
When to Pre-Train Graph Neural Networks?
From Data Generation Perspective!

Yuxuan Cao∗†

Zhejiang University, Fudan University
caoyx@zju.edu.cn

Jiarong Xu∗‡

Fudan University
jiarongxu@fudan.edu.cn

Carl Yang
Emory University

j.carlyang@emory.edu

Jiaan Wang
Soochow University

jawang.nlp@gmail.com

Yunchao Zhang
Zhejiang University

m.yunchaozhang@gmail.com

Chunping Wang
Finvolution Group

wangchunping02@xinye.com

Lei Chen
Finvolution Group

chenlei04@xinye.com

Yang Yang
Zhejiang University
yangya@zju.edu.cn

ABSTRACT
In recent years, graph pre-training has gained significant atten-
tion, focusing on acquiring transferable knowledge from unlabeled
graph data to improve downstream performance. Despite these
recent endeavors, the problem of negative transfer remains a major
concern when utilizing graph pre-trained models to downstream
tasks. Previous studies made great efforts on the issue of what to
pre-train and how to pre-train by designing a variety of graph pre-
training and fine-tuning strategies. However, there are cases where
even the most advanced “pre-train and fine-tune” paradigms fail to
yield distinct benefits. This paper introduces a generic framework
W2PGNN to answer the crucial question of when to pre-train (i.e.,
in what situations could we take advantage of graph pre-training)
before performing effortful pre-training or fine-tuning. We start
from a new perspective to explore the complex generative mecha-
nisms from the pre-training data to downstream data. In particular,
W2PGNN first fits the pre-training data into graphon bases, each
element of graphon basis (i.e., a graphon) identifies a fundamental
transferable pattern shared by a collection of pre-training graphs.
All convex combinations of graphon bases give rise to a genera-
tor space, from which graphs generated form the solution space
for those downstream data that can benefit from pre-training. In
this manner, the feasibility of pre-training can be quantified as the
generation probability of the downstream data from any generator
in the generator space. W2PGNN offers three broad applications:
providing the application scope of graph pre-trained models, quan-
tifying the feasibility of pre-training, and assistance in selecting
pre-training data to enhance downstream performance. We provide
∗Both authors contributed equally to this research.
†This work was done when the author was a visiting student at Fudan University.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599548

a theoretically sound solution for the first application and extensive
empirical justifications for the latter two applications.

KEYWORDS
graph neural networks, graph pre-training
ACM Reference Format:
Yuxuan Cao, Jiarong Xu, Carl Yang, Jiaan Wang, Yunchao Zhang, Chunping
Wang, Lei Chen, and Yang Yang. 2023. When to Pre-Train Graph Neural
Networks? From Data Generation Perspective!. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3580305.3599548

1 INTRODUCTION
Graph neural networks (GNNs) have undergone rapid development
and become increasingly popular for learning graph data [36, 38, 43].
GNNs are usually trained in an end-to-end manner while getting
enough labeled data is arduously expensive and sometimes even
impractical to access. This motivates some recent advances in pre-
training GNNs [14, 15, 23, 30]. The key insight of pre-training GNNs
is to learn transferable knowledge from a collection of unlabeled
graph data, hoping that the learned knowledge can be easily adapted
to downstream tasks. In view of the great success of pre-training in
other fields like computer vision and natural language processing [4,
12], graph pre-training is highly expected to be an effective means
to improve downstream performance.

However, the intuition that graph pre-trained model would ide-
ally benefit the downstream is far from the truth in the area of graph
pre-training. Instead, graph pre-trained models can lead to negative
transfer on many downstream tasks, especially when the graphs
used for pre-training are not necessarily from the same domain
as the downstream data [14, 30]. For example, the closed triangles
() and open triangles () might yield different interpretations in
molecular networks (unstable vs. stable in terms of chemical prop-
erty) from those in social networks (stable vs. unstable in terms of
social relationship); such distinct or reversed semantics does not
contribute to transferability, and even exacerbates the problem of
negative transfer.

To avoid the negative transfer, recent efforts focus on what to
pre-train and how to pre-train, i.e., design/adopt graph pre-training

https://doi.org/10.1145/3580305.3599548
https://doi.org/10.1145/3580305.3599548

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

W2PGNN

existing

#! fine-tuning
strategies

#" pre-training
models

... ...

#"×#! “pre-train	and	
fine-tune”	attempts

#"×#! downstream	
performances

take	the	best	
as	“feasibility
of pre-training”

“feasibility of
pre-training”

proposed

(a)	Existing methods make costly “pre-train and fine-tune” attempts.

model 1

model	2

model #"

strategy	1

strategy	2

strategy	#!

...

without “pre-train	and	
fine-tune”	attempts

(b)	W2PGNN tells the feasibility of pre-training before “pre-train and fine-tune”.

Figure 1: Comparison of existing methods and proposed
W2PGNN to answer when to pre-train GNNs.

models with a variety of self-supervised tasks to capture different
patterns [23, 30, 45] and fine-tuning strategies to enhance down-
stream performance [9, 16, 41, 48]. However, there do exist some
cases that no matter how advanced the pre-training/fine-tuning
method is, the transferability from pre-training data to downstream
data still cannot be guaranteed. This is because the underlying
assumption of deep learning models is that the test data should
share a similar distribution as the training data. Therefore, it is a
necessity to understand when to pre-train, i.e., under what situations
the “graph pre-train and fine-tune” paradigm should be adopted.

Towards the answer of when to pre-train GNNs, one straight-
forward way illustrated in Figure 1(a) is to train and evaluate on
all candidates of pre-training models and fine-tuning strategies,
and then the resulting best downstream performance would tell
us whether pre-training is a sensible choice. If there exist 𝑙1 pre-
training models and 𝑙2 fine-tuning strategies, such a process would
be very costly as you should make 𝑙1 × 𝑙2 “pre-train and fine-tune”
attempts. Another approach is to utilize graph metrics to measure
the similarity between pre-training and downstream data, e.g., den-
sity, clustering coefficient and etc. However, it is a daunting task to
enumerate all hand-engineered graph features or find the dominant
features that influenced similarity. Moreover, the graph metrics
only measure the pair-wise similarity between two graphs, which
cannot be directly and accurately applied to the practical scenario
where pre-training data contains multiple graphs.

In this paper, we propose a W2PGNN framework to answer
when to pre-train GNNs from a graph data generation perspective.
The high-level idea is that instead of performing effortful graph
pre-training/fine-tuning or making comparisons between the pre-
training and downstream data, we study the complex generative
mechanism from the pre-training data to the downstream data
(Figure 1(b)). We say that downstream data can benefit from pre-
training data (i.e., has high feasibility of performing pre-training),
if it can be generated with high probability by a graph generator
that summarizes the topological characteristic of pre-training data.

The major challenge is how to obtain an appropriate graph gen-
erator, hoping that it not only inherits the transferable topological
patterns of the pre-training data, but also is endowed with the abil-
ity to generate feasible downstream graphs. To tackle the challenge,

we propose to design a graph generator based on graphons. We first
fit the pre-training graphs into different graphons to construct a
graphon basis, where each graphon (i.e., element of the graphon ba-
sis) identifies a collection of graphs that share common transferable
patterns. We then define a graph generator as a convex combination
of elements in a graphon basis, which serves as a comprehensive
and representative summary of pre-training data. All of these pos-
sible generators constitute the generator space, from which graphs
generated form the solution space for the downstream data that
can benefit from pre-training.

Accordingly, the feasibility of performing pre-training can be
measured as the highest probability of downstream data being gen-
erated from any graph generator in the generator space, which can
be formulated as an optimization problem. However, this problem
is still difficult to solve due to the large search space of graphon
basis. We propose to reduce the search space to three candidates
of graphon basis, i.e., topological graphon basis, domain graphon
basis, and integrated graphon basis, to mimic different generation
mechanisms from pre-training to downstream data. Built upon the
reduced search space, the feasibility can be approximated efficiently.

Our major contributions are concluded as follows:
• Problem and method. To the best of our knowledge, we are

the first work to study the problem of when to pre-train GNNs.
We propose a W2PGNN framework to answer the question from
a data generation perspective, which tells us the feasibility of
performing graph pre-training before conducting effortful pre-
training and fine-tuning.
• Broad applications. W2PGNN provides several practical appli-

cations: (1) provide the application scope of a graph pre-trained
model, (2) measure the feasibility of performing pre-training for
a downstream data and (3) choose the pre-training data so as to
maximize downstream performance with limited resources.
• Theory and Experiment. We theoretically and empirically

justify the effectiveness of W2PGNN. Extensive experiments on
real-world graph datasets from multiple domains show that the
proposed method can provide an accurate estimation of pre-
training feasibility and the selected pre-training data can benefit
the downstream performance.

2 PROBLEM FORMULATION
In this section, we first formally define the problem of when to
pre-train GNNs. Then, we provide a brief theoretical analysis of the
transferable patterns in the problem we study, and finally discuss
some non-transferable patterns.

Definition 1 (When to pre-train GNNs). Given the pretrain-
ing graph data Gtrain and the downstream graph data Gdown, our
main goal is to answer to what extent the “pre-train and fine-tune”
paradigm can benefit the downstream data.

Note that in addition to this main problem, our proposed frame-
work can also serve other scenarios, such as providing the ap-
plication scope of graph pre-trained models, and helping select
pre-training data to benefit the downstream (please refer to the
application cases in Section 4.1 for details).
Transferable graph patterns. The success of “pre-train and fine-
tune” paradigm is typically attributed to the commonplace between

When to Pre-Train Graph Neural Networks? From Data Generation Perspective! KDD ’23, August 6–10, 2023, Long Beach, CA, USA

pre-training and downstream data. However, in real-world sce-
narios, there possibly exists a significant divergence between the
pre-training data and the downstream data. To answer the prob-
lem of when to pre-train GNNs, the primary task is to define the
transferable patterns across graphs.

We here theoretically explore which patterns are transferable
between pre-training and downstream data under the performance
guarantee of graph pre-training model (with GNN as the backbone).

