
WalkLM: A Uniform Language Model Fine-tuning
Framework for Attributed Graph Embedding

Yanchao Tan
College of Computer and

Data Science
Fuzhou University

Fuzhou, China
yctan@fzu.edu.cn

Zihao Zhou
College of Computer and

Data Science
Fuzhou University

Fuzhou, China
reviverkey@gmail.com

Hang Lv
College of Computer and

Data Science
Fuzhou University

Fuzhou, China
lvhangkenn@gmail.com

Weiming Liu
College of Computer Science

Zhejiang University
Hangzhou, China

21831010@zju.edu.cn

Carl Yang∗
Department of Computer Science

Emory University
Atlanta, United States

j.carlyang@emory.edu

Abstract

Graphs are widely used to model interconnected entities and improve downstream
predictions in various real-world applications. However, real-world graphs nowa-
days are often associated with complex attributes on multiple types of nodes and
even links that are hard to model uniformly, while the widely used graph neural
networks (GNNs) often require sufficient training toward specific downstream
predictions to achieve strong performance. In this work, we take a fundamentally
different approach than GNNs, to simultaneously achieve deep joint modeling of
complex attributes and flexible structures of real-world graphs and obtain unsu-
pervised generic graph representations that are not limited to specific downstream
predictions. Our framework, built on a natural integration of language models
(LMs) and random walks (RWs), is straightforward, powerful and data-efficient.
Specifically, we first perform attributed RWs on the graph and design an automated
program to compose roughly meaningful textual sequences directly from the at-
tributed RWs; then we fine-tune an LM using the RW-based textual sequences
and extract embedding vectors from the LM, which encapsulates both attribute
semantics and graph structures. In our experiments, we evaluate the learned node
embeddings towards different downstream prediction tasks on multiple real-world
attributed graph datasets and observe significant improvements over a comprehen-
sive set of state-of-the-art unsupervised node embedding methods. We believe
this work opens a door for more sophisticated technical designs and empirical
evaluations toward the leverage of LMs for the modeling of real-world graphs.

1 Introduction

Graphs are widely used to model interconnected entities, and they are critical in enhancing down-
stream predictions in various real-world applications. Nowadays, real-world graphs are often associ-
ated with complex attributes on multiple types of nodes and even links [27, 28], and modeling such
real-world graphs is non-trivial. For example, in the schema of a clinical attributed graph constructed
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Figure 1: A toy example of the transformation from a real-world attributed graph to the
composed text. (a) is a schema of a real-world attributed graph on MIMIC-III that delineates how
nodes (e.g, patients), edges (e.g, has between patients and visits), and the associated attributes
(e.g., age) are organized and interconnected. (b) is attributed random walk for capturing structural
information and can be composed to text in (c).

from MIMIC-III2 data (shown in Figure 1(a)), there are multiple types of nodes such as patients,
visits and diseases, each with their own attributes such as age, sex, time and name; there are also
multiple types of links associated with different meanings. Such complex heterogeneous attributes of
nodes and links attributes can hardly be modeled in a uniform space.

Although the widely used graph neural networks (GNNs) have shown remarkable successes in the
modeling of attributed graphs for various downstream applications [5, 14, 53, 53], the representation
learning (a.k.a. embedding) of GNNs often requires sufficient training toward specific downstream
predictions to achieve strong performance [4, 76]. While unsupervised training has also been explored
for GNNs [23, 63], the generic performances of unsupervised GNN embeddings across different
downstream tasks are still unsatisfactory (as we will also show in our experiments). Consequently, it
is important to devise a general-purpose graph embedding method to simultaneously understand the
complex node/link attributes and incorporate the flexible graph structures in an unsupervised manner.

However, two obstacles stand in the way of achieving this goal. First, the nature of the attributes can
be intricate and diverse, thus understanding their semantics in a uniform space is non-trivial. Second,
the graph structures need to be accurately captured and incorporated into the embedding space, which
is not straightforward due to the inherent flexibility and potential complexity of entity relations.

To address these issues, in this work, we take a fundamentally different approach than GNNs, named
WalkLM, which is a uniform framework to obtain unsupervised generic graph representations that
are not limited to specific downstream tasks. To this end, we first draw inspiration from the recent
successes of language models (LMs), and propose to leverage LMs as uniform attribute models that
can capture the intricate semantics of complex heterogeneous attributes of nodes and links. Secondly,
we propose to leverage the classic tool of random walks (RWs) on graphs which have been shown
effective in capturing flexible graph topological structures by various studies [8, 10, 13, 21, 38].

Specifically, we first generate attributed RWs on the graph (e.g., 1
hasÐ→ 2 . . .

forÐ→ 5 in Figure 1(b)),
and design an automated textualization program to compose roughly meaningful textual sequences
directly from the attributed RWs. As shown in Figure 1(c), the composed text is a mapping from the
attributed RW in Figure 1(b), where a uniform automatic program firstly textualize different types of
nodes (in different colors) by properly concatenating the nodes with the names and values of different
attributes, and then textualize the whole RWs by concatenating the nodes and links. Furthermore,
we fine-tune an LM using the RW-based textual sequences and extract embedding vectors from the
LM. The learned embeddings encapsulate both attribute semantics and graph structures, and can be
flexibly utilized for arbitrary downstream tasks.

In our experiments, we take the node embeddings and evaluate them towards different downstream
prediction tasks (e.g., node classification and link prediction) on multiple real-world attributed
graph datasets and observe significant improvements over a comprehensive set of state-of-the-art
unsupervised node embedding methods (e.g., WalkLM achieves an average of 88.98% improvement
over the state-of-the-art baselines ranging from existing RW-based graph embedding methods to
popular unsupervised GNN modes regarding both Macro-F1 and Micro-F1 metrics). We believe this

2https://physionet.org/content/mimiciii/1.4/
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work paves the way for more sophisticated technical designs and empirical evaluations toward the
leverage of LMs for the modeling of real-world graphs.

