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Abstract—The sparse interactions between users and items on
the web have aggravated the difficulty of their representations
in recommender systems. Existing approaches leverage tags
to alleviate the data sparsity problem, so as to enhance the
performance and interpretability of recommendation. However,
directly using flat item tags fails to fully exploit the hierarchical
relations in data, but tag taxonomies are not always available. To
this end, we propose TaxoRec to jointly construct a tag taxon-
omy automatically and perform recommendation accurately in
hyperbolic space. Specifically, we first leverage hyperbolic space
and enable the optimization of a discrete taxonomy structure
via a representation-aware scoring function and an adaptive
clustering algorithm, and preserve the hierarchical structure
for interpretability. Then, we propose to capture the complex
relations among users, items, and tags in a unified hyperbolic
metric space, where a novel tag-enhanced aggregation mechanism
and tag-enhanced metric learning algorithm for users and items
are defined. Extensive experiments on four real-world benchmark
datasets show drastic performance gains brought by our proposed
TaxoRec framework', which constantly achieves an average of
7.76% improvement over the state-of-the-art baselines regarding
both Recall and NDCG metrics. Insightful case studies also show
that our automatically constructed tag taxonomies are highly
accurate and interpretable.

I. INTRODUCTION

In the era of information explosion, recommender systems
(RSs) play a pivotal role in helping users alleviate the problem
of information overload. Traditional collaborative filtering
methods that only implicitly model users’ preferences are
limited by the sparsity of user-item interactions. To address the
sparsity challenge in RSs, it is a common practice to combine
collaborative filtering with auxiliary data. Among them, tags
are one of the most commonly used types of data due to their
vast availability and clear semantics, which can help profile
users’ preferences and item’s properties [10], [28], [58], [29].
Existing approaches usually use the information of tags to
implicitly group items so as to alleviate the sparsity of user-
item interactions.

However, directly using flat item tags may fail to fully
exploit the hierarchical relations among tags. To address this
problem, a few studies [14], [22] start to take tag taxonomy
into consideration. As shown in Fig. 1, a tag taxonomy is a
tree-structured hierarchy, where parent nodes represent more
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Fig. 1. An illustrative example of recommendation with the tag taxonomy.
All solid lines are relations already in the data while the dotted lines refer to
the relations that we want to infer. All tags are marked with <>.

abstract concepts than their children (e.g., <Japanese food>
and <Chinese food> are children of <Asian food>, whereas
<Sushi> and <Sashimi> are children of <Japanese food>).

In this work, we propose to leverage the structured knowl-
edge captured by such tag taxonomies to enhance the recom-
mendation performance while providing valuable interpretabil-
ity. As shown in Fig. 1, although Hand Roll and Salmon
Sashimi are different kinds of food, both of them belong to
<Japanese food>. By leveraging this extra knowledge, we
may recommend Salmon Sashimi to Lisa who has interacted
with Hand roll and other types of Japanese food before.

Although several methods [14], [22] directly use existing
taxonomies to enhance recommendation, well-constructed tax-
onomies are not readily available in every situation and manual
taxonomy construction is often very costly [57], [42], [55],
[53]. Luckily, we find that user-item interactions and item-
tag relations can be helpful to construct a tag taxonomy from
scratch. As shown in Fig. 1, Jack has interacted with Hand
roll (labeled as <Japanese food> and <Sushi>) and Salmon
Sashimi (labeled as <Japanese food> and <Sashimi>), so
we know that Jack might like <Japanese food>. Therefore,
we can also infer the parent-child relations between <Japanese
food> — <Sushi> and <Japanese food> — <Sashimi> for
constructing the tag taxonomy.

Since taxonomy can enhance recommendation and user-item
interactions can also help to construct taxonomy, a natural
question is:



Can we simultaneously learn to construct taxonomy and
perform recommendation?

In this work, we first propose a joint tag Taxonomy
construction and Recommendation (TaxoRec) framework in
hyperbolic space rather than the traditional Euclidean space.
Existing studies about hyperbolic space [34], [35], [39] have
proven that the representation ability of Euclidean space is not
ideal to model complex patterns such as hierarchical structures.
Motivated by recent improvements achieved by hyperbolic
models [7], [48], [44], [54], we propose to leverage hyperbolic
embeddings for our TaxoRec framework, which captures both
the hierarchical relations among tags and the complex relations
among users, items, and tags without additional supervision
beyond the user-item and item-tag matrixes. Due to the dif-
ferent advantages of Poincaré [34] and Lorentz [35] models
in clustering and optimizing, respectively, we novelly exploit
these two types of hyperbolic models together and propose a
TaxoRec framework in hyperbolic space (Section IV-B).

In particular, we first formulate the tag taxonomy construc-
tion problem as finding a discrete tag tree structure through
optimizing the tag embeddings. Specifically, we propose a
representation-aware scoring function to properly rank the
tags. Then, we propose an adaptive clustering algorithm to
capture the hierarchies among tags and explicitly generate a
tag taxonomy in Poincaré model, where the Poincaré model is
suitable for hierarchical clustering [8], [33]. Finally, to further
leverage the constructed tag taxonomy for the modeling of
the tag space, we propose a taxonomy-aware regularization
objective (Section IV-C).

Based on the learned hyperbolic representations of tags,
we propose a novel tag-enhanced hyperbolic representation
of users and items by concatenating their corresponding tag-
irrelevant and tag-relevant embeddings in Lorentz model, due
to its effectiveness in optimization [25]. Since each item
can have multiple tags, we develop a hyperbolic aggregation
operation (i.e., local aggregation operation) for items based
on the Einstein midpoint method [17]. To model higher
order similarity across the user-item bipartite graph (e.g.,
neighbors-of-neighbors), we propose a global aggregation op-
eration based on graph convolution network (GCN) [18], [44],
[51]. The local and global aggregation operations form our
tag-enhanced aggregation mechanism. Moreover, we propose
a tag-enhanced metric learning algorithm to simultaneously
learn tag-enhanced representation by considering the structure
of the tag taxonomy (Section IV-D).

We evaluate the proposed TaxoRec with extensive experi-
ments on four real-world benchmark datasets for recommenda-
tion with implicit feedback. We compare TaxoRec with 14 rec-
ommendation methods focusing on the state-of-the-art metric
learning based, graph based, and tag based methods. Extensive
experimental results show that TaxoRec is able to significantly
improve the recommendation overall baselines (e.g., with up
to 13.83% relative improvements on Recall@10 over the best
baseline). More comprehensive results and discussions as well
as ablation studies, hyperparameter studies, and case studies
are all presented in Section V.

In summary, we mainly make the following contributions:

« We propose a novel research problem of jointly constructing
tag taxonomy and enhancing recommendation based on only
user-item interactions and item-tag relations.

o We propose a TaxoRec framework, which can learn hyper-
bolic tag-enhanced representations of users and items along
with automated taxonomy construction, through exploiting
the individual strengths of Poincaré and Lorentz models
simultaneously.

« We conduct extensive experiments on four real-world
datasets, which demonstrate significant improvements of the
proposed TaxoRec framework on recommendation together
with highly accurate and interpretable taxonomy construc-
tion results.

II. RELATED WORK
A. Metric Learning for Recommendation

The metric learning methods for recommendation use Eu-
clidean distance to measure the similarity between users and
items. Compared with methods based on Matrix Factorization
(MF) that assumes linear relationships between users and items
and uses inner products to model the similarities of user-item
pairs [38], [30], [56], metric learning methods that satisfy the
triangle inequality can better model the complex interactions
in real-world applications [43], [21], [46], and thus can address
the limitations of MF. For example, [21] first proposed a
method called collaborative metric learning (CML), which
learns a metric space to encode not only users’ preferences but
also the user-user and item-item similarities. Since CML in the
Euclidean space limit the representation of users and items,
[36] turned this problem to one-to-one mappings between
Euclidean and hyperbolic spaces. Moreover, to capture higher
order graph structure for user (item) representation learning
such as neighbors-of-neighbors relations among users and
items, [44] measured the distance with hyperbolic graph con-
volutional neural networks model for collaborative filtering.