Theorem 2.1 (Transferability of graph pre-training model).
Let 𝐺train and 𝐺down be two (sub)graphs sampled from Gtrain and
Gdown, and assume the attribute of each node as a scalar 1 without
loss of generality. Given a graph pre-training model 𝑒 (instantiated
as a GNN) with 𝐾 layers and 1−hop graph filter Φ(𝐿) (which is a
function of the normalized graph Laplacian matrix 𝐿), we have

∥𝑒 (𝐺train) − 𝑒 (𝐺down)∥2 ≤ 𝜅Δtopo (𝐺train,𝐺down) (1)

where Δtopo (𝐺train,𝐺down) = 1
𝑚𝑛

∑𝑚
𝑖=1

∑𝑛
𝑗 ′=1 ∥𝐿𝑔𝑖 −𝐿𝑔′𝑗 ∥2 measures

the topological divergence between𝐺train and 𝐺down, where 𝑔𝑖 is the
𝐾-hop ego-network of node 𝑖 from 𝐺train and 𝐿𝑔𝑖 is its corresponding
normalized graph Laplacian matrix, 𝑚 and 𝑛 are the number of
nodes of 𝐺train and 𝐺down. 𝑒 (𝐺train) and 𝑒 (𝐺down) are the output
representations of 𝐺train and 𝐺down from graph pre-training model,
𝜅 is a constant relevant to 𝐾 , graph filter Φ, learnable parameters of
GNN and the activation function used in GNN.

Theorem 2.1 suggests that two (sub)graphs sampled from pre-
training and downstream data with similar topology are transfer-
able via graph pre-training model (i.e., sharing similar representa-
tions produced by the model). Hence we consider the transferable
graph pattern as the topology of a (sub)graph, either node-level or
graph-level. Specifically, the node-level transferable pattern could
be the topology of the ego-network of a node (or the structural role
of a node), irrespective of the node’s exact location in the graph.
The graph-level transferable pattern is the topology of the entire
graph itself (e.g., molecular network). Such transferable patterns
constitute the input space introduced in Section 4.1.
Discussion of non-transferable graph patterns. As a remark,
we show that two important pieces of information (i.e., attributes
and proximity) commonly used in graph learning are not necessarily
transferable across pre-training and downstream data in most real-
world scenarios, thus we do not discuss them in this paper.

First, although the attributes carry important semantic meaning
in one graph, it can be shown that the attribute space of different
graphs typically has little or no overlap at all. For example, if the
pre-training and downstream data come from different domains,
their nodes would indicate different types of entities and the corre-
sponding attributes may be completely irrelevant. Even for graphs
from the similar/same domain, the dimensions/meaning of their
node attributes can be totally different and result in misalignment.

The proximity, on the other hand, assumes that closely connected
nodes are similar, which also cannot be transferred across graphs.
This assumption depends on the overlaps in neighborhoods and
thus only works on graphs with the same or overlapped node set.

3 PRELIMINARY AND RELATED WORKS
Graphons. A Graphon (short for graph function) [1] is a bounded
symmetric function 𝐵 : [0, 1]2 → [0, 1] (different subscripts of
𝐵 denote different graphons), which can be interpreted as the
weighted matrix of an arbitrary undirected graph with uncount-
able number of nodes[21]. Literaturelly, graphon has been studied
from two perspectives: as limit of graph sequence, and as graph
generators[1, 10, 22]. We utilize both perspectives in our framework.

On one hand, a graphon can be considered as the limit objects
of graph sequence, and every convergent graph sequence would
converge to a graphon[21]. Thus, a graphon is a comprehensive
summary of a collection of arbitrary size graphs. These graphs can
be considered topologically similar in the sense that they belong
to the same graphon. In this paper, we utilize a set of graphons as a
comprehensive and representative summary of pre-training data.

Taking graphon as a graph generator, we can associate nodes 𝑖
and 𝑗 with points 𝑣𝑖 and 𝑣 𝑗 in [0, 1], and then 𝐵(𝑣𝑖 , 𝑣 𝑗) serves as the
probability to generate the edge between these two nodes. There-
fore, a graphon 𝐵 can generate unweighted graphs of arbitrary sizes,
which can be taken as those induced graphs potentially inheriting
the topological patterns implied in graphon. Thus, the generation ca-
pability of graphon can help us generate feasible downstream graphs
that can benefit from pre-training.

Graph pre-training and fine-tuning. Graph pre-training mod-
els first learn universal knowledge from large-scale graph datasets
with self-supervised or unsupervised objectives (i.e., pre-training
stage), and then transfer the knowledge to deal with specific down-
stream tasks (i.e., fine-tuning stage). Among them, some researchers
design pre-training tasks based on the neighborhood similarity as-
sumption [5, 7, 18, 28, 33, 35, 47, 51]. The learned graph-specific
patterns/knowledge could benefit downstream tasks on the same
graphs, but cannot be generalized to unseen graphs. To enhance the
transferability of the pre-trained models, some works try to utilize
graph data from the same (or similar) domains as the pre-training
data [8, 11, 14, 15, 19, 23, 26, 32, 34, 45, 46, 49, 53], or explore cross-
domain pre-training strategies [23, 30, 45] as well as fine-tuning
strategies [9, 16, 41, 48]. Nevertheless, all these efforts focus on
addressing the problem of what to pre-train and how to pre-train by
developing pre-training or fine-tuning methods. To the first time,
we aim to study when to pre-train GNNs, i.e., in what situations the
graph pre-training should be adopted.

4 METHODOLOGY
In this section, we first present our proposed framework W2PGNN
to answer when to pre-train GNNs in Section 4.1. Based on the
framework, we further introduce the measure of the feasibility of
performing pre-training in Section 4.2. Then in Section 4.3, we
discuss our approximation to the feasibility of pre-training. Finally,
the complexity analysis of W2PGNN is provided in Section 4.4.

4.1 Framework Overview
W2PGNN framework provides a guide to answer when to pre-train
GNNs from a data generation perspective. The key insight is that if
downstream data can be generated with high probability by a graph
generator that summarizes the pre-training data, the downstream
data would present high feasibility of performing pre-training.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

input space (sub)graphs

v

v v

v

high feasibility

combination
weight

generator space

generator
basis

possible downstream space

generator

Figure 2: Illustration of our proposed framework W2PGNN
to answer when to pre-train GNNs.

The overall framework of W2PGNN can be found in Figure 2.
Given the input space consisting of pre-training graphs, we fit them
into a graph generator in the generator space, from which the graphs
generated constitute the possible downstream space. More specif-
ically, an ideal graph generator should inherit different kinds of
topological patterns, based on which new graphs can be induced.
Therefore, we first construct a graphon basis B = {𝐵1, 𝐵2, · · · , 𝐵𝑘 },
where each element 𝐵𝑖 represents a graphon fitted from a set of
(sub)graphs with similar patterns (i.e., the blue dots

v

v

). To access
different combinations of generator basis, each 𝐵𝑖 is assigned with
a corresponding weight 𝛼𝑖 (i.e., the width of blue arrow) and
their combination gives rise to a graph generator (i.e., the blue star

v

v

). All weighted combinations compose the generator space Ω
(i.e., the gray surface

v

v

), from which graphs generated form the
possible solution space of downstream data (shorted as possible
downstream space). The generated graphs are those that could
benefit from the pre-training data, we say that they exhibit high
feasibility of performing pre-training.

In the following, we introduce the workflow of W2PGNN in
the input space, the generator space and the possible downstream
space in detail. Then, the application cases of W2PGNN are given
for different practical use.
Input space. The input space of W2PGNN is composed of nodes’
ego-networks or graphs. For node-level pre-training, we take the
nodes’ ego-networks to constitute the input space; For graph-level
pre-training, we take the graphs (e.g., small molecular graphs) as
input space.
Generator space. As illustrated in Figure 2, each point (i.e., graph
generator) in the generator space Ω is a convex combination of
generator basisB = {𝐵1, 𝐵2, · · · , 𝐵𝑘 }. Formally, we define the graph
generator as

𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) =
𝑘∑︁
𝑖=1

𝛼𝑖𝐵𝑖 , where
𝑘∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0. (2)

Different choices of {𝛼𝑖 }, {𝐵𝑖 } comprise different graph genera-
tors. All possible generators constitute the generator space Ω =

{𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) | ∀ {𝛼𝑖 }, {𝐵𝑖 }}.
We shall also note that, the graph generator 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) is in-

deed a mixed graphon, (i.e., mixture of𝑘 graphons {𝐵1, 𝐵2, · · · , 𝐵𝑘 }),

where each element 𝐵𝑖 represents a graphon estimated from a set
of similar pre-training (sub)graphs. Furthermore, it can be theoreti-
cally justified that the mixed version still preserve the properties of
graphons (c.f. Theorem 5.1) and the key transferable patterns inher-
ited in 𝐵𝑖 (c.f. Theorem 5.2). Thus the graph generator 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }),
i.e., mixed graphon, serves as a representative and comprehensive
summary of pre-training data, from which unseen graphs with
different combinations of transferable patterns can be induced.
Possible downstream space. All the graphs produced by the
generators in the generator space Ω could benefit from the pre-
training, and finally form the possible downstream space.

Formally, for each generator in the generator space Ω (we denote
it as 𝑓 for simplicity), we can generate a 𝑛-node graph as follows.
First, we independently sample a random latent variable for each
node. Then for each pair of nodes, we assign an edge between
them with the probability equal to the value of the graphon at their
randomly sampled points. This process can be formulated as:

𝑣1, · · · , 𝑣𝑛 ∼ Uniform([0, 1]),
𝐴𝑖 𝑗 ∼ Bernouli(𝑓 (𝑣𝑖 , 𝑣 𝑗)), ∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}, (3)

where 𝑓 (𝑣𝑖 , 𝑣 𝑗) ∈ [0, 1] indicates the corresponding value of the
graphon at point (𝑣𝑖 , 𝑣 𝑗) 1, and 𝐴𝑖 𝑗 ∈ {0, 1} indicates the existence
of edge between 𝑖-th node and 𝑗-th node. The adjacency matrix of
the sampled graph 𝐺 is denoted as 𝐴 = [𝐴𝑖 𝑗] ∈ {0, 1}𝑛×𝑛,∀𝑖, 𝑗 ∈
[𝑛]. We summarize this generation process as 𝐺 � 𝑓 .