2 Related Work

Graph Representation Learning. In recent years, a plethora of representation learning techniques
are proposed for graphs [3, 15, 55, 58, 74]. In this work, we focus on the objective of learning
embedding vectors for each node that characterizes its topological (and semantic) information in the
graph. Among existing node embedding methods, many have analyzed and utilized the great promise
of random walks (RWs) in capturing the topological structures of graphs [8, 13, 21, 38]. However, the
above methods ignore the abundant attribute information surrounding the nodes and edges [32]. In
recent studies, Graph neural networks (GNNs) for learning node representations through aggregating
information from neighboring nodes on graphs [14, 24, 62]. However, most existing GNNs are
established in a supervised learning setting, which requires abundant task-specific labeled data that
may not be available in real-world applications [4, 76], and the embeddings they learn are not
generalizable across different downstream tasks [70]. Although some studies tried to reduce the
labeling effort by pre-training an expressive GNN model on unlabeled data with self-supervision
methods (e.g., contrastive learning) [19, 22, 75], their performances in specific downstream tasks still
rely much on the properly chosen self-supervision tasks and attribute encoders [47, 73]– that is, there
still lack a uniform framework for generic unsupervised attributed graph representation learning.

Language Models (LMs). With the massive corpora and powerful computation resources for pre-
training, modern language models (LMs) derive various families [34]. These LMs can be grouped
into: (1) auto-regressive LMs (e.g., GPT [40] and GPT-2/3 [1, 41]), (2) masked LMs (e.g., BERT [7],
RoBERTa [31], and XLNet [64]), and (3) encoder-decoder LMs (e.g., BART [26] and T5 [42]). LMs
have been intensively studied by NLP researchers for various language-related tasks [16, 29, 43]. In
our work, we innovatively utilize LMs as uniform attribute models for nodes and links in graphs for the
first time. Note that, our work also readily generalizes to recent large language models (LLMs) (e.g.,
InstructGPT [36], ChatGPT and GPT-4 [35]) via appropriate parameter-efficient training approaches
(e.g., LoRA [18] and prompt-tuning [25, 30]). However, those are orthogonal to the innovations in
this work, for which we leave the exploration as immediate future works.

LMs with Knowledge Graph (KG). In recent studies, combining LMs with KG has been widely
applied in various real-world applications [37]. Among existing methods, many have proposed to
enhance LMs with KG for significantly improve the performance of LMs in accessing domain-specific
knowledge [46, 56, 67, 69], and the others proposed to harness the power of LMs for addressing
KG-related tasks [65, 66]. However, the above methods fail to effectively combine the rich semantic
information of graphs with global topological information. Furthermore, as closest to us, [12]
proposed to combine random walks and neural network language models to produce new word
representations. However, it ignores the rich relational information between nodes and thus fails to
learn richer topological information. Moreover, compared with modern LMs with extensive prior
knowledge, the text-based encoder used in [12, 51] fails to extract richer semantic information.

3 Preliminaries

3.1 Problem Formulation

Given an attributed graph G and multiple downstream tasks τi (e.g., node classification τ1 and
link prediction τ2), the goal of WalkLM is to sufficiently model information in G and improve task
performances on τi. Specifically, we denote the graph as G = (V,E,Φ,Ψ), where each node vi ∈ V
is associated with attributes Φ(vi), and each edge ei ∈ E is associated with attributes Ψ(ei).
To fully exploit both the semantic information in Φ and Ψ, and the structural information in V and E,
we first design attributed random walks (RWs) based automated textualization program on G, where
we can transform the attributed graph to the meaningful textual sequences W = {Wi}Ni=1. Then, we
fine-tune a graph-aware language model (LM) using the RW-based textual sequences W, find the
optimized parameters Θ of the LM, and extract embedding vectors from the LM. Finally, we apply
these embeddings to τ1 and τ2 for performance evaluation.
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Figure 2: The overall framework of WalkLM: (a) An attributed random walk (RW) based tex-
tualization program obtains attributed RWs and composes roughly meaningful textual sequences
directly from the attributed RWs. (b) A pre-trained general LM is fine-tuned in a graph-aware fashion
using the generated textual sequences to produce generic graph embeddings. (c) The learned graph
embeddings can be applied to various downstream tasks.

3.2 Masked Language Modeling

Masked Language Modeling (MLM) is a widely-used and highly effective technique for training
large-scale language models [7]. In the MLM task, 15% of the language tokens are randomly chosen
for prediction. If the i-th token in a sequence W is chosen, it can be replaced by (1) the [MASK]
token 80% of the time, (2) a random token 10% of the time, and (3) the unchanged i-th token 10%
of the time. Then, token ti will be used to predict the original token with following cross-entropy
loss [7, 59, 60]:

LMLM = −
1

∣X∣ ∑X∈X
∑

ti∈M
log p (ti∣T/i) , (1)

where X is a set of training examples, M is the prediction set of the masked token, T/i =
{t1, . . . , ti−1, ti+1, . . . , tL} is the surrounding token set of ti, and ∣T/i∣ = L − 1.

4 Methodology

In this section, we present the proposed method WalkLM, which comprises two major components.
The first component, the attributed random walk (RW) based textualization program, captures both
topological structures and attribute information of the graph and composes corresponding text
automatically. The second component, the graph-aware language model (LM) fine-tuning, leverages
pre-trained LM to encode the complex semantics along with the graph structure. The overall model
architecture is shown in Figure 2.

4.1 Attributed RW-based Textualization Program

To model node/link attributes, traditional machine learning algorithms require a standard process of
vectorization, which transforms different types of attributes into categorical or numerical features as
model input. However, such a vectorization process removes the actual semantic meanings of the
attributes, and it cannot unify different types of attributes (e.g., ages, sexes, time, etc.) in the same
space. Inspired by the recent successes of LMs, we find it promising to leverage pre-trained LMs
to understand the intricate semantics of complex heterogeneous attributes [29, 34]. The key idea is
to perform textualization instead of vectorization, that is, to transform different types of attributes
into texts, which can then be modeled by the LMs in a uniform space. Therefore, we first design the
following process for the textualization of individual entities in the graph (i.e., nodes and edges).