Although the above metric learning methods achieve
promising performance, the learned representations that rely
on user-item interactions only are limited by data sparsity.
Though CML tried to leverage auxiliary data to alleviate
sparsity, there is no metric learning work that has explicitly
leveraged the hierarchical structural information like taxonomy
for fine-grained user and item modeling.

B. Taxonomy-based Recommendation

Taxonomy has attracted tremendous attention in many ap-
plication domains, due to its fundamental utility and the tree-
structured hierarchy [55], [37], [53]. Previous methods in
recommendation usually use taxonomy data for resolving the
sparsity and costly computation problem. For example, [59]
exploited taxonomic background knowledge to infer users’
profiling effectively. [15] proposed to generate appropriate
explanations for recommendation results with the aid of the
taxonomy data. Besides taxonomies, many studies [49], [31]
based on knowledge graphs (KGs) are applied to alleviate the
sparsity problem. Although both KGs and tag taxonomies can



be regarded as side information for recommender systems,
KGs cover various semantic relations while tag taxonomies
focus on the hierarchical relations. Compared with KGs, the
advantages of incorporating a taxonomy are that (1) KGs cover
lots of relations that are irrelevant to the recommendation task,
blindly incorporating which can lead to high computational
cost and even harm the recommendation performance, and (2)
by focusing on the hierarchical relations, we can leverage the
tree-structures of taxonomies and hyperbolic spaces to better
arrange user/item embeddings to achieve more accurate and
interpretable recommendations.

While the advantages of taxonomy seem eminent in rec-
ommendation, recent taxonomy-aware methods cannot work
once the taxonomy data is unavailable. Inspired by the works
in NLP that use machine learning algorithms to construct
taxonomies from unstructured data [55], [11], we propose
to automatically construct taxonomy from scratch to ensure
the availability of structural knowledge. As closest to us,
[57] proposed to discover a taxonomy from shopping data
automatically based on a latent factor model. However, they
only leverage the item-tag relations instead of the rich relations
among users, items, and tags.

Note that, automated tag taxonomy construction is different
from semantic annotation that mainly focuses on linking
entities in the texts to their semantic descriptions [1], [2],
[3]. Performing semantic annotation in recommender systems
corresponds to linking tags to items (based on item contents
such as review texts). However, in our setting, we already have
all tags of items given in the dataset which do not really need
semantic annotation. Instead, our goal is to organize these tags
with the underlying hierarchical structure (taxonomy).

C. Hyperbolic Embedding Learning

The semi-structured and unstructured data (e.g., text and
tags) often contain an underlying hierarchical structure that
is difficult to capture with representations in Euclidean space
[12], [48]. To mitigate this problem, [34] proposed to learn
representation in the Poincaré ball formulation of hyperbolic
space that naturally accommodates hierarchical structures. Ex-
panding on that work, [35] found that learning representations
based on the Lorentz formulation of the hyperbolic space are
well-suited for Riemannian optimization.

Recently, with the assumption that real-world data often
reside on implicit hierarchical structures, hyperbolic represen-
tation learning has been applied to different problems [9],
[17], [23], including recommendation [32], [12], [48]. For
example, [32] used a single layer autoencoder in hyperbolic
space to learn user and item embeddings. [48] studied metric
learning in hyperbolic space and its connection to recommne-
dation. [12] applied hyperbolic learning for point of interest
recommendation. Qur approach is related to these works in
that we also learn user and item representations in hyperbolic
space. However, a key difference is that our approach can
learn the hierarchical structure explicitly through automated
tag taxonomy construction, which can further deliver accurate
and interpretable recommendation.

III. PRELIMINARIES
A. Recommender Systems

In recommender systems (RSs), we have historical interac-
tions between users and items, where the interaction data can
be represented as a bipartite graph G = {(u, v)|u € U,v € V}.
U and V denote the user and item sets. We consider recom-
mendation based on the implicit feedback matrix X, where
Xuv = 1 denotes a positive sample (u,vp), where user u
interacted with item vp, and Xy, = 0 denotes a negative
sample (u,vq), where the interaction between v and vq is
missing. To alleviate the sparsity problem in RSs, we adopt
tags t € T based on the attribute matrix A, where Ay = 1
denotes that item v has tag .

B. The Models of Hyperbolic Space

Poincaré model. The Poincaré model P9 = {x € R¢
IX]] < 1} is defined as a set of d-dimensional vectors with
Euclidean norm smaller than 1. The Poincaré distancg metric
is defined as: dp(x,y) = cosh™t 1 +2(

Ix=yll3
] , R EBIEE)
Another advantage of Poincaré model is the convenience of

mapping with Klein model K4 = {xK € RY : ||xX| < 1}

[54] via f(X) = Hﬂﬁ, where the hyperbolic embeddings

can be aggregated via the Einstein midpoint method [23] as
X X

yixtE/ v, (D
i=1

) XE =
i=1

where 7 = l/pl — ||xil|? is the Lorentz factor [23].
Lorentz model. The Lorentz model is the only unbounded
hyperbolic model [54] and is defined as £9 = (HY,gr)
with points constrained by H9 = {x € R : (x,X), =
1, %o = 0}, where (X,y). is ghe Lorentzian scale inner
product: (X,¥)r = —XoYo + j—; XiYj, and the metric
tensor is: g0 (X) = diag(—1,1,...,1). The associated distance
function in the Lorentz model is given as: dy(X,y) =
cosh™(—(x, ¥)r).
Strengths and limitations. The metric in Poincaré model sat-
isfies all the properties of a distance metric and is interpretable
for visualization [35]. However, it is unstable to update the
latent embeddings through this metric directly, especially when
[IX[| ~ L or ||y|| ~ 1 [25]. The Lorentz allows for an efficient
closed-form computation of the geodesics on the manifold, and
can avoid numerical instabilities that arisen from the Poincaré
distance [35], [5], [25]. Therefore, Lorentz model is better-
suited for Riemannian optimization than Poincaré model [35].

Luckily, due to the equivalence of Poincaré and Lorentz
models [35], we can exploit the models’ individual strengths
simultaneously. In particular, points in Lorentz model can be
mapped into Poincaré model via diffeomorphism p as:
(X1, ,Xd) ?)

Xo+1
Furthermore, points in Poincaré model can be mapped into

Lorentz model via diffeomorphism p~—?! as:

1+ x)12, 2%, -+, 2Xq
1—x|]2

HypAve x!, ...

p(XOa Xg,- - 7Xd) =

3)

pil (Xl7"' aXd) =



1
L i Representation-aware Adaptive :
: Item-tag @ Scoring Function Clustering ~ LT€9 :
1 matrix ) 1
! Ta o J ) I
! tagt I: e Pl OO _ Taxonomy- 1
1 embedding Tag taxonomy construction |
| aware .
I . regularization
1 Tag Taxonomy Construction 8 :
Optimization Cj
Lorentz model #{ Local aggregati Tag-enhanced aggregation
Global aggregation mechanism
rTag-relevant otg| - g Tug-enhanced
embedding representation
item v .
. LMetric
LTag-irrelevant i[I0] = = vi"

_Tag-relevant

tgr -
embedding w'El

Tag-enhanced
similarity

measurement

user u

LTag-irrelevant WO -

1

1

1

1

1

1

1

1

1

1

: embedding
[}

1

[}

1

1

1

: embedding
1

Tag-enhanced Recommendation |

Fig. 2. The overall framework of TaxoRec.