Therefore, with all generators from the generator space Ω, the
possible downstream space is defined as D = {𝐺 � 𝑓 |𝑓 ∈ Ω}.
Note that for each {𝛼𝑖 }, {𝐵𝑖 }, we have a generator 𝑓 ; and for each
generator, we also have different generated graphs. Besides, we
theoretically justify that the generated graphs in the possible down-
stream space can inherit key transferable graph patterns in our
generator (c.f. Theorem 5.3).
Application cases. The proposed framework is flexible to be
adopted in different application scenarios when discussing the
problem of when to pre-train GNNs.
• Use case 1: provide a user guide of a graph pre-trained model. The

possible downstream space D serves as a user guide of a graph
pre-trained model, telling the application scope of graph pre-
trained models (i.e., the possible downstream graphs that can
benefit from the pre-training data).
• Use case 2: estimate the feasibility of performing pre-training from

pre-training data to downstream data. Given a collection of pre-
training graphs and a downstream graph, one can directly mea-
sure the feasibility of performing pre-training on pre-training
data, before conducting costly pre-training and fine-tuning at-
tempts. By making such pre-judgement of a kind of transferability,
some unnecessary and expensive parameter optimization steps
during model training and evaluation can be avoided.
• Use case 3: select pre-training data to benefit the downstream.

In some practical scenarios where the downstream data is pro-
vided (e.g., a company needs to boost downstream performance
of its business data), the feasibility of pre-training inferred by

1For simplicity, we slightly abuse the notations 𝑓 (·, ·) . Note that 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) is a
function of {𝛼𝑖 } and {𝐵𝑖 }, representing that the generator depends on {𝛼𝑖 }, {𝐵𝑖 };
while for each generator (i.e., mixed graphon) 𝑓 given {𝛼𝑖 }, {𝐵𝑖 }, it can be represented
as a continuous, bounded and symmetric function 𝑓 : [0, 1]2 → [0, 1].

When to Pre-Train Graph Neural Networks? From Data Generation Perspective! KDD ’23, August 6–10, 2023, Long Beach, CA, USA

W2PGNN can be used to select data for pre-training to maximize
the downstream performance with limited resources.
Use case 1 can be directly given by our produced possible down-

stream space D. However, how to measure the feasibility of pre-
training in use case 2 and 3 still remains a key challenge. In the
following sections, we introduce the formal definition of the feasi-
bility of pre-training and its approximate solution.

4.2 Feasibility of Pre-training
If a downstream graph can be generated with a higher probability

from any generator in the generator space Ω, then the graph could
benefit more from the pre-training data. We therefore define the
feasibility of performing pre-training as the highest probability of
the downstream data generated from a generator in Ω, which can
be formulated as an optimization problem as follows.

Definition 2 (Feasibility of graph pre-training). Given the
pre-training data Gtrain and downstream data Gdown, we have the
feasibility of performing pre-training on Gtrain to benefit Gdown as

𝜁 (Gtrain � Gdown) = sup
{𝛼𝑖 },{𝐵𝑖 }

Pr (Gdown | 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) , (4)

where Pr (Gdown | 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) denotes the probability of the graph
sequence sampled from Gdown being generated by graph generator
𝑓 ({𝛼𝑖 }, {𝐵𝑖 }); each (sub)graph represents an ego-network (for node-
level task) or a graph (for graph-level task) sampled from the down-
stream data Gdown.

However, the probability Pr (Gdown | 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) of generat-
ing the downstream graph from a generator is extremely hard to
compute, we therefore turn to converting the optimization prob-
lem (4) to a tractable problem. Intuitively, if generator 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })
can generate the downstream data with higher probability, it poten-
tially means that the underlying generative patterns of pre-training
data (characterized by 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) and downstream data (charac-
terized by the graphon 𝐵down fitted from Gdown) are more similar.
Accordingly, we turn to figure out the infimum of the distance
between 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) and 𝐵down as the feasibility, i.e.,

𝜁 (Gtrain � Gdown) = − inf
{𝛼𝑖 },{𝐵𝑖 }

dist(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }), 𝐵down) . (5)

Following [42], we hire the 2-order Gromov-Wasserstein (GW) dis-
tance as our distance function dist(·, ·), as GW distance is commonly
used to measure the difference between structured data.

Additionally, we establish a theoretical connection between the
above-mentioned distance and the probability of generating the
downstream data in extreme case, which further adds to the in-
tegrity and rationality of our solution. Detailed proof of the follow-
ing theorem can be found in Appendix A.

Theorem 4.1. Given the graph sequence sampled from down-
stream data Gdown, we estimate its corresponding graphon as 𝐵down.
If a generator 𝑓 can generate the downstream graph sequence with
probability 1, then dist(𝑓 , 𝐵down) = 0.

4.3 Choose Graphon Basis to Approximate
Feasibility

Although the feasibility has been converted to the optimization
problem (5), exhausting all possible {𝛼𝑖 }, {𝐵𝑖 } to find the infimum

is impractical. An intuitive idea is that we can choose some appro-
priate graphon basis {𝐵𝑖 }, which can not only prune the search
space but also accelerate the optimization process. Therefore, we
aim to first reduce the search space of graphon basis {𝐵𝑖 } and then
learn the optimal {𝛼𝑖 } in the reduced search space.

Considering that the downstream data may be formed via dif-
ferent generation mechanisms (implying various transferable pat-
terns), a single graphon basis might have limited expressivity and
completeness to cover all patterns. We therefore argue that a good
reduced search space of graphon basis should cover a set of graphon
bases. Here, we introduce three candidates of them as follows.
Integrated graphon basis. The first candidate of graphon basis
is the integrated graphon basis {𝐵𝑖 }integr. This graphon basis is
introduced based on the assumption that the pre-training and the
downstream graphs share very similar patterns. For example, the
pre-training and the downstream graphs might come from social
networks of different time spans [15]. In the situation, almost all
patterns involved in the pre-training data might be useful for the
downstream. To achieve this, we directly utilize all (sub)graphs
sampled from the pre-training data to estimate one graphon as the
graphon basis. This integrated graphon basis serves as a special
case of the graphon basis introduced below.
Domain graphon basis. The second candidate is the domain
graphon basis {𝐵𝑖 }domain. The domain information that pre-training
data comes from is important prior knowledge to indicate the trans-
ferability from the pre-training to downstream data. For example,
when the downstream data is molecular network, it is more likely
to benefit from the pre-training data from specific domains like bio-
chemistry. This is because the specificity of molecules makes it dif-
ficult to learn transferable patterns from other domains, e.g., closed
triangle structure represents diametrically opposite meanings (sta-
ble vs unstable) in social network and molecular network. Therefore,
we propose to split the (sub)graphs sampled from pre-training data
according to their domains, and each split of (sub)graphs will be
used to estimate a graphon as a basis element. In this way, each basis
element reflects transferable patterns from a specific domain, and
all basis elements construct the domain graphon basis {𝐵𝑖 }domain.
Topological graphon basis. The third candidate is the topologi-
cal graphon basis {𝐵𝑖 }topo. The topological similarity between the
pre-training and the downstream data serves as a crucial indicator
of transferability. For example, a downstream social network might
benefit from the similar topological patterns in academic or web
networks (e.g., closed triangle structure indicates stable relationship
in all these networks). Then, the problem of finding topological
graphon basis can be converted to partition 𝑛 (sub)graphs sam-
pled from pre-training data into 𝑘-split according to their topology
similarity, where each split contains (sub)graphs with similar topol-
ogy. Each element of graphon basis (i.e., graphon) fitted from each
split of (sub)graphs is expected to characterize a specific kind of
topological transferable pattern.

However, the challenge is that for graph structured data that is
irregular and complex, we cannot directly measure the topological
similarity between graphs. To tackle this problem, we introduce
a graph feature extractor that maps arbitrary graph into a fixed-
length vector representation. To approach a comprehensive and

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

representative set of topological features, we here consider both
node-level and graph-level properties.

For node-level topological features, we first apply a set of node-
level property functions [𝜙1 (𝑣), · · · , 𝜙𝑚1 (𝑣)] for each node 𝑣 in
graph 𝐺 to capture the local topological features around it. Con-
sidering that the numbers of nodes of two graphs are possibly
different, we introduce an aggregation function AGG to summa-
rize the node-level property of all nodes over 𝐺 to a real number
AGG({𝜙𝑖 (𝑣), 𝑣 ∈ 𝐺}). We can thus obtain the node-level topological
vector representation as follows.

ℎnode (𝐺) = [AGG({𝜙1 (𝑣), 𝑣 ∈ 𝐺}), · · · ,AGG({𝜙𝑚1 (𝑣), 𝑣 ∈ 𝐺})] .
In practice, we calculate degree [2], clustering coefficient [17] and
closeness centrality [6] for each node and instantiate the aggrega-
tion function AGG as the mean aggregator.

For graph-level topological features, we also employ a set of
graph-level property functions for each graph 𝐺 to serve as the
vector representation

ℎgraph (𝐺) = [𝜓1 (𝐺), · · · ,𝜓𝑚2 (𝐺)],
where density [37], assortativity [27], transitivity [37] are adopted
as graph-level properties here. 2.

Finally, the final representation of 𝐺 produced by the graph
feature extractor is

ℎ = [ℎlocal (𝐺) | |ℎglobal (𝐺)] ∈ R𝑚1+𝑚2 ,

where | | is the concatenation function that combines both node-
level and graph-level features. Given the topological vector repre-
sentation, we leverage an efficient clustering algorithm K-Means [24]
to obtain k-splits of (sub)graphs and finally fit each split into a
graphon as one element of topological graphon basis.
Optimization solution. Given the above-mentioned three graphon
bases, the choice of graphon basis {𝐵𝑖 } can be specified to one of
them. In this way, the pre-training feasibility (simplified as 𝜁) could
be approximated in the reduced search space of graphon basis as

𝜁 ← −MIN({ inf
{𝛼𝑖 }

dist(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }), 𝐵down),∀{𝐵𝑖 } ∈ B}), (6)

where B={{𝐵𝑖 }topo, {𝐵𝑖 }domain, {𝐵𝑖 }integr} is the reduced search
space of {𝐵𝑖 }. Thus, the problem can be naturally splitted into three
sub-problems with objective of dist(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }topo), 𝐵down)), dist
(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }domain), 𝐵down)) and dist(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }integr), 𝐵down))
respectively. Each sub-problem can be solved by updating the corre-
sponding learnable parameters {𝛼𝑖 } with multiple gradient descent
steps. Taking one step as an example, we have

{𝛼𝑖 } = {𝛼𝑖 } − 𝜂∇{𝛼𝑖 } dist(𝑓 ({𝛼𝑖 }, {𝐵𝑖 }), 𝐵down) (7)

where 𝜂 is the learning rate. Finally, we achieve three infimum
distances under different {𝐵𝑖 } ∈ B respectively, the minimum
value among them is the approximation of pre-training feasibility.
In practice, we adopt an efficient and differential approximation of
GW distance, i.e., entropic regularization GW distance [29], as the
distance function. For graphon estimation, we use the “largest gap”
method as to estimate graphon 𝐵𝑖 .