Entity-level Textualization. Inspired by a wide range of NLP tasks that leverage prompts to construct
informative rule templates, we propose to textualize attributed graph entities via a rule-based program
function P(⋅) that automatically concatenates attribute values with the corresponding attribute names,
as well as attributes and the corresponding entity id. For example, as shown in Figure 1, for a patient
node vi with attributes Φ(vi) = {age ∶ 35, sex ∶ female, pid ∶ P246}, the texualization program
will convert it into P(vi) = < A 35-year-old female patient P246 >. For edges, in this work, we
only consider simple relational edges such as has and including, which are already texts, but our
framework is readily extensible to edges with more complex attributes.

For attributed graphs, after modeling the complex attributes of individual entities, the next challenge
would be to model the flexible graph topological structures. To this end, we propose to utilize the
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powerful and efficient tool of RWs, as the foundation for the textualization of graphs. Specifically,
we design the following process:

Walk-level Textualization. We first initiate an attributed RW W by randomly selecting a node
v0 and attaching the textualized node information P(v0) to W . Then, we extend W by ran-
domly selecting an edge e1 starting from v0 as in a standard RW with a uniform probability as
1 divided by the number of out-edges of v0, with its terminating node v1, and appending the
corresponding texts P(e1) and P(v1) to W . We can keep adding edges and nodes until the ran-
dom walk terminates, such as based on a termination probability α. The final textual sequence
W = {P(v0),P(e1),P(v1), . . . ,P(vL−1),P(eL),P(vL)}, which corresponds to an actual at-
tributed random walk with the length of 2L + 1 on the graph, will be a roughly meaningful sentence,
such as the one shown in Figure 1(c).

After performing the RW for N times, we can obtain N attributed RWs as W = {Wi}Ni=1, which
constitutes a graph-aware corpus for training LMs without any downstream task supervision.

Discussion. We believe that the above proposed attributed RW-based textualization program is
effective in capturing both complex attribute information and flexible topological structures of the
graph in an unsupervised manner. Such ability arises from two critical properties: (1) Random
walks are known to be capable of providing characteristic graph traits and reconstructing network
proximity of nodes [21, 33]. To be specific, it has been proven that the distribution of random walks
starting at a particular node, which can be estimated with sufficient numbers of random walks, can
sufficiently preserve the subgraph structure around the node. This means a sufficient amount of
attributed RWs from different nodes can well reflect the topological structures of graphs. (2) Our
textualization program completely preserves the attributes of nodes and edges, as well as the whole
RWs, and it presents such information as meaningful texts, which is natural for LMs to comprehend.
Moreover, RWs are known to be efficient and highly parallelizable, where numerous threads can
run simultaneously to generate large amounts of RWs [9]. Note that, we only need to perform the
rule-based textualization once for every node during the pre-processing stage, which is also efficient
and highly amenable to parallelization.

4.2 Graph-Aware LM Fine-Tuning

Despite the robust generalizability of LMs, fine-tuning remains a necessary step [57, 68], which
allows the general LM to adapt its broad language capabilities to the specificities of the different
attributed graphs.

As one of the mainstream language modeling techniques, masked language modeling (MLM) is
proven to sufficiently utilize textual semantic information for further fine-tuning LMs [39, 77].
To achieve the balance between effectiveness and efficiency, we propose a graph-aware LM fine-
tuning mechanism with knowledge distillation [2, 17, 44]. Specifically, we adopt a general LM
DistilRoBERTa (abbr. DRoBERTa)3 as our starting point for fine-tuning, where RoBERTa is a
widely used successor of BERT [7]. Note that, DRoBERTa can further reduce the size of the original
RoBERTa model by 40% and achieve 60% faster training while retaining 97% capacity of RoBERTa’s
language understanding [44]. Then, we feed the attributed RW W ∈W to the LM tokenizer and obtain
the corresponding token list T = {t1, t2, . . . , tK , < MASK >1,< MASK >2, . . . ,< MASK >∣M∣},
where ti denotes the unmasked token, and <MASK >i denotes the token chosen for prediction. In this
way, we create a training example Xi = ⟨W,T ⟩ ∈ X for fine-tuning, where X = {X1,X2, . . . ,XN} is
the whole training dataset. We adopt the cross-entropy loss as the fine-tuning objective [7, 44, 59],
which is formulated as follows:

LFT (Θ) = −
1

∣X∣ ∑Xi∈X

⎡⎢⎢⎢⎢⎣
∑

t∗
k
∈M

log
exp(Sim(tk, t∗k))
∑t∈V exp(Sim(tk, t))

⎤⎥⎥⎥⎥⎦
, (2)

where Θ is the learnable parameters of our graph-aware LM, M is the ground-truth set of the
masked token, V is the token vocabulary, tk is the prediction token, t∗k is the ground-truth token, and
Sim(ti, tj) is the similarity scoring function between ti and tj .

After obtaining the fine-tuned LM based on MLM, we can extract generic graph embeddings (e.g.,
node embeddings based on node name). For example, we can access the representation of disease
embedding in Figure 1(c) via extracting the embedding of Epistaxis.

3https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation
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Complexity Analysis. The time complexity of fine-tuning is O(Iter ⋅ ∣N ∣ ⋅ l2avg ⋅ d), where Iter
is the number of iterations of training, N is the number of training examples, lavg is the average
length of input textual sequences for the LM and d is the dimension of embedding. We infuse global
graph structure knowledge into the LM to distinguish similar positions instead of negative sampling,
making it possible to fine-tune more efficiently [59].

Model Extension. Our framework is a fundamental approach to integrate LMs and RWs for generic
attributed graph embedding, which can choose different LMs according to different tasks and domains
(shown in our experiments in Sec. 5.4) and generalize to recent large language models (LLMs) (e.g.,
InstructGPT [36], ChatGPT and GPT-4 [35]) via appropriate parameter-efficient training approaches
such as LoRA [18]. A full exploration of different LMs is orthogonal to the main contributions in
this work, which is left as future work.

