
AGCN 4.63±0.12 7.67±0.13 5.92±0.11 7.01±0.13 4.05±0.11 7.17±0.12 3.19±0.09 4.22±0.11
TaxoRec 5.28±0.12* 8.64±0.11* 6.82±0.14* 7.79±0.16* 4.61±0.08* 7.97±0.12* 3.59±0.09* 4.80±0.11*

TABLE III
ABLATION ANALYSIS OF OUR PROPOSED TAXOREC ON THE FOUR DATASETS.

Ciao Amazon-CD
Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

CML 3.67% 5.84% 2.68% 3.40% 6.22% 9.60% 4.55% 5.66%
CML + Agg 5.52% 8.52% 4.54% 5.38% 9.02% 13.07% 6.95% 8.29%
Hyper + CML 3.81% 6.17% 2.96% 3.74% 7.89% 12.03% 5.79% 7.11%
Hyper + CML + Agg 6.10% 9.71% 4.97% 6.16% 10.39% 15.03% 7.92% 9.45%
TaxoRec 6.33% 9.79% 5.14% 6.19% 10.82% 15.47% 8.34% 9.84%

Amazon-Book Yelp
Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

CML 4.53% 7.64% 5.85% 6.92% 3.56% 6.24% 3.24% 4.21%
CML + Agg 4.70% 7.70% 6.05% 6.96% 3.93% 6.76% 3.31% 4.41%
Hyper + CML 4.79% 7.94% 6.18% 7.20% 4.03% 6.84% 3.28% 4.29%
Hyper + CML + Agg 4.99% 8.17% 6.51% 7.50% 4.37% 7.53% 3.50% 4.47%
TaxoRec 5.28% 8.64% 6.82% 7.79% 4.61% 7.97% 3.59% 4.80%

• Hyper + CML is the basic collaborative metric learning
model in hyperbolic space;

• Hyper + CML + Agg is the model with tag-enhanced aggre-
gation mechanism in hyperbolic space, which also consider
item tags and the higher order relations in representation;

• TaxoRec integrates Hyper + CML + Agg with taxonomy-
aware regularization to leverage the hierarchies among
users, items, and tags in hyperbolic space.

From Table III, we have the following observations:
The performance gains of CML + Agg over CML on four

datasets fluctuate, ranging from 1.18% (achieved in Recall@20
on Amazon-Book) to 69.40% (achieved in NDCG@10 on
Ciao). Similarly, the corresponding performance gains of
Hyper + CML + Agg over Hyper + CML ranges from
2.90% (achieved in Recall@20 on Amazon-Book) to 67.87%
(achieved in NDCG@10 on Ciao). These results show the
enhancement brought by our tag-enhanced aggregation mech-
anism regarding both performance and robustness. Interesting,
the improvements of tag-enhanced aggregation module are
most significant on the Ciao dataset, where the number of
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TABLE IV
HYPERPARAMETER STUDIES ON AMAZON-BOOK AND YELP.

Param. Recall@10 NDCG@10 Recall@10 NDCG@10
Amazon-Book Yelp

K = 2 5.20% 6.69% 4.29% 3.28%
K = 3 5.28% 6.82% 4.61% 3.59%
K = 4 5.23% 6.72% 4.46% 3.47%
δ = 0.25 5.24% 6.74% 4.47% 3.42%
δ = 0.50 5.28% 6.82% 4.61% 3.59%
δ = 0.75 5.21% 6.71% 4.42% 3.39%
L = 1 4.92% 6.38% 4.17% 3.31%
L = 2 5.19% 6.73% 4.43% 3.49%
L = 3 5.28% 6.82% 4.61% 3.59%
L = 4 5.23% 6.77% 4.49% 3.51%
m = 0.1 5.28% 6.82% 4.54% 3.55%
m = 0.2 5.21% 6.79% 4.61% 3.59%
m = 0.3 5.16% 6.71% 4.28% 3.24%
m = 0.4 5.08% 6.62% 4.10% 3.13%
λ = 0.0 4.99% 6.51% 4.35% 3.48%
λ = 0.01 5.20% 6.78% 4.40% 3.49%
λ = 0.1 5.28% 6.82% 4.51% 3.53%
λ = 1.0 5.12% 6.61% 4.61% 3.59%

tags is only 28. Such observation strongly indicates that the
tag-enhanced aggregation module is more useful when the tags
are neat and lack hierarchy.

The performance gains of TaxoRec over Hyper + CML +
Agg ranges from 0.56% (achieved in NDCG@20 on Ciao) to
7.38% (achieved in NDCG@20 on Yelp). The result shows
that: (1) the explicitly taxonomy-aware regularization can
further improve the performance in hyperbolic space, where
hyperbolic space implicitly capture the latent hierarchies; (2)
on the datasets (e.g., Yelp) that have a larger number of
tags and deeper hierarchies among tags, the improvement
of taxonomy-aware regularization are more significant by
properly arranging tag embedding according to the context
and structure information in the taxonomy.