2Other graph-level properties can also be utilized like diameter and Wiener index, but
we do not include them due to their high computational complexity.

4.4 Computation Complexity
We now show that the time complexity of W2PNN is much lower

than traditional solution. Suppose that we have𝑛1 and𝑛2 (sub)graphs
sampled from pre-training data and downstream data respectively,
and denote |𝑉 | and |𝐸 | as the average number of nodes and edges
per (sub)graph. The overall time complexity of W2PGNN is𝑂 ((𝑛1+
𝑛2) |𝑉 |2). For comparison, traditional solution in Figure 1(a) to es-
timate the pre-training feasibility should make 𝑙1 × 𝑙2 “pre-train
and fine-tune” attempts, if there exist 𝑙1 pre-training models and 𝑙2
fine-tuning strategies. Suppose the batch size of pre-training as 𝑏
and the representation dimension as 𝑑 . The overall time complex-
ity of traditional solution is𝑂

(
𝑙1𝑙2 ((𝑛1 + 𝑛2) (|𝑉 |3 + |𝐸 |𝑑) + 𝑛1𝑏𝑑)

)
.

Detailed analysis can be found in Appendix C.

5 THEORETICAL ANALYSIS
In this section, we theoretically analyze the rationality of the gen-
erator space and possible downstream space in W2PGNN. Detailed
proofs of the following theorems can be found in Appendix A.

5.1 Theoretical Justification of Generator Space
Our generator preserves the properties of graphons. We first
theoretically prove that any generator in the generator space still
preserve the properties of graphon (i.e., a bounded symmetric func-
tion [0, 1]2 → [0, 1], summarized in the following theorem.

Theorem 5.1. For a set of graphon basis {𝐵𝑖 }, the corresponding
generator space Ω = {𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) | ∀ {𝛼𝑖 }, {𝐵𝑖 }} is the convex hull
of {𝐵𝑖 }.

Our generator preserves the key transferable patterns in
graphon basis. As a preliminary, we first introduce the concept of
graph motifs as a useful description of transferable graph patterns
and leverage homomorphism density as a measure to quantify the
degree to which the patterns inherited in a graphon.

Definition 3 (Graph motifs [25]). Given a graph 𝐺 = (𝑉 , 𝐸)
(𝑉 and 𝐸 are node and edge set), graph motifs are substructures 𝐹 =

(𝑉 ′, 𝐸′) that recur significantly in statistics, where 𝑉 ′ ⊂ 𝑉 , 𝐸′ ⊂ 𝐸
and |𝑉 ′ | ≪ |𝑉 |.

Graph motifs can be roughly taken as the key transferable graph
patterns across graphs [50]. For example, the motif (

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

KDD ’21, August 14-18, 2021, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: Number of motifs with unclosed structure around
fraudulent and normal users.

extreme cases, directly transferring node attributes or representa-
tions in one network to those with di�erent meanings in another
network may have a negative impact when performing network
analysis or network modeling. Thus, the main challenge to be
addressed in this paper is to discover the transferable information
across di�erent networks used for graph pre-training.

Intuitively, we here propose to transfer structure patterns across
di�erent networks. A number of existing works focus on learning
graph structures; for example, struc2vec [36] learns latent embed-
dings for nodes through node symmetry, while graph2vec [30]
focuses on graph structural representation. Nevertheless, a com-
mon drawback of these approaches lies in the inability of transfer-
ring across networks from di�erent domains. Hu et al. [18] utilizes
heuristic features (e.g., closeness and betweenness centrality) to
capture graph structure; however the time complexity of calculat-
ing these features is too high for large-scale graphs. Qiu et al. [34]
adopts contrastive learning method and proposes GCC to capture
structure information among di�erent graphs. However, it lacks in-
terpretability regarding what kind of structural patterns are indeed
transferred across networks in di�erent domains. Considering their
limitations, we propose to utilize motifs, sub-structures with rich
structural information [29], as the transferable patterns used for
graph pre-training. Motifs are of great importance for a wide range
of applications in many �elds, ranging from social networks to
biology. (a) In biology, network motifs were de�ned in Escherichia
coli [42] for the �rst time, and Alon et al. [3] mentioned the same
motifs were also found from bacteria [11] to yeast [29], animal [32]
to plants. For example, motif () is often used as “Feedforward
Loop” and found in gene systems and organisms [52]. (b) In social
networks, triangles () are more likely to appear where individu-
als tend to introduce his or her friends to know each other, which
is known as triadic closure [58, 63]; similar cases also happen in
academic networks, where two researchers tend to collaborate if
they share one common collaborator [58]. (c) In telecommunication
networks, it is likely that more motifs with unclosed structural
patterns around fraudulent users than normal users, such as 2-star
motif (), as fraudulent users attend to call numerous people to
commit fraud and these people are probably never contacted each
other [57]. As shown in Figure 2, we calculate the number of 2-star
motif () and 4-path motif () around fraudulent users and
normal users respectively for Mobile dataset, which is provided
by China Telecom and our �ndings meet above analysis. One kind

2-path 2-star triangle 3-star tailed-
triangle4-path 4-circle chordal

-cycle 4-clique

Figure 3: Illustration of 2-, 3- and 4-vertex motifs.

motif contains the same structure information in di�erent networks.
As shown in Figure 1, while the semantic meanings of nodes are
unable to be preserved across di�erent networks, motifs exhibit a
similar pattern across di�erent networks. Regarding networks from
various domains, motifs with a dense structure (e.g. () and ())
indicate a closer relationship among nodes; for example, Bob and
his two closest friends in the social network, or Bob and another
two scholars in the academic network, who have a stable coopera-
tive relationship and jointly publish papers. Moreover, motifs with
a sparse structure (such as () and ()) suggest the opposite.
To the best of our knowledge, we are the �rst to perform graph
pre-training via motifs.

Based on our �ndings, we propose a Motif-based Pre-training
framework (abbreviated as MPT), which can capture the universal
structural patterns across di�erent graph datasets. More speci�cally,
we formulate our graph pre-training as a self-supervised task. To
maintain generalizability across di�erent networks, we �rst sample
subgraphs of each target node to form the input of our model. We
adopt a graph neural network-based model to capture structure
information from global and local perspective. In so doing, we
can ensure that the representation of similar structure patterns
are close to each other. Numerical experiments of transferring our
pre-trained model to various downstream datasets validate the
e�ectiveness of our model in capturing structure patterns.

The main contributions of our paper can be summarized as
follows:
• We propose that the same kind motif contains universal structure

information across networks from di�erent domains.
• We formulate the graph pre-training problem and propose a

Motif-based Pre-Training framework (MPT) and corresponding
self-supervised task to capture the universal and transferable
structure patterns of graphs.

• From the motif perspective, we provide a detailed analysis of
the relationship between the performance of the pre-trained
model on downstream tasks and the selection of datasets for
pre-training, as illustrated in § 4.3.

• To evaluate the e�ectiveness and e�ciency of our proposed
framework, we conduct extensive experiments on four real-world
datasets and �ve public datasets. Our experimental results indi-
cate that MPT e�ciently achieves superior or at least comparable
performance to state-of-the-art baseline models.

2 PRELIMINARIES
In this paper, we use lower-case letters to indicate scalars and bold
letters to denote vectors or matrices. We use a subscript to denote
that a vector is for a corresponding node (e.g. cu). When indexing
vectors, the superscript 8 denotes the 8-th dimension (e.g. 28D). In

2

) has the
same meaning of “feedforward loop” across networks of control
system, gene systems or organisms.

Then, we introduce the measure of homomorphism density
𝑡 (𝐹, 𝐵) to quantify the relative frequency of the key transferable
pattern, i.e., graph motifs 𝐹 , inherited in graphon 𝐵.

Definition 4 (Homomorphism density [21]). Consider a graph
motif 𝐹 = (𝑉 ′, 𝐸′), we define a homomorphisms of 𝐹 into graph
𝐺 = (𝑉 , 𝐸) as an adjacency-preserving map from 𝑉 ′ to 𝑉 , where
(𝑖, 𝑗) ∈ 𝐸′ implies (𝑖, 𝑗) ∈ 𝐸. There could be multiple maps from
𝑉 ′ to 𝑉 , but only some of them are homomorphisms. Therefore, the
definition of homomorphism density 𝑡 (𝐹,𝐺) is introduced to quantify
the relative frequency with which the graph motif 𝐹 appears in 𝐺 .

Analogously, the homomorphism density of graphs can be extended
into the graphon 𝐵. We denote 𝑡 (𝐹, 𝐵) as the homomorphism density

When to Pre-Train Graph Neural Networks? From Data Generation Perspective! KDD ’23, August 6–10, 2023, Long Beach, CA, USA

of graph motif 𝐹 into graphon 𝐵, which represents the relative fre-
quency of 𝐹 occurring in a collection of graphs {𝐺𝑖 } that convergent
to graphon 𝐵, i.e., 𝑡 (𝐹, 𝐵) = lim𝑖→∞ 𝑡 (𝐹, {𝐺𝑖 }).

Now, we are ready to quantify how much the transferable pat-
terns in graphon basis can be preserved in our generator by explor-
ing the difference between the homomorphism density of graph
motifs into the graphon basis and that into our generator.

Theorem 5.2. Assume a graphon basis {𝐵1, · · · , 𝐵𝑘 } and their
convex combination 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) =

∑𝑘
𝑖=1 𝛼𝑖𝐵𝑖 . The 𝑎-th element of

graphon basis 𝐵𝑎 corresponds to a motif set. For each motif 𝐹𝑎 in the
motif set, the difference between the homomorphism density of 𝐹𝑎 in
𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) and that in basis element 𝐵𝑎 is upper bounded by

|𝑡 (𝐹𝑎, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) − 𝑡 (𝐹𝑎, 𝐵𝑎) | ≤
𝑘∑︁

𝑏=1,𝑏≠𝑎
|𝐹𝑎 |𝛼𝑏 | |𝐵𝑏 − 𝐵𝑎 | |□ (8)

where |𝐹𝑎 | represents the number of nodes in motif 𝐹𝑎 , | | · | |□ is the
cut norm.