IV. THE TAXOREC FRAMEWORK

In this section, we present our joint tag Taxonomy con-
struction and Recommendation (TaxoRec) framework in detail.
We first give an overview of TaxoRec. Then, we construct
tag taxonomy in Poincaré model. Furthermore, we propose
a tag-enhanced representation method for users and item. To
measure the similarity between users and items, we propose
a hyperbolic tag-enhanced metric learning algorithm. Finally,
we propose a hyperbolic optimization strategy to effectively
train our model.

A. Method Overview

As shown in Fig. 2, the proposed TaxoRec framework
includes two parts: (1) tag taxonomy construction in Poincaré
model based on the item-tag matrix and tag embeddings;
and (2) tag-enhanced recommendation in Lorentz model (Sec-
tion IV-B).

To build a tree-structured tag taxonomy, we first initial-
ize tag embeddings in Poincaré model and denote them as
TP = {tf,... 18}, where t¥ € PPt and S is the number
of tags. Starting from the root node that includes all tags, we
generate fine-grained tag sets level by level via representation-
aware scoring function and adaptive top-down clustering algo-
rithm. Based on the constructed taxonomy, we update the tag
embeddings TP via taxonomy-aware regularization (denoted
as Lreg) (Section IV-C).

To model users and items from both tag-relevant and tag-
irrelevant perspectives, we denote rag-irrelevant embedding for
a user (i.e., uir’ € HPi) and an item (i.e., vir' ¢ HPi), and
tag-relevant embedding for a user (i.e., utd’ ¢ HPt), where
D; and Dy are the embedding dimensions. Considering that
an item can be represented by its tags whose embeddings
are learned from the tag taxonomy, we denote a tag-relevant
embedding vt¢’ for an item based on tag embedding TP

<Asian food> '
<Japanese food>|

® <Sushi>

(a) Euclidean space

(b) Hyperbolic space

Fig. 3. The comparison between Euclidean and hyperbolic spaces. The
volume of Euclidean space is polynomial, whereas the volume expands
exponentially in hyperbolic spaces. Therefore, the sum of the distances
between the points and the origin in hyperbolic space is much larger than the
Euclidean distance, providing a better arrangement to separate embeddings of
data points in more fine-grained levels of the hierarchy.

by a local aggregation operation. Then, to capture higher
order similarity across user-item bipartite graphs and rep-
resent users, items, and tags more precisely, we propose a
global aggregation operation and obtain u'",v'" u%, and
v, By combining the tag-irrelevant embeddings with tag-
relevant ones, we obtain a tag-enhanced representation, i.e.,
u=[u"",u9] e HPixHPrandv = [v'" v19] € HPi x}Pr.
Finally, we compute the rag-enhanced similarity g(u,Vv) be-
tween user u and item v via the objectives of the tag-enhanced
metric learning (denoted as Lyjetric) (Section IV-D).

B. Modelling in Hyperbolic Space

Existing studies [34], [35], [39] have found flaws in Eu-
clidean spaces, where the polynomial expansion has bounded
the ability of the model to represent complex patterns by the
dimensionality of embedding space. The problem is especially
concerning in our joint tag taxonomy construction and rec-
ommendation framework due to the consideration of latent
hierarchies.

Taking tags modeling for example, the limited sum of the
distances between the tags and the origin will make it hard to
arrange all hierarchical tags properly [40], [23]. As shown
in Fig. 3, when representing a tag taxonomy with a two-
dimensional embedding in Euclidean space, the model can
only arrange the tag sets that reside near the origin in the
taxonomy, where we can observe clear boundaries among
tag sets in light blue, light green, and light yellow shallow.
However, the Euclidean space fails to model the relations
among tags that are embedded near the edge of unit ball (i.e.,
|[t]|? ~ 1), where we can observe some overlaps between two
light orange shallows. In this case, it is unclear which tag sets
should the tag in the overlap area belong to.

Furthermore, the suboptimal tag embedding optimization in
Euclidean space will lead to suboptimal taxonomy construc-
tion, where the embeddings of some child tags can reside even
closer to the origin compared with the one of their parent.
For example, in Fig. 3(a), though <Japanese food> acts as
<Sushi>’s parent for a more general concept, the embedding
of <Sushi> near the edge of unit ball can be closer to root



compared with the one of Japanese fooe. Due to the
unclear relations among tags near the edge of the unit ball,
the constructed tag taxonomy is weak due to the incorrect
hierarchical relations.
To address these problems, we propose to leverage hyper-
bolic space for our TaxoRec, which is inspired by the recent
studies about hyperbolic space [54], [48], [7], [44]. Recall
that hyperbolic space has ve models, which are isometric to
each other [6], [13]. Among them, Poinéamodel provides
an intuitive way to layout the tags and thus is suitable for
hierarchical clustering [35], [44]. Lorentz model is found to Fig. 4. The illustration of constructing tag taxonomy.
be more stable for numeric optimization [35], [44]. In light
of these, we propose to construct a tag taxonomy in Pcéncar
model, whose goal is to mine hierarchical relations amongTo address the above two challenges, we propose a
tags. Then, we leverage the stable property of Lorentz modepresentation-aware scoring function and an adaptive clus-
to optimize the whole TaxoRec framework. tering algorithm. In this way, we can iteratively detect the
In particular, we leverage Poinéarmodel for a better hierarchies among tags without additional supervision beyond
arrangement of tags with hierarchical structure inspired Biper-item interactions and item-tag matrix. Fig. 4 shows how
[40], [23]. Since the volume in Poindarmodel expands these two components work together and we describe each
exponentially, the sum of the distances between the points &@nponent in detail below.
the origin is larger than that in Euclidean space. Therefore,1) Representation-aware scoring functiofo select a rep-
we can represent a tag taxonomy in Poigcarodel such that resentative object in one node, we should ensure that this
its structure is clearly re ected in tag embeddings even whé@®ject's frequency and relevance are higher in the current node
jitiiz 1. For example, we can observe clear hierarchies #fan that in its sibling [55]. Inspire by the above argument,
<Asian food | <Japanese food ! <Sushk in Fig. 3(b) We propose aepresentation-aware scoring functioBuppose

tag A can be closer to its immediate pardhtwhile distant €achGg(l k _K) should_be a tag sgb_set af, and have
from its siblingC. Such clear hierarchical structures meet othe same semantic granularity with its siblingsdn. Through

goal of properly arranging tags in a taxonomy. item-tag matrix , we can obtairEc = fEj;E2;::1;Ex g,
_ where eaclEy is a set of item corresponds to the tag Ggt
C. Tag taxonomy Construction To properly represent tags, we rst de ne two factors,

As motivated in Section | and IV-B, it is important tonamelyContextand Structureas follows.
construct tag taxonomy in Poinéamodel. In this way, we Context: Since a representative tag f@i should appear
can leverage the hierarchies among tags to enhance the frequently in corresponding item sEf, we de necon(t; G)
formance of recommendation while providing valuable inteas the normalized frequency of tagn Gy:
pretability. Though the idea of combining tag embedding and log(tf (5 Ex) +1)

hierarchical clustering is intuitive by itself, two key challenges con(t; Gg) = 4)
as follows need to be addressed for building high-quality tag log(tf (Ex))
taxonomies. wheretf (t; Ey) is number of occurrences of tagn Ey, and

Fisrtly, the tag data lack pre-de ned lexico-syntactic patf (E,) is the total number of tags in item sE.
terns €.g, <Asian food contains <Japanese food) to  structure: Since one node's representative tag should be
extract hypernym-hyponym tag pairs. For example, in Fig. fore relevant to the current node than that of its sibling, we

we only know Hand Roll is tagged with<Asian food, de ne the concentration of tagon G, based on its relevance
<Japanese fooe, and< Sush®, where we do not know the tg the item seEy:

relations among these three tags. In this case, it is challenging
to properly represent tags and the relations among them for  stry (t;G) = : (5)
taxonomy construction. 1+ ,; g exp(rank(tEj))

Secondly, it is nontrivial to determine the proper granularit%here rank( E ) is a retrieval function that ranks a set of

levels for different tags. When splitting a general tag S€Lms based on the query tags appearing in each item. which
node into ne-grained ones, not all the tags should be push%dde ned as follow: query 1ags app g '

down to the child level. For example, when splitting a tag set .

f<Asian foocb, < Chinese food, and< Japanese fo0d...g  an(t:E,) = id (t) tf (KEx) (kit1) . (6

in Fig. 1, the general tag Asian food should remain in the tf (LE)+ ks 1 b+b ﬁasl'égl)

parent instead of being allocated into any child sets. Therefore,

it is problematic to directly split parent tags to form child tagvhere avgdl is the average tag number of each itei&ink;

sets by general clustering. andb are parameters and are empirically set as 1.2 and 0.5,

p exp (rank (t; Ex))




Algorithm 1: Tag taxonomy construction.