Datasets Extension. Our method introduces the novel process of textualization, which converts gen-
eral attributed graphs into text-like sequence data. This process allows us to leverage the capabilities
of pre-trained language models for graph representation learning. Note that, our method only requires
some meaningful attributes on the graphs, which are available in most real-world graphs such as
biological networks, social networks, and knowledge graphs. Some preliminary experimental results
of graph classification and KG-related datasets are shown in Appendix A.1 and Appendix A.2.

4.3 Various Downstream Tasks

In this work, we focus on node embeddings since they are most commonly studied for graph
representation learning, and it is straightforward to extract node embeddings from the fine-tuned
LM based on node names (or node IDs if the node has no meaningful name). However, WalkLM
can also easily generate edge embeddings, by adding edge names (e.g., relation names) or edge
IDs to the textualization process, and even obtain subgraph/graph embeddings via appropriate
embedding aggregation mechanisms. The extracted embeddings can be directly used as fixed feature
vectors to train downstream prediction models for tasks such as node classification or link prediction.
Alternatively, these embeddings can also serve as initialization for more learnable embeddings in
complex neural network models, which can be further updated according to the specific requirements
of the downstream task.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct extensive experiments on two real-world datasets, PubMed 4 and MIMIC-III 5.
PubMed contains a graph of genes, diseases, chemicals, and species. The nodes and edges are
extracted according to [61]. A relatively small fraction of diseases are grouped into eight categories.
MIMIC-III contains a graph of diseases, patients, and visits, where nodes and relations are extracted
from clinical records. Diseases are classified into nineteen categories according to ICD-9-CM 6. The
detailed statistics are shown in Table 1.

Table 1: Statistics of the datasets.
Dataset #attribute type #node type #node #link type # link #label #label node

PubMed 8 4 63,109 10 244,986 8 454
MIMIC-III 10 3 32,267 4 559,290 19 4880

Competitors. We compare our proposed WalkLM with ten graph-oriented baselines that are designed
for heterogeneous information networks (HINs) or knowledge graphs (KG), which can handle
different types of nodes and edges. We divided them into four groups as follows:

(1) RW-based methods: Metapath2Vec (abbr. M2V) [8] proposes to use user-defined meta-paths as
guidance, so as to learn node embeddings on HINs. HIN2Vec [10] carries out multiple prediction

4https://pubmed.ncbi.nlm.nih.gov/
5https://physionet.org/content/mimiciii/1.4/
6https://www.cdc.gov/nchs/icd/icd9cm.htm
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Table 2: Different downstream task results (%) with the corresponding std (±) on two datasets. The
best performances are in bold and the second runners are shaded in gray, where * denotes a significant
improvement according to the Wilcoxon signed-rank significance test.

Task Node Classification Link Prediction

Dataset PubMed MIMIC-III PubMed MIMIC-III

Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 AUC MRR AUC MRR

M2V 15.35 20.27 19.69 29.24 74.53 89.58 75.05 88.32
(±1.27) (±3.01) (±0.62) (±1.57) (±3.79) (±2.05) (±0.41) (±0.23)

HIN2Vec 11.57 18.92 19.12 28.05 74.21 90.56 73.46 88.10
(±1.23) (±2.78) (±1.32) (±1.44) (±5.49) (±1.06) (±0.41) (±0.14)

ConvE 16.06 19.16 24.44 32.89 76.48 92.27 69.56 84.88
(±3.69) (±4.00) (±1.28) (±0.86) (±4.31) (±0.57) (±0.36) (±0.25)

ComplEx 13.93 18.27 9.82 21.39 79.81 91.79 63.86 81.40
(±2.59) (±4.12) (±0.56) (±3.12) (±0.97) (±0.48) (±0.42) (±0.40)

SimKGC 21.97 30.83 51.62 58.50 79.62 91.43 67.73 84.86
(±3.51) (±3.10) (±1.81) (±1.52) (±2.72) (±0.48) (±1.69) (±0.54)

RGCN 12.50 18.50 7.19 14.55 72.08 88.20 57.31 73.91
(±2.36) (±1.41) (±0.77) (±3.25) (±1.13) (±0.47) (±0.71) (±0.57)

HAN 15.29 16.95 6.98 14.73 70.57 87.89 - -
(±2.87) (±2.71) (±0.58) (±1.69) (±1.58) (±0.62) - -

HGT 11.98 20.12 8.03 17.79 77.24 89.63 64.01 81.54
(±2.23) (±3.89) (±0.87) (±0.83) (±3.50) (±0.84) (±0.36) (±0.56)

HeCo 10.32 18.01 10.78 15.26 65.04 83.29 53.13 71.81
(±1.12) (±0.87) (±0.41) (±1.52) (±1.26) (±0.72) (±0.47) (±0.35)

SHGP 10.80 19.28 11.34 17.44 68.22 85.34 54.49 72.58
(±3.03) (±0.91) (±1.29) (±1.49) (±2.71) (±0.48) (±0.33) (±0.24)

LM 40.10 44.71 54.51 61.27 60.20 84.23 51.21 74.22
(XRoBERTa) (±4.62) (±3.68) (±1.50) (±1.22) (±2.78) (±1.71) (±0.17) (±0.26)
LM 59.43 61.53 70.26 72.67 51.71 80.54 50.66 72.36
(GPT-2) (±4.73) (±3.43) (±1.43) (±0.90) (±3.67) (±2.49) (±0.74) (±0.86)
LM 58.29 60.57 66.25 70.14 60.97 83.00 51.44 75.09
(DRoBERTa) (±2.44) (±2.11) (±1.60) (±1.52) (±2.98) (±0.40) (±0.14) (±0.29)
LM 13.83 22.70 14.32 24.59 72.35 88.86 58.62 78.78
+RGCN (±0.73) (±3.25) (±0.87) (±1.17) (±4.34) (±1.46) (±0.50) (±0.10)
LM 12.81 21.79 10.49 20.57 82.97 89.98 65.01 82.28
+HGT (±1.22) (±3.54) (±0.41) (±0.97) (±3.91) (±0.88) (±0.20) (±0.30)

WalkLM 60.42* 62.33* 75.16* 77.89* 85.65* 94.16* 82.15* 92.78*
(±2.62) (±3.13) (±0.93) (±0.70) (±3.28) (±0.37) (±0.67) (±0.68)

training tasks jointly based on a target set of relations to learn node embeddings and meta-paths on
HINs.