Theorem 5.2 indicates the graph motifs (i.e., key transferable
patterns) inherited in each basis element can be preserved in our
generator, which justifies the rationality to take the generator as a
representative and comprehensive summary of pre-training data.

5.2 Theoretical Justification of Possible
Downstream Space

The possible downstream space includes the graphs generated from
generator 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }). We here provide a theoretical justification
that the generated graphs in possible downstream space can inherit
key transferable graph patterns (i.e., graph motifs) in the generator.

Theorem 5.3. Given a graph generator 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }), we can ob-
tain sufficient number of random graphs G = G(𝑛, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }))
with 𝑛 nodes generated from 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }). The homomorphism den-
sity of graph motif 𝐹 in G can be considered approximately equal to
that in 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) with high probability and can be represented as

P(|𝑡 (𝐹,G) − 𝑡 (𝐹, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) | > 𝜀) ≤ 2 exp
(
− 𝜀2𝑛

8v(𝐹)2
)
, (9)

where v(𝐹) denotes the number of nodes in 𝐹 , and 0 ≤ 𝜖 ≤ 1.

Theorem 5.3 indicates that the homomorphism density of graph
motifs into the generated graphs in the possible downstream space
can be inherited from our generator to a significant degree.

6 EXPERIMENTS
In this section, we evaluate the effectiveness of W2PGNN with
the goal of answering the following questions: (1) Given the pre-
training and downstream data, is the feasibility of pre-training
estimated by W2PGNN positively correlated with the downstream
performance (Use case 2)? (2) When the downstream data is pro-
vided, does the pre-training data selected by W2PGNN actually
help improve the downstream performance (Use case 3)?

Note that it is impractical to empirically evaluate the application
scope of graph pre-trained models (Use case 1), as we cannot enu-
merate all graphs in the possible downstream space. By answering
question (1), it can be indirectly verified that a part of graphs in the

possible downstream space, i.e., the downstream graphs with high
feasibility, indeed benefit from the pre-training.

6.1 Experimental Setup
We validate our proposed framework on both node classification
and graph classification task.
Datasets. For node classification task, we directly adopt six datasets
from [30] as the candidates of pre-training data, which consists of
Academia, DBLP(SNAP), DBLP(NetRep), IMDB, Facebook and Live-
Journal (from academic, movie and social domains). Regarding the
downstream datasets, we adopt US-Airport and H-Index from [30]
and additionally add two more datasets Chameleon and Europe-
Airport for a more comprehensive results. For graph classification
task, we choose the large-scale datasets ZINC15 [31] containing 2
million unlabeled molecules. To enrich the follow-up experimental
analysis, we use scaffold split to partition the ZINC15 into five
datasets (ZINC15-0, ZINC15-1, ZINC15-2, ZINC15-3 and ZINC15-4)
according to their scaffolds [14], such that the scaffolds are differ-
ent in each dataset. Regarding the downstream datasets, we use
5 classification benchmark datasets BACE, BBBP, MUV, HIV and
ClinTox contained in MoleculeNet [39].
Baseline of graph pre-training measures. The baselines can
be divided into 3 categories: (1) EGI [52] computes the difference
between the graph Laplacian of (sub)graphs from pre-training data
and downstream data; (2) Graph Statistics, by which we merge aver-
age degree, degree variance, density, degree assortativity coefficient,
transitivity and average clustering coefficient to construct a topolog-
ical vector for each (sub)graph. (3) Clustering Coefficient, Spectrum
of Graph Laplacian, and Betweenness Centrality, by which we adopt
the distributions of graph properties as topological vectors. For (2)
and (3), we calculate the negative value of Maximum Mean Dis-
crepancy distance between the obtained topological vectors of the
(sub)graph from pre-training data and that from downstream data.
For efficiency, when conducting node classification, we randomly
sample 10% nodes for each candidate pre-training dataset and all
nodes for each downstream dataset, then extract their 2-hop ego-
networks. The final measure is the average of distances/differences
between each pair of pre-training and fine-tuning graphs.
Implementation Details. For node classification tasks, we ran-
domly sample 1000 nodes for each pre-training dataset and extract
2-hops ego-networks of sampled nodes to compose our input space,
and extract 2-hops ego-networks of all nodes in each downstream
dataset to estimate the graphon. For graph classification tasks, we
take all graphs in each pre-training dataset to compose our input
space and use all graphs in each downstream dataset to estimate
graphon. When constructing topological graphon basis, we set the
the number of clusters 𝑘 = 5. The maximum iterations number of
K-Means is set as 300. When constructing domain graphon basis,
we take each pre-training dataset as a domain. For graphon esti-
mation, we use the largest gap [3] approach and let the block size
of graphon as the average number of nodes in all graphs. When
learning 𝛼𝑖 , we adopt Adam as the optimizer and set the learning
rate 𝜂 as 0.05. For the GW distance, we adopt its differential and
efficient version entropic regularization GW distance with default
hyperparameters [29]. We provide an open-source implementation
of our model W2PGNN at https://github.com/caoyxuan/W2PGNN.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

𝑁 = 2 𝑁 = 3

US-Airport Europe-Airport H-index Chameleon Rank US-Airport Europe-Airport H-index Chameleon Rank

Graph Statistics -0.6068 0.3571 -0.6220 -0.2930 10 -0.7096 -0.5052 -0.2930 -0.8173 10
EGI 0.0672 -0.6077 -0.2152 -0.2680 9 -0.2358 -0.5540 -0.2822 -0.6511 9
Clustering Coefficient -0.0273 0.1519 0.3622 0.3130 5 -0.0039 0.2069 0.4829 0.2279 4
Spectrum of Graph Laplacian -0.2023 0.1467 0.0794 0.0095 8 -0.7648 -0.4311 0.2611 -0.2300 8
Betweenness Centrality -0.2739 -0.2554 0.2051 0.2241 7 -0.3421 -0.5903 0.1364 0.0849 7
W2PGNN (intergr) 0.3579 0.1224 0.3313 0.1072 6 0.0841 0.5310 0.4213 -0.0916 6
W2PGNN (domain) 0.4774 0.4666 0.6775 0.3460 3 0.7132 0.5523 0.7381 0.1857 3
W2PGNN (topo) 0.2059 0.3908 0.3745 0.4464 4 0.4900 0.5061 0.4072 0.1497 5
W2PGNN (𝛼 = 1) 0.4172 0.5206 0.6829 0.4391 2 0.5282 0.6663 0.7240 0.3246 1
W2PGNN 0.3941 0.5336 0.7162 0.4838 1 0.5089 0.6706 0.6754 0.3166 2

Table 1: Pearson correlation coefficient between the estimated pre-training feasibility and the best downstream performance
on node classification. 𝑁 denotes the number of candidate pre-training datasets that form the pre-training data. Bold indicates
the highest coefficient. “Rank” represents the overall ranking on all downstream datasets.

𝑁 = 2 𝑁 = 3

BACE BBBP MUV HIV ClinTox Rank BACE BBBP MUV HIV ClinTox Rank

Graph Statistics -0.4118 -0.1328 0.3858 0.0174 -0.3577 9 -0.3093 -0.1430 0.1946 0.3545 -0.1372 7
EGI 0.2912 -0.6862 0.4488 0.0587 0.0452 7 0.4570 0.3230 0.3024 0.4144 -0.0085 3
Clustering Coefficient -0.5098 -0.5097 0.3754 0.4738 0.5154 8 -0.4080 0.3217 -0.1190 -0.2483 -0.4248 9
Spectrum of Graph Laplacian -0.0633 -0.4878 -0.3413 -0.1125 -0.2562 10 -0.3563 -0.1611 -0.2294 -0.2448 0.3001 8
Betweenness Centrality -0.0021 0.7755 0.4040 0.0339 0.3411 6 -0.3695 -0.4568 -0.2752 -0.3035 -0.2129 10
W2PGNN (intergr) 0.7547 0.7790 0.2907 0.7033 0.5639 3 0.4081 0.4687 -0.0567 0.3802 0.4354 5
W2PGNN (domain) 0.7334 0.7689 0.5395 0.6831 0.5431 5 0.0864 0.3680 0.0187 0.4784 0.3765 6
W2PGNN (topo) 0.6656 0.7164 0.8131 0.7391 0.5406 2 0.1109 0.5357 0.0514 0.3265 0.4724 4
W2PGNN (𝛼 = 1) 0.6549 0.7690 0.6730 0.7033 0.5639 4 0.5287 0.7102 0.1925 0.5893 0.5430 2
W2PGNN 0.7549 0.7776 0.8131 0.7044 0.5784 1 0.6207 0.6696 0.5227 0.6529 0.5994 1

Table 2: Pearson correlation coefficient between the feasibility and the best downstream performance on graph classification.

6.2 Results of Pre-training Feasibility
Setup. As a pre-judgement to assess the necessity of pre-training
before conducting any pre-training/fine-tuning attempts, the graph
pre-training feasibility should reveal the optimal case that down-
stream data can benefit from pre-training data. However, it is im-
practical to obtain the optimal case, because we cannot enumerate
all factors affecting model performance, e.g., pre-training strategies,
fine-tuning strategies, backbone models. Hence we use the best
downstream performance achieved among existing commonly-used
pre-training models as an approximation.

For node classification tasks, we use the following 4 graph pre-
training models: GraphCL [45] and GCC models [30] with three
different hyper-parameter (i.e., 128, 256 and 512 rw-hops). For graph
classification tasks, we adopt 7 SOTA pre-training models: At-
trMasking [14], ContextPred [14], EdgePred [14], Infomax [14],
GraphCL [45], GraphMAE [13] and JOAO [44]. When pre-training,
we directly use the default hyper-parameters of pre-training mod-
els except the rw-hops in GCC. During fine-tuning, we freeze the
parameters of pre-trained models and utilize the logistic regression
as classifier for node classification and SVM as classifier for graph
classification, following [30] and its fine-tuning hyper-parameters.
The downstream results are reported as the average of Micro F1
and ROC-AUC under 10 runs on node classification and graph clas-
sification respectively. For each downstream task, we take the best
performance among all methods.