Data: The item-tag matrix , the number of children

K, the tag score threshold

Result: K sets of tags.

1 Teup T
2 while True do

Finally, to leverage our constructed tag taxonomy and better
model the reality of tags, we propose a taxonomy-aware
regularization objective. Recall that the tag taxonomy con-
struction is conducted in Poin@amodel, where we denote tag
embeddings a$ © . By calculating scores for tags, we can split
tags into different levels and different tag sets. Based on the

3 G1:Gy;::::Gk  Poincaé-KMEANS(Teun; K ); constructed taxonomy, we can regularize the tag embeddings
4 | for k from 1 toK do to be closer to the weighted center of the nodes that they
5 for t 2 Ty do belong to. In this way, there exist the positive correlation
6 s(t;Gx)  socre of tag for Gy in Eq. 7; between the level of tags and degree of regularization, where
7 if s(t;Gy) < then the general tags that show up only in top levels will be less
8 L Gy Gp t regularized than the ne-grained tags that appear in many
tag sets in different levels. Based on the above intuition, we
9 Ts(:Jb Gi[ Go[ [ Gk propose a taxonomy-aware regularization loss by traversing all
10 if T;b = T then nodes in the tag taxonomy as follows
. . P
1 B Break; Lo — X X 0o (TP X s(tj,Gk)Tj )
22 | Tsw T o Gy2Taxo t;2Gy tj2G, 112Gk s(ti; Gi)
) (®)
wheredp (x;y) = cosh * 1+2. X vk measure

Tk xK2)(T Kk yk2)
. L . tr}e distance in Poincarmodel.S is the r21umberzof tagsi 2
respectively. Similar to [55], we calculate the inverse documejij . .

. . ~ () tf (E )05 , 4 axo represent a node in the tag taxonomy and is formed by
frequency weight agf (t) =1In i (GE )70 5 a set of tags.
Based on the above context and structure factors, we pro-

pose a representation-aware scoring function for attaga D- Tag-enhanced Recommendation

tag setGi. To ensure the selected representative tags to satisiiSince we cannot identify whether a user interacts with
both factors, we have the following design similar to [41]: an item because of its tags, it is important to model users
and items from both tag-irrelevant and tag-relevant perspec-
tives [52], [46]. For example, in Fig. 1Jack may be easily
attracted by items' tags, and his interacteldnd roll and
Salmon Sashimi are both labeled as Japanese fooel.

2) The adaptive clustering algorithnthough we can mea- |n this case, the interacted tags can re ekick's prefer-
sure the relations among tags @, Gy ), the challenge about ence. However, the reason tHdary interacted withSalmon
how to determine the level of tags still remains. If general tagashimi and Cheese Pizza may be recommended from her
co-occur with some ne-grained tags in the taxonomy, theffiends. In this case, it is not suitable to modéary as she
embeddings tend to fall on the boundaries of different subseige < Japanese food and < Italian food>. To comprehen-
making it harder to discover clear subset of tags. sively model users and items, a straightforward idea is to

To address the above challenge, we propose an adaptiu@ctly combine the output of the tag taxonomy with learnable
clustering algorithm in Poincar model (shown in Fig. 4). user and item embeddings in Euclidean space. However, this
Since the Poinc& model allows ef ciently learning latent method not only separates the taxonomy construction and
hierarchies among tags [33], we leverage the learned embgestommendation, but also ignores the latent hierarchies that
dings for iteratively clustering. To make the boundaries @fxist in users and items [22]. Therefore, it fails to leverage
clusters clearer, we rst identify general tags and then re ngser-item interactions for re ning tag embeddings and further
the tag subset after pushing general tags back to the pareghhance recommendation.

Algorithm 1 shows the way how to construct tag taxonomy To jointly achieve taxonomy construction and recommen-
via representation-aware scoring and adaptive clusteringdation in a uni ed tag-enhanced framework, we propose to
hyperbolic space. Given a parent tag 3etit rst puts all leverage tags as connections in hyperbolic space. The insight
the tags ofT into the subset of tag$sy,. Then it iteratively is that, an item can be represented by their tags that are
identi es general tags and re nes the subset of tags. In eatddarned from the hierarchical axo. By representing items
iteration, it computes the representativeness score oftaftalg via their tags, we can update the representation of users, items,
the subset of tag&y, and excludes if its representativeness and tags simultaneously. Speci cally, we rst denote learnable
is smaller than a threshold After pushing up general tags,tag-irrelevant embeddings.€., u” * and v 0) to capture the
it reforms the subset of tagSsy, and prepares for the collaborative latent representations of users and items. Since
next Poincae-KMEANS operation [34]. The iterative procesghe tag information of users is missing, we propose to learn
terminates when no more general tags can be detected, tagirelevant embeddings for use'r;e.(u‘go) together with the
tag-irrelevant embeddings.

s(t; Gk) = P con(t; G) stru(t;Gg): @)



Note that items can have multiple tags, only keep one of Then, by takingz'9:° = Iogo(utgo) as the input to the rst
them may harm the recommendation performance. As sho@CN layer in Euclidean space, we can aggregate neighborhood
in Fig. 1, if we pro le Jack with the only< Sush instead of representation from the previous layer as:

using the combination of Asian food, < Japaneses food, —_— - X 1 g
and < Sush#, he may fail to share preference with the one Zgn T =z mzv’ ;
who enjoys< Asian food but have only interacted with some V)2<N T (13)
< Chinese food before. 291+ =zl 4 izhg;';
To accurately represent items' tag-relevant embeddings and U2N INvj

obtain tag-enhanced representation for both users and |tem,W eereNu = fvjRu =19 2V is the item set that user in-

propose a tag-enhanc_ed ;ggregation mecha_nism to PropgIM ots with. SimilarlyN, = fujRy, = 1g 2 U is the user set
aggregate tag embeddings’ via local aggregation operation who interact with itenv. Finally, we aggregate representation

and aggregate the higher order similarities among users {?fbdm all intermediate layers via global aggregation as:
items viaglobal aggregation operation.