(2) Relation learning-based methods: ConvE [6] proposes to use 2D convolution over embeddings
and multiple layers of non-linear features to model KGs. ComplEx [49] handles a large number of
binary relations using complex-valued embeddings on KGs. SimKGC [52] proposes to elicit the
implicitly stored knowledge from BERT and designs a text-based contrastive learning mechanism for
knowledge graph completion.

(3) Supervised heterogeneous graph neural networks (HGNNs): RGCN [45] proposes to apply
GCN to model HINs or KGs. HAN [53] proposes to learn the importance between a node and its
meta-path based neighbors on HINs. HGT [20] proposes to use each edge’s type to parameterize the
transformer-based self-attention architecture on HINs. For the above supervised HGNNs, we use link
prediction loss introduced in GraphSAGE [14] to achieve unsupervised learning (i.e., without any
node labels), following existing studies on HINs [11, 61].

(4) Unsupervised HGNNs: HeCo [54] proposes a co-contrastive learning mechanism for HGNNs.
SHGP [63] designs a self-supervised pre-training method for HGNNs.

Settings. We mainly compare ten algorithms under the setting of unsupervised graph learning. The
full code for this work is available7. All the models are optimized through the Adam optimizer and

7https://github.com/Melinda315/WalkLM
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Table 3: Node classification results (%) in the few-shot setting with Macro-F1 (abbr. Ma-F1) and
Micro-F1 (abbr. Mi-F1) metrics.

Dataset PubMed MIMIC-III

Setting 1 shot 3 shot 5 shot 1 shot 3 shot 5 shot

Metric Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

ComplEx 9.31 12.51 10.32 13.26 10.12 15.94 2.82 5.29 2.00 3.03 3.87 9.26
M2V 9.86 13.42 10.27 12.56 12.97 14.98 5.83 8.72 3.91 5.11 3.40 4.49
ConvE 13.23 13.45 8.84 10.93 11.25 13.53 5.85 6.75 5.61 7.24 6.31 7.69
RGCN 9.34 11.02 8.57 10.58 10.84 13.43 4.97 5.82 5.43 6.28 5.22 5.73
HIN2Vec 8.46 10.54 9.04 12.79 10.96 17.39 5.72 10.33 4.90 5.72 3.57 4.91
SHGP 8.94 12.79 9.12 11.73 10.53 15.14 4.12 6.35 5.36 6.58 4.47 5.34
WalkLM 28.09* 30.94* 32.11* 35.35* 35.41* 37.68* 23.33* 27.96* 34.19* 40.49* 41.12* 46.83*

the learning rate is searched in [1e-4, 1e-2]. The hyper-parameters of baselines are chosen carefully
based on either grid search or their official source codes. For all the methods, we use a five-fold
cross-validation for a more reliable evaluation of the model’s performance. All the experiments are
performed with two NVIDIA GTX 3090 Ti GPUs. For link prediction, we deploy the Large Margin
Nearest Neighbor (LMNN) technique based on the embeddings generated by our WalkLM. Then we
construct feature vectors for edges.

5.2 Node Classification

Main Results. For node classification, we train a separate one-layer MLP classifier based on the
learned embeddings on 80% of the labeled nodes and predict the remaining 20%. All the methods are
trained in an unsupervised manner without classification labels. We evaluate WalkLM with Macro-F1
(across all labels) and Micro-F1 (across all nodes).

As shown in Table 2, our proposed WalkLM has superior performance, indicating the importance of
leveraging both semantic and structural information in attributed graphs. WalkLM achieves 138.59%
performance gains on PubMed over the second-best performance on average while achieving 39.37%
average performance gains on MIMIC-III. Specifically, SimKGC achieves second-best performance
by effectively employing text-based contrastive learning, which leverages BERT to capture a rich set
of semantic information. Compared with SimKGC, WalkLM can effectively combine the complex
semantic and graph structure information of attributed graphs, so as to accurately model the complex
attributes of nodes. Although the HGNNs can naturally model attributes, their unsupervised training
mechanisms likely do not align well with the downstream prediction task of node classification.

Results in the Few-shot Setting. Since one key challenge of node classification lies in the generaliz-
ability and adaptability of models [63], we design a few-shot setting to evaluate models in extending
knowledge to unseen scenarios and adapting to new tasks with limited training data.

As shown in Table 3, our framework can stay strong with a small size of training data, where
we win a 275.45% performance gain over the second-best performance on average. Through the
novel textualization process that converts general attributed graphs into text-like sequence data, our
proposed WalkLM can leverage the capabilities of modern language models for graph representation
learning. With the extensive pre-training of LMs on broad text corpora, WalkLM can easily understand
meaningful node attributes given a new graph, while the random walk strategy further allows it
to capture graph structures. Consequently, WalkLM maintains superior performance even in the
few-shot setting. Similar to the main results in Table 2, the ranking of baselines is fluctuating across
datasets, where ConvE and M2V continue to exhibit promising performance. Note that ComplEx
and HIN2Vec exhibit notable improvements in this setting, likely because HIN2Vec can also learn
node representations based on random walks and ComplEx can capture fine interactions through
complex-valued vectors, thus being more capable of capturing comprehensive node information
before supervision.