For a comprehensive evaluation on the correlation between the
estimated pre-training feasibility and the best downstream perfor-
mance, we need to construct multiple ⟨Gtrain,Gdown⟩ sample pairs
as our evaluation samples. When constructing the ⟨Gtrain,Gdown⟩

sample pairs for each downstream data, multiple pre-training data
are required to be paired with it. Hence we adopt the following
two settings to augment the choice of pre-training data for more
possibilities. We use 𝑁 as the number of dataset candidates con-
tained in pre-training data. For 𝑁 = 2 and 𝑁 = 3, we randomly
select 2 and 3 pre-training dataset candidates, respectively as pre-
training data. We enumerate all possible combination cases for
graph classification tasks and randomly select 40% of all cases for
node classification tasks for efficiency.
Results. Table 1 (for node classification) and Table 2 (for graph
classification) show the Pearson correlation coefficient between
the best downstream performance and the estimated pre-training
feasibility by W2PGNN and baselines for each downstream dataset.
A higher coefficient indicates a better estimation of pre-training fea-
sibility. We also include 4 variants of W2PGNN: W2PGNN (intergr),
W2PGNN (domain) and W2PGNN (topo) only utilize the integrated
graphon basis, domain graphon basis and topological graphon basis
to approximate feasibility respectively, and W2PGNN (𝛼 = 1) set
the learnable combination weights {𝛼𝑖 } as constant 1. We have the
following observations. (1) The results show that our model achieve
the highest overall ranking in most cases, indicating the superiority
of our proposed framework. (2) We find that the measures provided
by other baselines sometimes show no correlation or negative cor-
relation with the best downstream performance. (3) Comparing
W2PGNN and its variants, we find that although the variants some-
times achieve superior performance on some downstream datasets,
they cannot consistently perform well on all datastes. In contrast,
the top-ranked W2PGNN can provide a more comprehensive pic-
ture with various graph bases and learnable combination weights.

When to Pre-Train Graph Neural Networks? From Data Generation Perspective! KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0.35 0.30 0.25 0.20

Feasibility

0.61

0.62

0.63

0.64

0.65

0.66

B
es

t
 P

er
fo

rm
an

ce

US-Airport | Corr = 0.3941

0.25 0.20

Feasibility

0.50

0.52

0.54

0.56

0.58

0.60

B
es

t
 P

er
fo

rm
an

ce

Europe-Airport | Corr = 0.5336

0.14 0.12 0.10

Feasibility

0.72

0.74

0.76

0.78

B
es

t
 P

er
fo

rm
an

ce

H-Index | Corr = 0.7162

0.275 0.250 0.225 0.200

Feasibility

0.42

0.44

0.46

0.48

0.50

B
es

t
 P

er
fo

rm
an

ce

Chameleon | Corr = 0.4838 Pre-Training Data:
LiveJournal + Facebook
LiveJournal + DBLP(NetRep)
LiveJournal + DBLP(SNAP)
LiveJournal + Academia
Facebook + DBLP(NetRep)
Facebook + DBLP(SNAP)
Facebook + Academia
DBLP(NetRep) + DBLP(SNAP)
DBLP(NetRep) + Academia
DBLP(SNAP) + Academia
IMDB + LiveJournal
IMDB + Facebook
IMDB + DBLP(NetRep)
IMDB + DBLP(SNAP)
IMDB + Academia

Figure 3: Pre-training feasibility vs. the best downstream performance on node classification when the selection buget is 2.

𝑁 = 2 𝑁 = 3

US-Airport Europe-Airport H-index Chameleon Rank US-Airport Europe-Airport H-index Chameleon Rank
All Datasets 65.62 55.65 75.22 46.81 - 65.62 55.65 75.22 46.81 -

Graph Statistics 64.20 53.36 74.30 44.31 4 62.27 54.58 72.88 43.87 5
EGI 64.96 57.37 74.30 43.21 2 62.27 57.36 72.88 45.93 3
Clustering Coefficient 62.61 52.87 77.74 43.21 3 62.94 54.58 75.18 44.66 4
Spectrum of Graph Laplacian 61.76 57.88 73.14 42.20 5 63.95 54.87 73.90 44.66 2
Betweenness Centrality 64.96 52.87 73.50 41.63 6 62.27 54.87 75.18 43.87 6
W2PGNN 64.96 57.88 77.24 45.54 1 63.95 57.59 75.68 46.07 1

Table 3: Node classification results when performing pre-training on different selected pre-training data. We also provide the
results of using all pre-training data without selection for your reference (see “All Datasets” in the table).

To provide a deeper understanding of the feasibility estimated
by W2PGNN, Figure 3 shows our estimated pre-training feasibility
(in x-axis) versus the best downstream performance on node clas-
sification (in y-axis) of all <pre-training data, downstream data>
pairs (one point represents the result of one pair) when the selec-
tion budget is 2. The plots when the selection budget is 3 and the
plots under graph classification can be found in Appendix B.1. We
find that there is a strong positive correlation between estimated
pre-training feasibility and the best downstream performance on
all downstream datasets, which also suggests the significance of
our feasibility.

6.3 Results of Pre-Training Data Selection
Given the downstream data, a collection of pre-training dataset
candidates and a selection budget (i.e., the number of datasets se-
lected for pre-training) due to limited resources, we aim to select
the pre-training data with the highest feasibility, so as to benefit
the downstream performance.
Setup. We here adopt two settings, i.e., selection budget is set as
2 and 3 respectively. The datasets that are augmented for more
pre-training data choices in Section 6.2 can be directly used as the
candidates of pre-training datasets here. Then, the selected pre-
training data serves as the input of graph pre-training model. For
node classification tasks, we adopt GCC as the pre-training model
as an example, because it is the pre-training model that can be
generalized across domains and most of the datasets used for node
classification are taken from it [30]. For graph classification tasks,
we take GraphCL as the pre-training model as it provides multiple
graph augmentation approaches and is more general [45].
Results. Table 3 shows the results of pre-training data selection
on node classification task. (The results on graph classification is
included in Appendix B.2). We have the following observations. (1)
We can see that the pre-training data selected by W2PGNN ranks

first, which is the most suitable one for downstream. (2) We find
that sometimes simple graph property like clustering coefficient
serves as a good choice on a specific dataset (i.e., H-index), when the
budget of pre-training data is 2. It is because that H-index exhibits
the largest clustering coefficient compared to other downstream
datasets, which facilitates the data selection via clustering coeffi-
cient. However, such simple graph property is only applicable when
the downstream dataset shows a strong indicator of the property,
and is not helpful when you need to select more datasets for pre-
training (see results under 𝑁=3). (3) Moreover, it is also interesting
to see that using all pre-training data for pre-training is not al-
ways a reliable choice. We find that carefully selecting pre-training
data can not only benefit downstream performance but also reduce
computation resources.

7 CONCLUSION
This paper proposes a W2PGNN framework to answer the question
of when to pre-train GNNs based on the generative mechanisms
from pre-training to downstream data. W2PGNN designs a graphon-
based graph generator to summarize the knowledge in pre-training
data, and the generator can in turn produce the solution space of
downstream data that can benefit from the pre-training. W2PGNN
is theoretically and empirically shown to have great potential to
provide the application scope of graph pre-training models, estimate
the feasibility of pre-training and help select pre-training data.

ACKNOWLEDGMENTS
This work was partially supported by NSFC (62206056), Zhejiang
NSF (LR22F020005), the National Key Research and Development
Project of China (2018AAA0101900), and the Fundamental Research
Funds for the Central Universities.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

REFERENCES
[1] Edo M Airoldi, Thiago B Costa, and Stanley H Chan. 2013. Stochastic blockmodel

approximation of a graphon: Theory and consistent estimation. In NeurIPS. 692–
700.

[2] Katy Börner, Soma Sanyal, Alessandro Vespignani, et al. 2007. Network science.
Annu. rev. inf. sci. technol. 41, 1 (2007), 537–607.

[3] Antoine Channarond, Jean-Jacques Daudin, and Stéphane Robin. 2012. Classifica-
tion and estimation in the Stochastic Blockmodel based on the empirical degrees.
Electronic Journal of Statistics 6 (2012), 2574–2601.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL-HLT. 4171–4186.

[5] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings via Diffusion Wavelets. In SIGKDD.

[6] Linton C Freeman et al. 2002. Centrality in social networks: Conceptual clarifi-
cation. Social network: critical concepts in sociology. Londres: Routledge 1 (2002),
238–263.

[7] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In SIGKDD.

[8] Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. 2020.
GraphCL: Contrastive Self-Supervised Learning of Graph Representations. ArXiv
abs/2007.08025 (2020).

[9] Xueting Han, Zhenhuan Huang, Bang An, and Jing Bai. 2021. Adaptive Transfer
Learning on Graph Neural Networks. In SIGKDD.

[10] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. 2022. G-Mixup: Graph
Data Augmentation for Graph Classification. In ICML.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view
representation learning on graphs. In ICML. PMLR, 4116–4126.

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR. 9729–
9738.

[13] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders. In
SIGKDD. 594–604.

[14] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In
ICLR.

[15] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In SIGKDD.

[16] Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction.
ArXiv abs/1905.13728 (2019).

[17] Marcus Kaiser. 2008. Mean clustering coefficients: the role of isolated nodes and
leafs on clustering measures for small-world networks. New Journal of Physics
10 (2008), 083042.

[18] Thomas Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. ArXiv
abs/1611.07308 (2016).

[19] Pengyong Li, Jun Wang, Ziliang Li, Yixuan Qiao, Xianggen Liu, Fei Ma, Peng
Gao, Sen Song, and Guowang Xie. 2021. Pairwise Half-graph Discrimination:
A Simple Graph-level Self-supervised Strategy for Pre-training Graph Neural
Networks. In IJCAI.

[20] Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua.
2022. Let Invariant Rationale Discovery Inspire Graph Contrastive Learning. In
ICML. 13052–13065.

[21] László Lovász. 2012. Large networks and graph limits. Vol. 60. American Mathe-
matical Soc.

[22] László Lovász and Balázs Szegedy. 2006. Limits of dense graph sequences. Journal
of Combinatorial Theory, Series B 96, 6 (2006), 933–957.