Different from traditional Euclidean space, hyperbolic space
with a negative curvature cannot simply apply the Euclidean
aggregation to obtain the centroid properties. To this end, we ;1 (14)
propose a local aggregation operation in hyperbolic space for g|oba|(vtg°) - Zt9i -
items based on Einstein midpoint aggregation [17]. Speci - =1 v

. P . . z
cally, we rst map the tag embeddings™ in Poincae model where L is the total number of layers. To project the nal

to the Klein model, and obtain the tag embeddings in Klein . : .
model (denoted a8 ¥ ) via: embedding back into Lorentz model, we apply an exponential

map as follow:
Ko & © U Een.E)
L+ T2

219 | tg% — X tg;l .
¢ = globau® )= zg";

29

tg 15
- cosh kzk, o+sinh kz9k 2o . (19

tg .
A hyperbolic aggregation of tag embeddings in Klein coordi- kzy kL_ ,
nates is computed as: Similarly, we can obtain the represetationvd¥, u™ andv’

P by replacing the inputs of Eq. 14 with" * andv’ °, and then
.. TK
[ | |

_ K apply the exponential as Eq. 15.
= local( ;T%)= — 0 (10) By combining the tag-irrelevant embeddings with tag-

relevant onesj.e, u = [u", u9] 2 HP H Pt andv =

q — ir tg D; D: ; ;
- LK g . [vf,v9]2H" H , We represent users and items via
where ; =1= 1 jj Ty jj?is the Lorentz factor and; 2 tag-enhanced representatiorandyv.

is from item-tag matrix. After that, we map the aggregated tag Note that users have different levels of being attracted by

embeddings from Klein model to Lorentz model via: tags, modeling all users with equal weights of tag-relevant
and tag-irrelevant representation may lead to suboptimal per-

tg® _ 1 . - > R
Ve =P (1+ P W)' a1 formance of recommendation. However, existing similarity

measurements are not designed for such tag-enhanced repre-

where p 1(x1; ;Xg) can be referred in Eq. 3 in Sec-sentation. To model users’ personalized preferences towards

tion 11). tags, we propose to adaptively set users' personalized weights

To capture similarity across user-item bipartite graphs aff t2g-relevant embeddmlgs as follows:
encode such information into the nal representation, we B vav, IV
propose to leverage higher order information via a global VAN | vav, Tuj’ (16)

aggregation operatioglobal, which is under the graph con- hereV, denotes the set of items that usenteracts with and

volutional setting [18], [44], [51] to produce tag-enhance% j denotes the number of item, denotes the set of tags
representations. Since we cannot apply Euclidean mean h%

reqation in hvperbolic space. we rst broiect the embeddincd it itemv interacts with[ represents an union operation for
greg yper pace, proj . : Lits. we have, 2 [0;1]. The idea behind Eq. 16 is to leverage
to the corresponding tangent space as [44]. Taking user's t

. .o d o % tripartite user-item-tag graph to calculate the ratio of the
relevant embedding for example, we proja& to T,H¢ via d in the whole i d . h
the logarithmic magog, : HP I T oHP as follows: repeated tags in the whole interacte tag siets, the more
0" e ' repeated tags of usarhave, the more consistent preference of
49+ to: u9’% o u towards these tags, and thus the more weights of tag-relevant
i = should be considered for user

0 0
log,(u®) =arcosh ho;u'di : :
%o (U™) L ku9®+ ho;u'e’, ok

(%LZ) With such personalized weights,, we formulate the tag-
whegeo =p(1;0;:::;0) 2 HP is the referred origin and enhanced user-item 5|rrj|lar|_ty gy as follows:
ku®k =" < U9ttty guiv)= di UiV + udi V) (1)



wheredy (x;y) = cosh (h x;yi_) is a distance measure-
ment in Lorentz model.
To learn a tag-enhanced similarity, we utilize the largest

TABLE |
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS

. . . . Dataset #User  #ltem  #nteraction Density(%) #Ta
margin nearest neighbour algorithm (LMNN) for optimizing: Ciao 5180 8836 104,905 olzgé ) 289
| Metric X X + . . . Amazon-CD | 32,589 20,559 515,562 0.077 331
= [m+ g(u;vp)  g(u;va)l, ; Amazon-Book | 79,368 62,385 4,614,162 0.094 510
(U;vp)2l (uivg)2 Yelp 97,462 48,294 2,242,997 0.048 1138
(18)
where| is the set of positive user-item pairs derived from

the implicit feedback _daté(. m is the margin to enforce the 5 Experimental Setup

difference between triplet§(x)]+ = max(x; 0) denotes the . .

standard hinge loss. 1) Datasets: In order to comprehensively verify the ef-
The nal objective function of the proposed TaxoRec i¢ectiveness of compared methods, we use four real-world

given by considering the taxonomy-aware regularization (cflatasets from different application domains with different sizes
Section IV-C) as follows: and interaction densities.e., Ciac?, Amazon CDs & Vinyl

(Amazon-CD¥, Amazon Books (Amazon-Book)and Yeld.
(19) These datasets have been widely adopted in previous literature
4361, [48], [45], and their statistics are summarized in Table I.
2) Evaluation protocols:We split the data into training,

_ . L validation, and testing sets based on timestamps given in
E. Riemannian Optimization the datasets to provide a recommendation evaluation setting.
Different to traditional Euclidean gradient descend optFor each user, we use the rst 60% of data as the training
mization, we apply the Riemannian RSGD [4] for optimizaset, 20% data as validation set, and 20% data as the testing
tion. Denoting theX as the variable set, the parameters aget. We evaluate the recommendation performance using two
updated byXi+1 = expy ( tgrad(L(X:))), where the metrics: Recall@K and NDCG@K instead of sampled metrics
exp operations in Poincar model and Lorentz model areas suggested in [24]. Intuitively, the Recall metric considers
different and will be introduced later. The Riemannian gradiemthether the ground-truth is ranked amongst the top K items

grad(L (X)) can be obtained by while the NDCG metric is a position-aware ranking metric.
grad(L(X)) = (1 X X7)r (L(X)): 3) Methods for cor_nparisonThe foI.Iqwing.representative
L ) , . state-of-the-art baselines can be divided into four groups:
Opt|m|z’at|ng L'®9. In this scenario, tags are embedded in th&eneral recommendation methods (BPRMF, NMF, NeuMF),
Poincaé model, therefore we usedlfius exponential map: e learning methods (CML, TransCF, LRML, SML, Hy-
ﬁ —_ = TPy 1) perML), graph based methods (NGCF, LightGCN, HGCF),
2 kk ' and tag based methods (CMLF, AMF, AGCN):

y denotes the Mbius addition: BPRMF [38]: The Bayesian personalized ranking (BPR)
_ by P b2 model is a popular method for Top-N recommendation and

1+2AT yi+ kyk® TH+ 1 kTk™ y we adopt matrix factorization as the prediction component.
1+2hTP;yi + kTP k2kyk?

min LMetric + L'e9-

uir ;Vir ;ulg ;TP !
where is a weight hyperparameter to control the regulariz
tion for tags.

(20)

expre ()= TP  tanh

whereTP

P —
T y= NMF [26]: Non-negative matrix factorization (NMF) is a
classic model that learns latent factors from interaction data.
NeuMF [19]: NeuMF is a framework for applying neural
networks to collaborative ltering, which combines multiple
perceptrons with matrix factorization in its framework.

CML [21]: Collaborative metric learning (CML) is the rst
model to use metric learning to solve the collaborative
Itering problem of recommender systems.

TransCF [36]: TransCF calculates the distance metric by
learning the relationship vector between users and items.
LRML [47]: Latent relational metric learning (LRML)
employs an augmented memory module to induce a latent
relation for each user-item interaction.

SML [27]: Symmetric metric learning (SML) with learn-

(22)
Optimizating LMetc |n this scenario, the embeddings are
computed by Lorentz model, wheke = fu'™ ;v ;u9;TPg.
We takev'™ for example and show how to optimize in Lorentz
model. The exponential map is de ned as:

exp, () =cosh(k k. )v" +sinh(k k)

Kk o (23)

V. EXPERIMENTS
In this section, we evaluate our proposed TaxoRec frame-
work focusing on the following four research questions:

RQ1: How does TaxoRec framework perform compared to
state-of-the-art recommendation methods?

RQ2: What are the effects of the model components?

RQ3: How do the hyperparameters affect the recommenda-

tion performance and how to choose optimal values?
RQ4: Can TaxoRec construct hierarchical tag taxonomy?
RQ5: How does TaxoRec provide interpretability for rec-
ommendation?

able margins introduces a symmetrical positive item-centric
metric to pull and push items via the dynamic margins.