5.3 Link Prediction

For link prediction, we train all models with the randomly selected 80% links and evaluate towards
the 20% held-out links. We use the Hadamard function to construct feature vectors for node pairs
and train a two-layer MLP classifier on the 80% training links. We evaluate WalkLM with AUC (area
under the ROC curve) and MRR (mean reciprocal rank). Note that, HAN cannot predict links on
MIMIC-III for its restriction to embed only one type of node at a time, and thus it cannot predict
links between different types of nodes on MIMIC-III [53].
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Figure 3: Analysis of the number of sampled walks N and the termination probability α.

As shown in Table 2, our fine-tuned WalkLM demonstrates outstanding performance in uncovering
latent associations among nodes in attributed graphs. In general, WalkLM outperforms all ten baselines
with an average of 5.97% performance gain over the second-best performance, showing that our pro-
posed framework can learn accurate edge representation for link prediction. As a RW-based method,
M2V can effectively employ meta-path-guided random walks to capture topological information
and trace meta-path to understand relations between nodes. As relation-learning methods, ConvE
and ComplEx design different deep neural models to evaluate triplets. ConvE can achieve good
performance by using convolutions over embeddings to mine relations between entities. ComplEx
can capture relations via complex-valued embeddings, so as to better represent the complex inherent
relations among entities. Compare to M2V, ConvE, and ComplEX, WalkLM can effectively capture
the complex relations by providing characteristic graph traits and reconstructing network proximity
of nodes that inherit from RWs. On the other hand, the unsupervised HGNNs, especially HeCo
and SHGP, perform rather poorly, again because their training mechanisms are not aligned with
the link prediction task. Such observation is consistent with the results in the recent work [72],
showing the heterogeneous approaches that only preserve certain-type entities fail to capture accurate
representations for all kinds of nodes.

5.4 Ablation Studies

To better understand our proposed techniques, we closely study our framework by selecting different
LMs and varying the graph-aware LM fine-tuning mechanism.

Compared with the graph-based baselines, the LM-based models (e.g., LM (XRoBERTa8), LM
(GPT-29), and LM (DRoBERTa10)) are able to learn accurate and rich node attributes. However, it
is difficult for them to mine the relations between nodes in the attributed graph, where all of them
perform worse than the RW-based and relation learning-based methods in the link prediction task.
Considering the overall performance of the above three LMs on two different tasks and the goal of
learning graph embedding, we choose LM (DRoBERTa) as our starting point for fine-tuning.

Furthermore, we show that LM can further effectively integrate with existing heterogeneous graph al-
gorithms, such as LM + RGCN and LM + HGT, resulting in a notable performance enhancement over
their individual methods. Compared with LM + RGCN and LM + HGT, our proposed graph-aware
LM fine-tuning can achieve the largest improvement gains based on the chosen LM (DRoBERTa) in
both node classification and link prediction tasks, showing the effectiveness of capturing topological
information together with semantics in modeling attributed graphs. The detailed analysis of the
ablation studies is shown in Appendix A.3.

5.5 Hyper-parameter Studies

In this subsection, we investigate the model sensitivity on the number of sampled walks N and
the termination probability α, which are the major hyper-parameters in WalkLM. For the space
limitation, we show results on PubMed in Figure 3 and the results on MIMIC-III in Appendix A.4.
Overall, WalkLM is not sensitive to the two hyper-parameters, where its performance increases slowly
with N and α. Note that, too small N or large α can cause the textualization data ∣C ∣ to lose

8https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr
9https://github.com/openai/gpt-2

10https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation
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Figure 4: Visualization of different types of node embeddings on PubMed and MIMIC-III.

sufficient information, while too large N or small α lead to extensive ∣C ∣ and increase computational
costs for fine-tuning. Setting N around 3 × 105 and α around 0.05 seems appropriate to generate
sufficient textual sequences, which can achieve a good balance of performance and efficiency. We
additionally investigate the model’s sensitivity to the quantity of language model masking samples,
aiming to elucidate the parameter’s influence on the performance of downstream tasks. The detailed
experimental results are shown in Appendix A.4.

5.6 Visualization

For an intuitive comparison, we visualize the embedding space of different types of nodes which are
learned by M2V, ConvE, HGT, and our WalkLM, respectively. Specifically, we select gene/disease
nodes on PubMed and patient/visit/disease nodes on MIMIC-III. The embeddings are further trans-
formed into the 2-dimensional Euclidean space via the t-SNE algorithm [50]. The nodes and links
are both colored according to their types.

As shown in Figure 4, M2V, ConvE, and HGT have blurred boundaries and even overlaps between
different types of nodes, which are hard to distinguish. Our WalkLM shows the clearest boundaries
between different types of nodes and the best within-type compactness, which indicate it can auto-
matically organize heterogeneous nodes in a uniform space. Moreover, by connecting different types
of nodes according to the relations in the data, we find that WalkLM can provide more discriminate
distributions for different types of relations than others. The visualizations clearly demonstrate the
advantages of WalkLM in capturing both attribute semantics and topological structures on graphs.

6 Conclusion

In this paper, we propose a novel uniform language model fine-tuning framework for attributed graph
embedding. The proposed WalkLM consists of two key modules, which encapsulate both attribute
semantics and graph structures and obtain unsupervised generic graph representations. We conduct
extensive experiments to demonstrate the superior effectiveness of WalkLM against state-of-the-art
baselines. For future work, it is intriguing to further design more sophisticated techniques and
empirical evaluations toward the leverage of LMs and generalize our work to modern LLMs.
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A Appendix

A.1 Experiments based on KG datasets

Datasets. We conduct extensive experiments on two new real-world KG datasets, i.e., Freebase 11 and
FB15K-237 12. Freebase contains a graph of books, films, sports, and locations. The nodes and edges
are extracted according to [61]. A large portion of books are labeled into eight genres of literature.
Each labeled book has only one label. FB15K-237 is a standard dataset in the knowledge graph
community, which contains 310,116 triples with 14,541 entities and 237 relation types. Since we did
not manually label the nodes, we only predicted whether a triple is correct or not on this dataset. We
matched the entities with Wikidata entities and obtained metadata from Wikidata, and constructed a
rough attribute graph dataset by using the names and descriptions of the nodes as textualized features
of the nodes, and directly applying their original relationship text as the edge textualized attributes.