[23] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to Pre-train
Graph Neural Networks. In AAAI.

[24] J MacQueen. 1967. Classification and analysis of multivariate observations. In
5th Berkeley Symp. Math. Statist. Probability. University of California Los Angeles
LA USA, 281–297.

[25] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824–827.

[26] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning Distributed

Representations of Graphs. ArXiv abs/1707.05005.
[27] Mark EJ Newman. 2003. Mixing patterns in networks. Physical review E 67, 2

(2003), 026126.
[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In SIGKDD.
[29] Gabriel Peyré, Marco Cuturi, and Justin Solomon. 2016. Gromov-wasserstein

averaging of kernel and distance matrices. In ICML. PMLR, 2664–2672.
[30] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In SIGKDD.

[31] T. Sterling and John J. Irwin. 2015. ZINC 15 – Ligand Discovery for Everyone.
Journal of Chemical Information and Modeling 55 (2015), 2324 – 2337.

[32] Fan-Yun Sun, Jordan Hoffmann, and Jian Tang. 2020. InfoGraph: Unsupervised
and Semi-supervised Graph-Level Representation Learning via Mutual Informa-
tion Maximization. In ICLR.

[33] Ke Sun, Zhanxing Zhu, and Zhouchen Lin. 2020. Multi-Stage Self-Supervised
Learning for Graph Convolutional Networks. In AAAI.

[34] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. 2021. MoCL:
Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning
from Molecular Graph. In SIGKDD.

[35] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In WWW.

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[37] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. (1994).

[38] Max Welling and Thomas N Kipf. 2016. Semi-supervised classification with graph
convolutional networks. In ICLR.

[39] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[40] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie
Kong. 2019. Random walks: A review of algorithms and applications. IEEE
Transactions on Emerging Topics in Computational Intelligence 4, 2 (2019), 95–107.

[41] Jun Xia, Jiangbin Zheng, Cheng Tan, Ge Wang, and Stan Z. Li. 2022. Towards
Effective and Generalizable Fine-tuning for Pre-trained Molecular Graph Models.
bioRxiv (2022).

[42] Hongteng Xu, Peilin Zhao, Junzhou Huang, and Dixin Luo. 2021. Learning
Graphon Autoencoders for Generative Graph Modeling. ArXiv abs/2105.14244
(2021).

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[44] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In ICML. PMLR, 12121–12132.

[45] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS,
Vol. 33. 5812–5823.

[46] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2020. When
Does Self-Supervision Help Graph Convolutional Networks?. In PMLR, Vol. 119.
10871–10880.

[47] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning. In IJCAI.

[48] Jiying Zhang, Xi Xiao, Long-Kai Huang, Yu Rong, and Yatao Bian. 2022. Fine-
Tuning Graph Neural Networks via Graph Topology induced Optimal Transport.
In IJCAI.

[49] Zaixin Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. 2021.
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction.
In NeurIPS.

[50] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. 2021.
Motif-based graph self-supervised learning for molecular property prediction. In
NeurIPS, Vol. 34. 15870–15882.

[51] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil
Shah. 2021. Data Augmentation for Graph Neural Networks. In AAAI.

[52] Qi Zhu, Yidan Xu, Haonan Wang, Chao Zhang, Jiawei Han, and Carl Yang.
2021. Transfer Learning of Graph Neural Networks with Ego-graph Information
Maximization. In NeurIPS.

[53] Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, and Liang Wang. 2020. Deep
Graph Contrastive Representation Learning. ArXiv abs/2006.04131 (2020).

When to Pre-Train Graph Neural Networks? From Data Generation Perspective! KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A PROOFS
A.1 Proof of Theorem 4.1
We first show the following lemma, which would be used in the
proof of Theorem 4.1,

Lemma 1. (Proposition 11.32 in [21]) For every graphon𝑊 , gen-
erating a𝑊 -random graph G(𝑛,𝑊) for 𝑛 = 1, 2, . . . we get a graph
sequence such that G(𝑛,𝑊) →𝑊 with probability 1.

Proof of Theorem 4.1 : Since we assume Gdown can be generated
from 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) with probability 1, according to Lemma 1, we can
have that Gdown → 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) with probability 1. On the other
hand, since 𝐵down is the graphon fitted by Gdown, which means
Gdown is convergent to graphon 𝐵down and we have Gdown →
𝐵down. Hence 𝐵down is equivalent to 𝑓 , then dist(𝑓 , 𝐵down) =0.

A.2 Proof of Theorem 5.1
Proof: Given an arbitrary set of graphons 𝑋 = {𝐵𝑖 } and 𝑖 = 1...𝑘
the general form of the convex combination of graphons in 𝑋 can
be represented as:

𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) =
𝑘∑︁
𝑖=1

𝛼𝑖𝐵𝑖 , (
𝑘∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0) . (10)

Next we prove that our generator preserves the properties of graphons.
the convex combination of graphons is still a bounded symmetric
function [0, 1]2 → [0, 1]. First, we prove that the convex combi-
nation 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) is still symmetric. Since 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) is sym-
metric if and only if it satisfies that 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) = 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })𝑇 ,
we have the following derivations:

𝑓 ({𝛼𝑖 }, {𝐵𝑖 })𝑇 = (𝛼1𝐵1 + ... + 𝛼𝑘𝐵𝑘)𝑇

= 𝛼1𝐵
𝑇
1 + ... + 𝛼𝑘𝐵𝑇𝑘

= 𝛼1𝐵1 + ... + 𝛼𝑘𝐵𝑘 = 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) .
(11)

Then we prove that the convex combination 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) is still
in [0, 1] Let 𝐵𝑚𝑎𝑥 indicates the maximum 𝐵𝑖 , meanwhile 𝐵𝑚𝑖𝑛

indicates the minimum 𝐵𝑖

𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) = (𝛼1𝐵1 + ... + 𝛼𝑘𝐵𝑘) ≤
𝑘∑︁
𝑖=1

𝛼𝑖𝐵𝑚𝑎𝑥 = 𝐵𝑚𝑎𝑥 ≤ 1.

(12)

𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) = (𝛼1𝐵1 + ... + 𝛼𝑘𝐵𝑘) ≥
𝑘∑︁
𝑖=1

𝛼𝑖𝐵𝑚𝑖𝑛 ≥ 𝐵𝑚𝑖𝑛 ≥ 0.

(13)
Thus, for a set of graphon basis 𝑋 , the generator space Ω is the set
of all convex combinations of basis elements in 𝑋 , Ω is the convex
hull of 𝑋 .

A.3 Proof of Theorem 5.2
We first show the following two lemmas, which would be used in
the proof of Theorem 5.2.

The first lemma is known as counting lemma for graphons, pro-
vided in Lemma 10.23 in [21].

Lemma 2. Let 𝐹 be a graph motif and let 𝐵, 𝐵′ be two graphon .
Then we have ��𝑡 (𝐹, 𝐵) − 𝑡 (𝐹, 𝐵′) �� ≤ |𝐹 | 𝐵 − 𝐵′□ . (14)

Each absolute value term in the sum is bounded by the cut norm
∥𝐵 − 𝐵′∥□. When we fix all other irrelavant variables (everything
except 𝑢𝑖 and 𝑣𝑖 for the 𝑖-th term), altogether implying that��𝑡 (𝐹, 𝐵) − 𝑡 (𝐹, 𝐵′) �� ≤ |𝐹 | 𝐵 − 𝐵′□ . (15)

Lemma 3. The cut norm of a graphon ∥𝐵∥□ is defined as

∥𝐵∥□ = sup
𝑆,𝑇 ⊆[0,1]

����∫
𝑆×𝑇

𝐵

���� , (16)

where the supremum is taken over all measurable subsets 𝑆 and 𝑇 .
Obviously, suppose 𝛼 ∈ R, we have

∥𝛼𝐵∥□ = sup
𝑆,𝑇 ⊆[0,1]

����∫
𝑆×𝑇

𝛼𝐵

���� = sup
𝑆,𝑇 ⊆[0,1]

����𝛼 ∫
𝑆×𝑇

𝐵

���� = 𝛼 ∥𝐵∥□ .
(17)

Proof of Theorem 5.2: Based on the Lemma 2 and Lemma 3, we
have the following derivations. The 𝑎−th element 𝐵𝑎 in graphon
basis has its corresponding motif set. Each motif 𝐹𝑎 is expected to
be preserved and to exhibit similar frequency (i.e., homomorphism
density) in 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }).

Applying Lemma 2, we have the following derivations:
|𝑡 (𝐹𝑎, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) − 𝑡 (𝐹𝑎, 𝐵𝑎) | ≤ |𝐹𝑎 | | |𝑓 ({𝛼𝑖 }, {𝐵𝑖 }) − 𝐵𝑎 | |□

|𝑡 (𝐹𝑎, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) − 𝑡 (𝐹𝑎, 𝐵𝑎) | ≤ |𝐹𝑎 | | |
𝑘∑︁

𝑏=1
𝛼𝑏𝐵𝑏 −

𝑘∑︁
𝑏=1

𝛼𝑏𝐵𝑎 | |□

|𝑡 (𝐹𝑎, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 })) − 𝑡 (𝐹𝑎, 𝐵𝑎) | ≤ |𝐹𝑎 | | |
𝑘∑︁

𝑏=1
𝛼𝑏 (𝐵𝑏 − 𝐵𝑎) | |□ .

(18)
Combining with the triangle inequality, we have:

|𝑡 (𝐹𝑎, 𝑓 ({𝛼𝑖 }, {𝐵𝑖 }))−𝑡 (𝐹𝑎, 𝐵𝑎) | ≤
𝑘∑︁

𝑏=1,𝑏≠𝑎
|𝐹𝑎 |𝛼𝑏 | |𝐵𝑏−𝐵𝑎 | |□ . (19)

where a=1...k, |𝐹 | represents the number of nodes in motif 𝐹 , and
| | · | |□ is the cut norm.