2https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
Shttp:/[jmcauley.ucsd.edu/data/amazon/
“https:/iwww.yelp.com/dataset



HyperML [48]: Hyperbolic metric learning (HyperML) dimensiorD is still 64. The batch size is set to 10000. We also
aims to bridge the gap between Euclidean and hyperbotiarefully tuned the hyperparameters of all baselines through
geometry in recommender systems through metric learningpss-validation as suggested in the original papers to achieve
approach. their best performance.

NGCF [50]: NGCF is a graph based collaborative Itering )

model that follows the standard Graph convolutional neurBt Overall Performance Comparison (RQ1)

network (GCN) [16], which iteratively learns user and item In general, the proposed TaxoRec outperforms all 14 base-
representations from aggregating neighbors' embeddingslimes across all evaluation metrics on all datasets, whose im-

the previous layers. provements are signi cant according to the Wilcoxon signed-
LightGCN [18]: LightGCN devises a light graph convolu-rank test on 5% con dence level. This answers RQ1, showing
tion for training ef ciency and generation ability. that the joint learning of taxonomy construction and recom-
HGCF [44]: HGCF is a hyperbolic GCN architecture formendation framework is capable of effective collaborative
collaborative ltering. ranking. In particular, the performance gains of TaxoRec
CMLF [21]: CMLF integrates tags through a probabilisti®on Ciao, Amazon-CD, Amazon-Book, and Yelp range from
interpretation of the mode that is based on CML. reasonably large (3.01% achieved with NDCG@10 on Ciao)

AMF [20]: Aspect-based Matrix Factorization modefo signi cantly large (13.83% achieved with Recall@10 on
(AMF) is a MF-based model that decomposes the ratingglp). Note that the improvements of TaxoRec are more
matrix with reviews. signi cant when the numbers of tags are larger and the
AGCN [51]: Adaptive Graph Convolutional Network hierarchies of tags are deeper, like with Yelp, which supports
(AGCN) leverage an attributed user-item bipartite graph féhe appropriate design of our model to leverage the explicit
joint item recommendation and attribute inference. hierarchical structure of associative tags. This result also shows
TaxoRec TaxoRec is our proposed framework, whictthat TaxoRec is effective in modeling hierarchical tags, as we
jointly learns a recommender system and tag taxonomy Will further demonstrate in the ablation study.
hyperbolic space. Moreover, by considering latent hierarchies in hyperbolic
4) Implementation Details:We implement the proposedSPace, HGCF performs better than AGCN in many cases.
TaxoRec framework with Pytorch. The full code for this work1oWever, their learned latent hierarchies do not always per-
is availablé. Implementations of the general recommendatidffctly match the reality without the help of tag information,
methods are either from open-source project or the original &nd thus AGCN can sometimes achieve better performance
thors (BPRMF/CML, NMF’, NeuMP, TransCE, LRML®, by considering at item tags directly. Compared with AGCN,
SML, HyperML'2, NGCF3, LightGCN', and HGCES). TaxoRec not only takes hierarchical tags into consideration
Implementations of the tag-based methods are constraifti @S0 aggregates tag-relevant embeddings with personalized
to leverage item tags only according to the original authof¢eights in hyperbolic space. Therefore, TaxoRec outperforms
(CMLF®, AMF6, and AGCR7). We optimize the comparedAGCN py up to 19.26% in Recall@10 on Amazon-_CD._
Euclidean baselines with standard SGD and the hyperbolif® main differences between TaxoRec and HGCF reside in
ones with Riemannian SGD. We tune all hyperparamete‘?é‘)perly constructing apd leveraging the hierarchical tags for
through grid search. In particular, learning ratef ite-5, Se- recommendation. Speci cally, TaxoRec can outperform HGCF

5, 1e-4, 5e-4, leg} the number for splitting tag sets in DY UP 0 15.16% in Recal@20 on Yelp. _
f2, 3, 4, the tag score threshold in f0.25, 0.50, 0.7§, Note that, the most time-consuming part of TaxoRec is the

the number of graph layer in f1, 2, 3, 4, the marginm graph convolutional layer, which has also been used in the
in £0.1, 0.2, 0.3, 04, and the V\;eigiht, in £0. 001 041 Second runnerse(y, HGCF and ACGN) to capture higher
1.05. We set the embedding dimensid to 64 for those Order graph structure. Relative to that, the overhead from
algorithms that do not include tags information. As for taglUl automated tag taxonomy construction is quite minor.
based models.e, CMLF, AMF, and our proposed TaxoRec),,Spem cally, the time complexity of constructing tag taxonomy

we set the tag embeddin@ to 12 and the total embedding'S O(S), whereS is the nu.mber of tags and is far less than
the number of users and items. In our experiments, we also

Shttps://github.com/Melinda315/TaxoRec found the runtimes of TaxoRec are in the same scale with the
Shttps://github.com/cheungdaven/DeepRec most graph based baselines.
"https:/lgithub.com/ninghaohello/Polysemous-Network-Embedding/ )

8https://github.com/hexiangnan/neuredllaborative Itering C. Model Ablation (RQ2)

https://github.com/pcy1302/TransCF

https://github.com/vanzytay WWW201BRML To better understand our proposed techniques, tag-

Lihttps://github.com/MingmingLie/SML enhanced aggregation (Agg), taxonomy-aware regularization,
Lhttps://github.com/lucasvinhtran/hyperml and hyperbolic space setting, we study TaxoRec as follows:
B3https://github.com/xiangwang1223/neugdaph collaborative Itering CML is the basic metric learning model in Euclidean space;
Lhttps://github.com/gusye1234/LightGCN-PyTorch - . L
Shttps-/lgithub.com/layer6ai-labs/HGCF CML + Agg is the _model with tag-ephanced_ aggregation
16https://github.com/cthurau/pymf mechanism in Euclidean space, which consider item tags
1"https://github.com/yimutianyang/AGCN and the higher order relations in representation;



TABLE I
EXPERIMENTAL RESULTS(%) ON FOUR BENCHMARK DATASETS WHERE * DENOTES A SIGNIFICANT IMPROVEMENT ACCORDING TO THENILCOXON
SIGNED-RANK TEST. THE BEST PERFORMANCES ARE IN BOLDFACE AND THE SECOND RUNNERS ARE UNDERLINED