Compared with the models optimized in Euclidean space,
the models in hyperbolic space leads to significant perfor-
mance gain. For example, Hyper + CML in hyperbolic space
outperforms CML in Euclidean space by up to 10.45% on
Ciao, 27.25% on Amazon-CD, 5.74% on Amazon-Book, and
13.20% on Yelp. Moreover, even though CML + Agg has
already integrated tag information through tag-enhanced ag-
gregation mechanism in Euclidean space, Hyper + CML +
Agg can still improve the performance by up to 14.44% on
Ciao, 15.24% on Amazon-CD, 7.73% on Amazon-Book, and
11.39% on Yelp. Such results are consistent with those in Table
II, showing the effectiveness of applying hyperbolic space.

D. Effect of Hyperparameters (RQ3)

Our proposed TaxoRec framework mainly introduces six
hyperparameters, i.e., K, δ, L, m, λ, and D.

From Table IV, we have the following observations: (1)
K is used for splitting tag sets, where we found that the
optimal K is about 3. (2) δ is used for selecting representative
tags, where we found that the optimal δ is about 0.5. The
rules for selecting K and δ could be the rule-of-thumb in

24 34 44 54 64
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(a) Amazon-Book

24 34 44 54 64
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4.00%

4.50%

CML
HyperML
TaxoRec

(b) Yelp

Fig. 5. Performance regarding Recall@10 of CML, HyperML and our
proposed TaxoRec with varying dimension D on two of the datasets.

practice across the used datasets. (3) L is the layer of GCN.
TaxoRec achieves the best performance with L = 3. Since
both Amazon-Book and Yelp have sparse interactions with
0.094% and 0.048% density, more neighbor aggregation can
alleviate the data sparsity issue. When L continues to increase
to 4, too many neighbors will lead over smoothing on the
graph, and the performance decreases on all datasets. (4) m
is the margin to enforce the difference between positive and
negative triplets. The optimal m values on Amazon-Book and
Yelp are about 0.1 and 0.2, respectively. In the range of
[0.1, 0.2], the optimal m can be obtained by slight tuning,
which is consistent with [44]. (5) λ controls the weight of
the taxonomy-aware regularization, which aims to enforce the
tag embeddings to be close to the weighted center of nodes
in the taxonomy. Too small λ will cause the tag embeddings
likely be spread out, while too large λ will likely cause the
model to overfit. The optimal λ values on Amazon-Book and
Yelp are about 0.1 and 1.0, respectively. Therefore, TaxoRec is
reasonably sensitive to λ. In the range of [0.1, 1], the optimal
λ can be obtained by slight tuning.

Furthermore, Fig. 5 shows the performance of CML, Hy-
perML, and the proposed TaxoRec with varying settings of
embedding dimension D. The total embedding dimension of
three models are the same, where TaxoRec leave 12 dimen-
sions for the tag-relevant embedding. Overall, we observe that
all three models have performance gains when increasing D.
Compared with CML that is in Euclidean space, HyperML and
TaxoRec in hyperbolic metric space can achieve good results
even when D is small. These results show the effectiveness of
representation learning in hyperbolic space.
E. Tag Taxonomy Analysis (RQ4)

In this subsection, we demonstrate fine-grained taxonomies
that we automatically learn on Amazon-Book and Yelp. As
shown in Fig. 6(a), our proposed TaxoRec splits the tag set in
level-1 into two fine-grained tag sets: (1) Tag set 1: {<Health,
Fitness, Dieting>, <Food & Wine>, <Cookbooks>. . .}; (2)
Tag set 2: {<Science Fiction & Fantasy>, <Literature &
Fiction>, <Science Fiction>. . .}. In Fig. 6(b), we also show
how TaxoRec splits the root in level-0 into the level-1 tag sets:
(1) {<Beauty & Spas>, <Breakfast & Brunch>, <Coffee
& Tea>. . .}; (2) Tag set 2: {<Health & Medical>, <Local
Services>, <Home Services>. . .}.

Taking {<Beauty & Spas>, <Breakfast & Brunch>,
<Coffee & Tea>. . .} in level-1 on Yelp as an example, we
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<Medicine & Health Sciences>

<Religion & Spirituality>
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…

<Science Fiction & Fantasy>

<Literature & Fiction >

<Science Fiction>

…

<Health Professions>

<Mental Health>

<Psychology & Counseling>

…

<Philosophy>

<Dreams>

<New Age & Spirituality>

…

<Women's Fiction >

<Genre Fiction>

<Short Stories & Anthologies>

…

<Children’s Health>

<Women’s Health>

<Men’s Health>

…

<Health, Fitness, Dieting>

<Food & Wine>

<Cookbooks>

…

…

level-2 level-3 level-4level-1

…
…

(a) The taxonomy under level-1 on the Amazon-Book dataset.