Node Classification. As shown in Table 4, our proposed WalkLM has superior performance,
indicating the importance of leveraging both semantic and structural information in attributed graphs.
WalkLM achieves 40.24% performance gains on Freebase over the second-best performance on
average. Specifically, as a text-based Knowledge graph completion method, SimKGC can effectively
employ text-based contrastive learning to capture a rich set of semantic information. Compared with
SimKGC, WalkLM can effectively combine the complex semantic and graph structure information of
attributed graphs, so as to accurately model the complex attributes of nodes.

Link Prediction. We evaluate WalkLM with AUC and MRR. As shown in Table 4, our fine-tuned
WalkLM demonstrates outstanding performance in uncovering latent associations among nodes in
attributed graphs. In general, WalkLM outperforms all ten baselines with an average of 2.05%
performance gain over the second-best performance, showing that our proposed framework can learn
accurate edge representation for link prediction. ComplEx and ConvE consistently demonstrate
promising performance by effectively capturing generic node representations. However, as a text-
based Knowledge graph completion method, SimKGC can sometimes outperform others in terms of
the MRR metric, where SimKGC can enhance semantic similarity between nodes through contrastive
learning based on bi-encoder architecture and three types of negatives. Compared with ConvE,
ComplEX, and SimKGC, WalkLM can effectively capture the complex relations by providing text-
based semantic traits of characteristic graph and reconstructing network proximity of nodes that
inherit from RWs.

A.2 Graph-level Classification

Compared with node or edge classification, aggregating node embeddings for graph-level classifi-
cation needs more context information. Furthermore, graph-level classification presents its own set
of challenges, which require holistic capturing of graph structures and often do not rely much on
attributes. Therefore, it is difficult to find a universal representation learning approach that solves all
different levels of graph mining tasks. Technically, adapting our method to graph-level classification
necessitates some subtle decisions to make (such as whether to include graph ID as a virtual node).
We’ve conducted a preliminary analysis on aggregating our learned node embeddings for graph-level
tasks. Specifically, we adopt a widely-used MUTAG 13 dataset and use mean accuracy as the met-
ric [48, 71]. The results on the popular MUTAG dataset are listed in Table 5. Although the findings
are encouraging and show the potential of WalkLM, further studies are still needed to establish a clear
advantage of our approach over SOTA graph classification baselines.

A.3 Detailed Ablation Studies

From Table 6, we have the following observations: (1) Compared with the graph-based baselines, the
LM-based models (e.g., LM (XRoBERTa), LM (GPT-2), and LM (DRoBERTa)) are able to learn
accurate and rich node attributes, leading to superior performance in node classification. For the
PubMed dataset distributed on 8 classes, LM (XRoBERTa), LM (GPT-2), and LM (DRoBERTa)
achieve 63.78%, 135.04%, and 130.89% performance gains over the second-best performance on

11http://www.freebase.com/
12https://paperswithcode.com/dataset/fb15k-237
13https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 4: Different downstream task results (%) with the corresponding std (±) on two KG datasets.
The best performances are in bold and the second runners are shaded in gray, where * denotes a
significant improvement according to the Wilcoxon signed-rank significance test.

Task Node Classification Link Prediction

Dataset Freebase Freebase FB15K-237

Metric Macro-F1 Micro-F1 AUC MRR AUC MRR

M2V 25.74±1.12 50.25±2.57 80.68±1.81 88.97±0.93 90.35±0.50 96.78±0.19
HIN2Vec 15.56±1.07 43.67±2.12 80.04±3.01 90.90 ±0.87 79.68±0.83 92.85±0.40
ConvE 25.13±1.83 49.31±3.45 88.14±1.03 93.57±0.42 92.88±0.42 97.57±0.15
ComplEx 20.25±1.62 49.43±3.57 84.01±1.43 91.46±0.56 95.03±0.35 97.88±0.22
SimKGC 35.88±0.87 56.12±0.45 87.33±1.51 94.21±0.34 93.80±0.31 97.62±0.30
RGCN 15.37±1.54 45.86±1.03 82.75±0.89 91.52±0.64 85.88±0.35 89.84±0.19
HAN 14.25±1.77 39.30±2.18 80.73±1.37 91.61±0.34 82.06±0.53 89.31±0.89
HGT 19.97±1.34 47.99±2.56 81.94±1.84 89.65±0.43 87.41±0.69 94.62±0.34
HeCo 23.95±1.45 48.62±1.13 79.32±0.86 87.40±0.32 78.82±0.37 90.41±0.23
SHGP 13.83±1.27 39.07±1.39 78.37±1.77 85.52±0.69 78.56±0.33 89.84±0.21

XRoBERTa 48.10±2.01 67.95±0.97 73.94±1.62 88.17±0.91 75.62±0.72 91.10±0.71
GPT-2 49.24±2.12 68.28±1.37 60.45±2.43 83.29±1.87 68.87±1.21 85.23±1.73
DRoBERTa 51.76±1.24 69.51±0.73 79.22±1.85 91.21±1.17 84.15±0.63 93.39±0.39
LM+RGCN 28.38±0.63 53.37±2.27 83.63±1.81 96.38±0.67 87.72±0.50 94.47±0.46
LM+HGT 20.79±0.67 48.73±3.13 83.09±1.23 89.79±0.35 88.18±0.61 94.85±0.27

WalkLM 55.01±2.67* 71.36±1.53* 92.11±2.24* 96.54±0.56* 95.65±0.18* 98.45±0.33*

Table 5: Accuracy results (%) of graph-level classification on MUTAG.