Method Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
Ciao Amazon-CD
BPRMF 3.18 0.13 4.90 0.15 2.26 0.10 3.15 0.16 6.18 0.21 9.55 0.26 4.42 0.20 5.37 0.24
NMF 3.05 0.11 472 0.16 2.14 0.09 3.09 0.11 4.99 0.16 7.68 0.14 3.85 0.13 4.77 0.15
NeuMF 3.27 0.18 5.13 0.20 2.73 0.19 3.26 0.20 6.06 0.21 8.44 0.23 4.19 0.23 4.96 0.22
CML 3.67 0.23 5.84 0.26 2.68 0.19 3.40 0.21 6.22 0.15 9.60 0.17 455 0.14 5.66 0.19
TransCF 3.50 0.18 5.41 0.19 2.53 0.15 3.37 0.16 6.28 0.18 9.81 0.16 4.66 0.19 5.87 0.18
LRML 3.34 0.19 492 0.24 248 0.21 3.28 0.17 6.32 0.21 9.77 0.19 4.65 0.21 5.92 0.24
SML 3.60 0.17 5.76 0.19 2.75 0.16 3.44 0.15 6.33 0.25 9.83 0.22 4.92 0.18 6.06 0.20
HyperML | 3.81 0.21 6.17 0.26 2.96 0.16 3.74 0.21 7.89 0.25 12.03 0.21 5.79 0.21 7.11 0.26
NGCF 471 0.14 7.39 0.19 3.78 0.18 4.66 0.21 7.99 0.20 11.70 0.20 6.08 0.18 7.37 0.20
LightGCN | 5.17 0.18 7.86 0.14 4.17 0.15 5.10 0.15 9.77 0.14 14.22 0.15 7.47 0.14 9.02 0.17
HGCF 5.98 0.13 9.35 0.11 4.80 0.13 5.90 0.11 10.01 0.12 14.56 0.12 7.58 0.16 9.21 0.17
CMLF 3.73 0.21 5.92 0.24 2.79 0.18 3.52 0.18 6.32 0.25 9.71 0.23 472 0.24 5.79 0.24
AMF 3.56 0.21 5.46 0.23 2.65 0.24 3.41 0.28 6.25 0.27 9.61 0.25 4.72 0.22 5.82 0.24
AGCN 6.10 0.08 9.14 0.11 4.99 0.06 5.86 0.10 9.07 0.13 13.63 0.12 7.11 0.10 8.35 0.11
TaxoRec 6.33 0.07* 9.71 0.12* 5.14 0.08* 6.19 0.10* 10.82 0.12* 15.47 0.10* 8.34 0.11* 9.84 0.09*
Amazon-Book Yelp
BPRMF 4.14 0.14 7.26 0.13 5.34 0.12 6.23 0.18 3.25 0.14 5.56 0.11 2.83 0.16 3.04 0.10
NMF 3.99 0.12 6.58 0.11 4.72 0.15 5.61 0.11 2.25 0.13 3.75 0.18 1.74 0.09 2.28 0.08
NeuMF 4.22 0.15 7.28 0.16 5.41 0.14 6.31 0.15 3.28 0.11 5.74 0.18 2.89 0.14 3.24 0.14
CML 453 0.11 7.64 0.15 5.85 0.09 6.92 0.06 3.56 0.13 6.24 0.16 3.24 0.16 4.21 0.15
TransCF 4.27 0.18 7.32 0.15 5.49 0.17 6.38 0.14 3.44 0.12 6.50 0.13 3.07 0.18 4.17 0.12
LRML 4.34 0.15 7.45 0.19 5.50 0.16 6.41 0.11 3.39 0.19 5.70 0.15 2,95 0.18 3.84 0.17
SML 4.42 0.18 7.57 0.11 5.65 0.11 6.62 0.14 3.67 0.14 6.40 0.13 3.16 0.11 4.35 0.15
HyperML | 4.79 0.21 7.94 0.23 6.18 0.17 7.20 0.18 4.01 0.19 6.81 0.17 3.25 0.14 4.10 0.16
NGCF 4.19 0.15 6.84 0.13 5.34 0.12 6.23 0.13 3.12 0.11 5.47 0.12 242 0.11 3.25 0.16
LightGCN | 4.36 0.10 7.11 0.09 5.53 0.09 6.44 0.12 3.81 0.10 6.70 0.09 3.01 0.09 4.11 0.12
HGCF 4.84 0.12 7.99 0.11 6.15 0.15 7.18 0.15 4.04 0.11 6.92 0.13 3.28 0.14 4.20 0.17
CMLF 4.63 0.14 7.66 0.13 5.87 0.07 6.95 0.12 3.99 0.14 6.62 0.15 3.36 0.09 4.27 0.10
AMF 457 0.13 7.60 0.19 5.79 0.18 6.73 0.14 3.58 0.13 6.13 0.18 3.02 0.13 4.18 0.12
AGCN 4.63 0.12 7.67 0.13 5.92 0.11 7.01 0.13 4.05 0.11 7.17 0.12 3.19 0.09 4.22 0.11
TaxoRec 5.28 0.12* 8.64 0.11* 6.82 0.14* 7.79 0.16* 4.61 0.08* 7.97 0.12* 3.59 0.09* 4.80 0.11*

TABLE Il
ABLATION ANALYSIS OF OUR PROPOSEDIAXOREC ON THE FOUR DATASETS
Ciao Amazon-CD

Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
CML 3.67% 5.84% 2.68% 3.40% 6.22% 9.60% 4.55% 5.66%
CML + Agg 5.52% 8.52% 4.54% 5.38% 9.02% 13.07% 6.95% 8.29%
Hyper + CML 3.81% 6.17% 2.96% 3.74% 7.89% 12.03% 5.79% 7.11%
Hyper + CML + Agg 6.10% 9.71% 4.97% 6.16% 10.39% 15.03% 7.92% 9.45%
TaxoRec 6.33% 9.79% 5.14% 6.19% 10.82% 15.47% 8.34% 9.84%

Amazon-Book Yelp

Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
CML 4.53% 7.64% 5.85% 6.92% 3.56% 6.24% 3.24% 4.21%
CML + Agg 4.70% 7.70% 6.05% 6.96% 3.93% 6.76% 3.31% 4.41%
Hyper + CML 4.79% 7.94% 6.18% 7.20% 4.03% 6.84% 3.28% 4.29%
Hyper + CML + Agg 4.99% 8.17% 6.51% 7.50% 4.37% 7.53% 3.50% 4.47%
TaxoRec 5.28% 8.64% 6.82% 7.79% 4.61% 7.97% 3.59% 4.80%

Hyper + CML is the basic collaborative metric learninglatasets uctuate, ranging from 1.18% (achieved in Recall@20
model in hyperbolic space; on Amazon-Book) to 69.40% (achieved in NDCG@10 on
Hyper + CML + Agg is the model with tag-enhanced aggreziao). Similarly, the corresponding performance gains of
gation mechanism in hyperbolic space, which also considdyper + CML + Agg over Hyper + CML ranges from
item tags and the higher order relations in representatior2.90% (achieved in Recall@20 on Amazon-Book) to 67.87%
TaxoRec integrates Hyper + CML + Agg with taxonomy{achieved in NDCG@10 on Ciao). These results show the
aware regularization to leverage the hierarchies amorghancement brought by our tag-enhanced aggregation mech-
users, items, and tags in hyperbolic space. anism regarding both performance and robustness. Interesting,

) ) the improvements of tag-enhanced aggregation module are
From Table Ill, we have the following observations: most signi cant on the Ciao dataset, where the number of
The performance gains of CML + Agg over CML on four

10



TABLE IV
HYPERPARAMETERSTUDIES ON AMAZON-BOOK AND YELP.

Param Recall@10 NDCG@10 Recall@10 NDCG@10
Amazon-Book Yelp
K=2 5.20% 6.69% 4.29% 3.28%
K=3 5.28% 6.82% 4.61% 3.59%
K=4 5.23% 6.72% 4.46% 3.47%
=0.25 5.24% 6.74% 4.47% 3.42%
=0.50 5.28% 6.82% 4.61% 3.59% (a) Amazon-Book (b) Yelp
=0.75 5.21% 6.71% 4.42% 3.39%
L=1 4.92% 6.38% 417% 3.31% Fig. 5. Performance regarding Recall@10 of CML, HyperML and our
L=2 5.19% 6.73% 4.43% 3.49% proposed TaxoRec with varying dimensibnon two of the datasets.
L=3 5.28% 6.82% 4.61% 3.59%
L=4 5.23% 6.77% 4.49% 3.51%
m = 8-% gg?gf) %872;; 3-2‘112;0 35595;/0 practice across the used datasets.L(3} the layer of GCN.
s = 6% 6710 1.28% 3 24% TaxoRec achieves the best performance witte 3. Since
m=0.4 5.08% 6.62% 4.10% 3.13% both Amazon-Book and Yelp have sparse interactions with
fg-gl g-gng) g-%gf i-iggjo g-ing 0.094% and 0.048% density, more neighbor aggregation can
o1 = 2800 6.82% 419 35300 alleviate the data sparsity issue. WHerontinues to increase
=10 5.12% 6.61% 4.61% 3.59% to 4, too many neighbors will lead over smoothing on the