…
…

<Day Spas>
<Massage>
<Massage Therapy>
…

<Men’s Hair  Salons>
<Hair Extension>
<Hair Stylist>
…

<Nail Salons>
<Eyelash>
<Hair Removal>
…

…

<Gym>
<Yoga>
<Trainer>
…

level-1 level-2 level-3level-0

…

<Beauty & Spas> 
<Breakfast & Brunch>
<Coffee & Tea>
…

<Health & Medical>
<Local Services>
<Home Services>

…
<Fitness & Instruction>
<Doctors>
<Active Life>
…

<Spas>
<Hair Salons>
<Makeup>
…

(b) The taxonomy under level-0 on the Yelp dataset.

Fig. 6. Parts of the tag taxonomies automatically constructed by the proposed TaxoRec.

TABLE V
EXAMPLES OF TAG-BASED USER PROFILES MODELED BY THE PROPOSED TAXOREC AND THE CORRESPONDING RECOMMENDATIONS.

User Tag Item

A
Z

-B
oo

k

User1 <Science & Mathematics>; <Technology>;
<Software>; <Web Development & Design>. . .

The Heart of Mathematics: An Invitation to Effective; How to Do Every-
thing with JavaScript; . . .

User2 <Health, Fitness, Dieting>; <Health>; <Mental
Health>; <Exercise & Fitness>. . .

Walking for Fitness; Perspectives in Nutrition; Elements of Yoga; Com-
plete Weight Training Book. . .

Y
el

p User3 <Appliances & Repair>; <Auto Repair>; <Health &
Medical>; <Fitness & Instruction>. . .

Best Auto Repair; Kendal Green Service Center; Shamrock Appliance
Repair; Mayfield Bodyworks Massage. . .

User4 <Food>; <Fast Food>; <Nightlife>; <Cocktail
Bars>. . .

Chick-fil-A; Virgils Gullah Kitchen & Bar; The Butterfly Bar; Lucky 13
Cocktail. . .

can observe that:
• at the level-2, TaxoRec can successfully find one of the

major areas as: {<Spas>, <Hair Salons>, <Makeup>. . .};
• at the level-3, TaxoRec can further split the tag set of

node in level-2 into: (1) {<Day Spas>, <Massage>,
<Massage Therapy>. . .}; (2) {<Men’s Hair Salons>,
<Hair Extension>, <Hair Stylist>. . .}; (3) {<Nail Sa-
lons>, <Eyelash>, <Hair Removal>. . .}.
As we observe, the taxonomies that can be constructed from

scratch are pretty accurate and highly interpretable, which
can provide knowledge about the rich relations among tags.
Specifically, the hierarchy for tags is constructed automatically
and shows reasonable hypernym-hyponym relations among
tags – these tags are semantically coherent and cover different
aspects and expressions of the same parent tags.

F. Interpretable Case Studies (RQ5)

To provide more insights into the advantages of TaxoRec
in providing interpretable recommendations, we demonstrate
four random users with their closest tags retained by TaxoRec,
and the corresponding items recommended by TaxoRec, on
Amazon-Book and Yelp. Since the relations among users and
tags can be measured through user-tag distances in the metric
space, we obtain each user’s top 4 tags by ranking the distances
between the user to all tags, where the hyperbolic representa-
tions of users, items and tags are learned by TaxoRec.

From Table V, we observe that the tags retained for each
user are highly coherent and form clear hierarchies, such
as <Technology> → <Software> → <Web Development &

Design> for User 1 on Amazon-Book, as well as <Health &
Medical> → <Fitness & Instruction> for User 3 on Yelp.
As a consequence, the items recommended to them are highly
rational, such as How to Do Everything with JavaScript for
User 1 on Amazon-Book, as well as Mayfield Bodyworks
Massage for User 3 on Yelp.

Note that, such user tags, while directly extracted from
the implicit feedback data in an unsupervised fashion, deliver
rather valuable insights into meaningful and representative
user types, which provides potential for more accurate user
profiling and personalized recommendation in the future.

VI. CONCLUSION

In this paper, we propose to automatically construct an
explicit tag taxonomy solely based on existing item tags
and user-item interactions, which can effectively enhance
recommendation from both accuracy and interpretability per-
spectives. Specifically, we propose a novel hyperbolic metric
learning framework TaxoRec to simultaneously optimize a
tag taxonomy and tag-enhanced representations for users and
items, by leveraging the individual strengths of two hyperbolic
models. Extensive experiments demonstrate the clear improve-
ments of TaxoRec over the state-of-the-art baselines and
insightful case studies show the accuracy and interpretability
of our automatically constructed tag taxonomies.

In the future, it would be interesting to consider the incor-
poration and improvements of existing taxonomies when they
are available, and the further application of fine-grained tax-
onomies and user-item-tag relations for tasks such as accurate
user profiling and personalized recommendation.
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