A.4 Proof of Theorem 5.3
Lemma 4. (Corollary 10.4 in [21]). Let𝑊 be a graphon, 𝑛 ≥ 1, 0 <

𝜀 < 1, and let 𝐹 be a simple graph, then the𝑊 -random graph G =

G(𝑛,𝑊) satisfies

P(|𝑡 (𝐹,G) − 𝑡 (𝐹,𝑊) | > 𝜀) ≤ 2 exp
(
− 𝜀2𝑛

8v(𝐹)2
)
. (20)

Proof of Theorem 5.3: Apply Lemma 4 in our setting, let graphon
𝐵 as𝑊 Lemma 4, we have

P(|𝑡 (𝐹,G) − 𝑡 (𝐹, 𝐵) | > 𝜀) ≤ 2 exp
(
− 𝜀2𝑛

8v(𝐹)2
)
. (21)

B ADDITIONAL RESULTS
B.1 Results of Pre-training Feasibility
Figure 4 shows the results on node classification when the selection
budget is 3. Figure 5 shows the results on graph classification when
the selection budget is 2 and 3 respectively. We find that in all
cases, there is a strong positive correlation between pre-training
feasibility and the best downstream performance.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Cao and Xu, et al.

0.30 0.25

Feasibility

0.62

0.63

0.64

0.65

B
es

t
 P

er
fo

rm
an

ce

US-Airport | Corr = 0.5089

0.22 0.20 0.18

Feasibility

0.54

0.56

0.58

B
es

t
 P

er
fo

rm
an

ce

Europe-Airport | Corr = 0.6706

0.12 0.10 0.08

Feasibility

0.72

0.74

0.76

0.78

B
es

t
 P

er
fo

rm
an

ce

H-Index | Corr = 0.6754

0.21 0.20

Feasibility

0.44

0.46

0.48

0.50

0.52

B
es

t
 P

er
fo

rm
an

ce

Chameleon | Corr = 0.3166 Pre-Training Data:
LiveJournal + Facebook + DBLP(NetRep)
LiveJournal + Facebook + DBLP(SNAP)
LiveJournal + DBLP(NetRep) + Academia
LiveJournal + DBLP(SNAP) + Academia
IMDB + DBLP(SNAP) + Academia
IMDB + DBLP(NetRep) + DBLP(SNAP)
IMDB + DBLP(NetRep) + Academia
Facebook + DBLP(NetRep) + DBLP(SNAP)

Figure 4: Pre-training feasibility vs. the best downstream performance on node classification when the selection buget is 3.

0.0200 0.0175 0.0150 0.0125 0.0100 0.0075

Feasibility

0.74

0.75

0.76

0.77

0.78

0.79

B
es

t
 P

er
fo

rm
an

ce

BACE | Corr = 0.7549

0.085 0.080 0.075 0.070

Feasibility

0.645

0.650

0.655

0.660

0.665

0.670

0.675

0.680

B
es

t
 P

er
fo

rm
an

ce

BBBP | Corr = 0.7776

0.0770 0.0765 0.0760 0.0755

Feasibility

0.76

0.77

0.78

0.79

B
es

t
 P

er
fo

rm
an

ce

MUV | Corr = 0.8131

0.155 0.150 0.145 0.140 0.135

Feasibility

0.72

0.74

0.76

0.78

0.80

B
es

t
 P

er
fo

rm
an

ce

HIV | Corr = 0.7044

0.085 0.080 0.075

Feasibility

0.66

0.68

0.70

0.72

0.74

0.76

B
es

t
 P

er
fo

rm
an

ce

Clintox | Corr = 0.5784
Pre-Training Data:

ZINC15-01
ZINC15-02
ZINC15-03
ZINC15-04
ZINC15-12
ZINC15-13
ZINC15-14
ZINC15-23
ZINC15-24
ZINC15-34

0.020 0.018 0.016 0.014 0.012 0.010 0.008

Feasibility

0.74

0.75

0.76

0.77

0.78

0.79

B
es

t
 P

er
fo

rm
an

ce

BACE | Corr = 0.6207

0.0825 0.0800 0.0775 0.0750 0.0725 0.0700

Feasibility

0.63

0.64

0.65

0.66

0.67

0.68

B
es

t
 P

er
fo

rm
an

ce

BBBP | Corr = 0.6696

0.0770 0.0765 0.0760

Feasibility

0.76

0.77

0.78

0.79

B
es

t
 P

er
fo

rm
an

ce

MUV | Corr = 0.5227

0.155 0.150 0.145 0.140

Feasibility

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

B
es

t
 P

er
fo

rm
an

ce

HIV | Corr = 0.6529

0.0875 0.0850 0.0825 0.0800 0.0775 0.0750 0.0725

Feasibility

0.68

0.69

0.70

0.71

0.72

0.73

B
es

t
 P

er
fo

rm
an

ce

Clintox | Corr = 0.5994
Pre-Training Data:

ZINC15-012
ZINC15-013
ZINC15-014
ZINC15-023
ZINC15-024
ZINC15-034
ZINC15-123
ZINC15-124
ZINC15-134
ZINC15-234

Figure 5: Pre-training feasibility vs. best downstream performance on graph classification when the selection buget is 2 and 3.

𝑁 = 2 𝑁 = 3

BACE BBBP MUV HIV ClinTox Rank BACE BBBP MUV HIV ClinTox Rank
All Datasets 74.86 62.67 73.80 68.31 60.58 - 74.86 62.67 73.80 68.31 60.58 -
Graph Statistics 71.52 58.47 69.42 70.31 62.99 2 65.95 62.36 68.98 68.83 59.86 5
EGI 68.46 65.65 69.42 68.29 65.21 3 68.48 61.00 68.98 68.83 60.35 3
Clustering Coefficient 71.52 60.06 69.42 70.31 58.91 5 65.95 61.00 68.98 68.83 60.35 6
Spectrum of Graph Laplacian 69.43 65.65 68.57 68.88 59.82 6 70.21 61.00 69.14 69.18 63.02 2
Betweenness Centrality 71.52 63.20 69.42 71.72 58.91 4 67.08 67.41 68.98 68.83 60.35 4
W2PGNN 73.33 65.46 74.17 70.69 64.21 1 73.54 65.02 72.49 71.18 62.26 1

Table 4: Graph classification results when performing pre-training on different selected pre-training data. We also provide the
results of using all pre-training data without selection for your reference (see “All Datasets” in the table).

B.2 Results of Pre-Training Data Selection
Table 4 shows the results of pre-training data selection on graph
classification tasks. The backbone pre-training model used here is
GraphCL [45]. We can see that the pre-training data selected by
W2PGNN ranks the first, which suggests that the effectiveness of
our strategy on the graph classification task is still significant.

C COMPUTATION COMPLEXITY ANALYSIS
We show the time complexity of W2PNN and the traditional solu-
tion. Suppose that we have 𝑛1 and 𝑛2 (sub)graphs sampled from
pre-training data and downstream data respectively. Denote |𝑉 |
and |𝐸 | as the average number of nodes and edges per (sub)graph.

The time complexity of W2PGNN consists of three components:
computation of three graphon base ({𝐵𝑖 }topo, {𝐵𝑖 }domain, {𝐵𝑖 }integr),
graphon estimation of downstream data (i.e., 𝐵down), computation
of GW distance (i.e., dist(·, ·)): (1) Among the estimation of three
graphon base, the topological feature extraction is the most time-
consuming one. It mainly involves the topological feature extractor,
K-means clustering and graphon estimation of pre-training data,
which costs𝑂 (𝑛1 |𝐸 |) (which is taken as the complexity of the most
costly property closeness) [6],𝑂 (𝑛1) [17] and𝑂 (𝑛1 |𝑉 |2) [3], respec-
tively. The domain and integrated graphon basis only include the
graphon estimation of pre-training data and cost 𝑂 (𝑛1 |𝑉 |2) [3]. (2)

The graphon estimation of downstream data costs𝑂 (𝑛2 |𝑉 |2) [3]. (3)
The computation of GW distance costs 𝑂 (|𝑉 |3) [29], which can be
ignored because we have |𝑉 | ≪ 𝑛1 +𝑛2 (For node-level transferable
patterns, extracting the ego-network of sampled nodes via breadth
first search costs𝑂 ((𝑛1 +𝑛2) (|𝑉 | + |𝐸 |)), which can be ignored). So
the overall time complexity of W2PGNN is 𝑂 ((𝑛1 + 𝑛2) |𝑉 |2).

For comparison, traditional solution make 𝑙1 × 𝑙2 “pre-train and
fine-tune” attempts, if there are 𝑙1 pre-training models and 𝑙2 fine-
tuning strategies. Suppose the batch size of pre-training as 𝑏 and
the representation dimension as 𝑑 . The time complexity of each
pre-training model (taking the most general graph pre-training
model GCC [30] as example) is typically from data augmenta-
tion, GNN encoder and contrastive loss, which costs 𝑂

(
𝑛1 |𝑉 |3

)
(subgraphs sampled from random walk with restarts as augmen-
tation) [40], 𝑂 (𝑛1 |𝐸 |𝑑) (GIN as graph encoder) and 𝑂 (𝑛1𝑏𝑑) [20],
respectively. (Note that other data augmentations like dropping
nodes cost 𝑂 (|𝑉 |2), but they cannot achieve good performance
on node classification in our pre-training experiments.) The time
complexity of each fine-tuning strategy involves the inference
of pre-trained model 𝑂

(
𝑛2 (|𝑉 |3 + |𝐸 |𝑑)

)
and downstream predic-

tor 𝑂 (𝑛2𝑑) (which can be ignored), under the simple freezing
mode. Thus the overall time complexity of traditional solution
is 𝑂

(
𝑙1𝑙2 ((𝑛1 + 𝑛2) (|𝑉 |3 + |𝐸 |𝑑) + 𝑛1𝑏𝑑)

)
.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Preliminary and Related Works
	4 Methodology
	4.1 Framework Overview
	4.2 Feasibility of Pre-training
	4.3 Choose Graphon Basis to Approximate Feasibility
	4.4 Computation Complexity

	5 Theoretical Analysis
	5.1 Theoretical Justification of Generator Space
	5.2 Theoretical Justification of Possible Downstream Space

	6 Experiments
	6.1 Experimental Setup
	6.2 Results of Pre-training Feasibility
	6.3 Results of Pre-Training Data Selection

	7 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 5.1
	A.3 Proof of Theorem 5.2
	A.4 Proof of Theorem 5.3

	B Additional Results
	B.1 Results of Pre-training Feasibility
	B.2 Results of Pre-Training Data Selection

	C Computation Complexity Analysis