graph, and the performance decreases on all datasets (4)
is the margin to enforce the difference between positive and
tags is only 28. Such observation strongly indicates that thegative triplets. The optimah values on Amazon-Book and
tag-enhanced aggregation module is more useful when the tXglp are about 0.1 and 0.2, respectively. In the range of
are neat and lack hierarchy. [0.1, 0.2], the optimalm can be obtained by slight tuning,
The performance gains of TaxoRec over Hyper + CML Which is consistent with [44]. (5) controls the weight of
Agg ranges from 0.56% (achieved in NDCG@20 on Ciao) e taxonomy-aware regularization, which aims to enforce the
7.38% (achieved in NDCG@20 on Yelp). The result show@g embeddings to be close to the weighted center of nodes
that: (1) the explicitly taxonomy-aware regularization caif the taxonomy. Too small will cause the tag embeddings
further improve the performance in hyperbolic space, whelikely be spread out, while too large will likely cause the
hyperbolic space implicitly capture the latent hierarchies; (2yodel to over t. The optimal values on Amazon-Book and
on the datasetse(g, Yelp) that have a larger number ofYelp are about 0.1 and 1.0, respectively. Therefore, TaxoRec is
tags and deeper hierarchies among tags, the improvemig@asonably sensitive to. In the range of [0.1, 1], the optimal
of taxonomy-aware regularization are more signicant by can be obtained by slight tuning.
properly arranging tag embedding according to the contextFurthermore, Fig. 5 shows the performance of CML, Hy-
and structure information in the taxonomy. perML, and the proposed TaxoRec with varying settings of

Compared with the models optimized in Euclidean spac@nbedding dimensioD. The total embedding dimension of
the models in hyperbolic space leads to signi cant perfofiree models are the same, where TaxoRec leave 12 dimen-
mance gain. For example, Hyper + CML in hyperbolic spacdons for the tag-relevant embedding. Overall, we observe that
outperforms CML in Euclidean space by up to 10.45% o@” three models have performance gains when increaéing
Ciao, 27.25% on Amazon-CD, 5.74% on Amazon-Book, arfdompared with CML that is in Euclidean space, HyperML and
13.20% on Yelp. Moreover, even though CML + Agg hagaxoRec in hyperbolic metric space can achieve good results
a|ready integrated tag information through tag_enhanced @/en wherD is small. These results show the effectiveness of
gregation mechanism in Euclidean space, Hyper + CML representation learning in hyperbolic space.

Agg can still improve the performance by up to 14.44% of. Tag Taxonomy Analysis (RQ4)

Ciao, 15.24% on Amazon-CD, 7.73% on Amazon-Book, and In this subsection, we demonstrate ne-grained taxonomies

11.39% on Yelp. Such results are consistent with those in Talptet we automatically learn on Amazon-Book and Yelp. As

I, showing the effectiveness of applying hyperbolic space. shown in Fig. 6(a), our proposed TaxoRec splits the tag set in
level-1 into two ne-grained tag sets: (Tpg set 1f <Health,
Fitness, Dieting , <Food & Wine>, <Cookbooks...g; (2)

D. Effect of Hyperparameters (RQ3) Tag set 2:f<Science Fiction & Fantasy, <Literature &
Our proposed TaxoRec framework mainly introduces skiction>, < Science Fictior...g. In Fig. 6(b), we also show
hyperparameters,e, K, ,L, m, ,andD. how TaxoRec splits the root in level-0 into the level-1 tag sets:

From Table IV, we have the following observations: (1f1) f<Beauty & Spas, <Breakfast & Brunch, < Coffee
K is used for splitting tag sets, where we found that th& Tea>...q; (2) Tag set 2:f <Health & Medicab, <Local
optimalK is about 3. (2) is used for selecting representativeServices , < Home Services...g.
tags, where we found that the optimalis about 0.5. The Taking f<Beauty & Spas, <Breakfast & Brunck,
rules for selectingK and could be the rule-of-thumb in <Coffee & Te&...g in level-1 on Yelp as an example, we
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(a) The taxonomy under level-1 on the Amazon-Book dataset.

!
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(b) The taxonomy under level-0 on the Yelp dataset.

Fig. 6. Parts of the tag taxonomies automatically constructed by the proposed TaxoRec.

TABLE V
EXAMPLES OF TAG-BASED USER PROFILES MODELED BY THE PROPOSED TAXOREC AND THE CORRESPONDING RECOMMENDATIONS.

User Tag Item
< Userd <Science & Mathematics>; <Technology>; | The Heart of Mathematics: An Invitation to Effective; How to Do Every-
2 <Software>; <Web Development & Design>... thing with JavaScript; ...
N | user2 <Health, Fitness, Dieting>; <Health>; <Mental | Walking for Fitness; Perspectives in Nutrition; Elements of Yoga; Com-
< Health>; <Exercise & Fitness>... plete Weight Training Book. ..

User3 <Appliances & Repair>; <Auto Repair>; <Health & | Best Auto Repair; Kendal Green Service Center, Shamrock Appliance
= Medical>; <Fitness & Instruction>... Repair; Mayfield Bodyworks Massage. ..
> Userd <Food>; <Fast Food>; <Nightlife>; <Cocktail | Chick-fil-A; Virgils Gullah Kitchen & Bar; The Butterfly Bar; Lucky 13

Bars>... Cocktail. ..

can observe that:

o at the level-2, TaxoRec can successfully find one of the
major areas as: { <Spas>, <Hair Salons>, <Makeup>...};

o at the level-3, TaxoRec can further split the tag set of
node in level-2 into: (1) {<Day Spas>, <Massage>,
<Massage Therapy>...}; (2) {<Men’s Hair Salons>,
<Hair Extension>, <Hair Stylist>...}; (3) {<Nail Sa-
lons>, <Eyelash>, <Hair Removal>...}.

As we observe, the taxonomies that can be constructed from
scratch are pretty accurate and highly interpretable, which
can provide knowledge about the rich relations among tags.
Specifically, the hierarchy for tags is constructed automatically
and shows reasonable hypernym-hyponym relations among
tags — these tags are semantically coherent and cover different
aspects and expressions of the same parent tags.

FE. Interpretable Case Studies (RQS5)

To provide more insights into the advantages of TaxoRec
in providing interpretable recommendations, we demonstrate
four random users with their closest tags retained by TaxoRec,
and the corresponding items recommended by TaxoRec, on
Amazon-Book and Yelp. Since the relations among users and
tags can be measured through user-tag distances in the metric
space, we obtain each user’s top 4 tags by ranking the distances
between the user to all tags, where the hyperbolic representa-
tions of users, items and tags are learned by TaxoRec.

From Table V, we observe that the tags retained for each
user are highly coherent and form clear hierarchies, such
as <Technology> — <Software> — <Web Development &
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Design> for User 1 on Amazon-Book, as well as <Health &
Medical> — <Fitness & Instruction> for User 3 on Yelp.
As a consequence, the items recommended to them are highly
rational, such as How to Do Everything with JavaScript for
User 1 on Amazon-Book, as well as Mayfield Bodyworks
Massage for User 3 on Yelp.

Note that, such user tags, while directly extracted from
the implicit feedback data in an unsupervised fashion, deliver
rather valuable insights into meaningful and representative
user types, which provides potential for more accurate user
profiling and personalized recommendation in the future.

VI. CONCLUSION

In this paper, we propose to automatically construct an
explicit tag taxonomy solely based on existing item tags
and user-item interactions, which can effectively enhance
recommendation from both accuracy and interpretability per-
spectives. Specifically, we propose a novel hyperbolic metric
learning framework TaxoRec to simultaneously optimize a
tag taxonomy and tag-enhanced representations for users and
items, by leveraging the individual strengths of two hyperbolic
models. Extensive experiments demonstrate the clear improve-
ments of TaxoRec over the state-of-the-art baselines and
insightful case studies show the accuracy and interpretability
of our automatically constructed tag taxonomies.

In the future, it would be interesting to consider the incor-
poration and improvements of existing taxonomies when they
are available, and the further application of fine-grained tax-
onomies and user-item-tag relations for tasks such as accurate
user profiling and personalized recommendation.