Dataset MUTAG

Model HIN2Vec ConvE ComplEx LM (DRoBERTa) WalkLM w/o. graph-ID WalkLM

Accuracy 78.72 77.64 78.69 79.23 79.77 81.39*

average, respectively. For the MIMIC-III dataset on the total 19 classes, LM (XRoBERTa), LM
(GPT-2), and LM (DRoBERTa) achieve 5.17%, 30.17%, and 20.12% average performance gains
compared to the second-best performance, respectively.

(2) The choice of LMs can affect the performance of fine-tuning. Due to different pre-training corpora,
LM (XRoBERTa) performs worse than LM (DRoBERTa) in most cases. Moreover, LM (GPT-2)
achieves an average of 3.30% improvement over LM (DRoBERTa) in node classification, while
LM (DRoBERTa) achieves an average of 7.08% improvement over LM (GPT-2) in link prediction.
Considering the overall performance of the above three LMs on two different tasks and the goal of
learning graph embedding, we choose LM (DRoBERTa) as our starting point for fine-tuning.

(3) Furthermore, LM can further effectively integrate with existing heterogeneous graph algorithms,
resulting in a notable performance enhancement over their individual methods. Specifically, compared
with RGCN, LM + RGCN achieves an average of 50.38% improvement in node classification, and
achieves up to 6.59% improvements in link prediction. Compared with HGT, LM + HGT achieves up
to 30.64% improvements in node classification and 7.42% improvements in link prediction.

(4) Compared with LM + RGCN and LM + HGT, our proposed graph-aware LM fine-tuning
can achieve the largest improvement gains based on the chosen LM (DRoBERTa) in both node
classification and link prediction tasks, showing the effectiveness of capturing topological information
together with semantics in modeling attributed graphs. Specifically, our WalkLM outperforms the
chosen LM (DRoBERTa) by up to 13.45% in node classification. In Particular, our WalkLM achieves
up to 59.70% improvements in link prediction, which demonstrates our WalkLM can better learn
accurate edge representation for link prediction by the graph-aware LM fine-tuning.

A.4 Detailed Hyper-parameter Studies

We show the results of the model sensitivity on the number of sampled walks N and the termination
probability α on MIMIC-III in Figure 5. Overall, WalkLM is not sensitive to the two hyper-parameters,
where its performance increases slowly with N and α. Note that, setting N around 3 × 105 and α
around 0.05 seems appropriate to generate sufficient textual sequences and limit computational costs
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Table 6: The detailed ablation results (%) with the corresponding std (±) on two datasets. The best
performances are in bold and the second runners are shaded in gray, where * denotes a significant
improvement according to the Wilcoxon signed-rank significance test.

Task Node Classification Link Prediction

Dataset PubMed MIMIC-III PubMed MIMIC-III

Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 AUC MRR AUC MRR

M2V 15.35 20.27 19.69 29.24 74.53 89.58 75.05 88.32
(±1.27) (±3.01) (±0.62) (±1.57) (±3.79) (±2.05) (±0.41) (±0.23)

HIN2Vec 11.57 18.92 19.12 28.05 74.21 90.56 73.46 88.10
(±1.23) (±2.78) (±1.32) (±1.44) (±5.49) (±1.06) (±0.41) (±0.14)

ConvE 16.06 19.16 24.44 32.89 76.48 92.27 69.56 84.88
(±3.69) (±4.00) (±1.28) (±0.86) (±4.31) (±0.57) (±0.36) (±0.25)

ComplEx 13.93 18.27 9.82 21.39 79.81 91.79 63.86 81.40
(±2.59) (±4.12) (±0.56) (±3.12) (±0.97) (±0.48) (±0.42) (±0.40)

SimKGC 21.97 30.83 51.62 58.50 79.62 91.43 67.73 84.86
(±3.51) (±3.10) (±1.81) (±1.52) (±2.72) (±0.48) (±1.69) (±0.54)

RGCN 12.50 18.50 7.19 14.55 72.08 88.20 57.31 73.91
(±2.36) (±1.41) (±0.77) (±3.25) (±1.13) (±0.47) (±0.71) (±0.57)

HAN 15.29 16.95 6.98 14.73 70.57 87.89 - -
(±2.87) (±2.71) (±0.58) (±1.69) (±1.58) (±0.62) - -

HGT 11.98 20.12 8.03 17.79 77.24 89.63 64.01 81.54
(±2.23) (±3.89) (±0.87) (±0.83) (±3.50) (±0.84) (±0.36) (±0.56)

HeCo 10.32 18.01 10.78 15.26 65.04 83.29 53.13 71.81
(±1.12) (±0.87) (±0.41) (±1.52) (±1.26) (±0.72) (±0.47) (±0.35)

SHGP 10.80 19.28 11.34 17.44 68.22 85.34 54.49 72.58
(±3.03) (±0.91) (±1.29) (±1.49) (±2.71) (±0.48) (±0.33) (±0.24)

LM 40.10 44.71 54.51 61.27 60.20 84.23 51.21 74.22
(XRoBERTa) (±4.62) (±3.68) (±1.50) (±1.22) (±2.78) (±1.71) (±0.17) (±0.26)
LM 59.43 61.53 70.26 72.67 51.71 80.54 50.66 72.36
(GPT-2) (±4.73) (±3.43) (±1.43) (±0.90) (±3.67) (±2.49) (±0.74) (±0.86)
LM 58.29 60.57 66.25 70.14 60.97 83.00 51.44 75.09
(DRoBERTa) (±2.44) (±2.11) (±1.60) (±1.52) (±2.98) (±0.40) (±0.14) (±0.29)
LM 13.83 22.70 14.32 24.59 72.35 88.86 58.62 78.78
+RGCN (±0.73) (±3.25) (±0.87) (±1.17) (±4.34) (±1.46) (±0.50) (±0.10)
LM 12.81 21.79 10.49 20.57 82.97 89.98 65.01 82.28
+HGT (±1.22) (±3.54) (±0.41) (±0.97) (±3.91) (±0.88) (±0.20) (±0.30)

WalkLM 60.42* 62.33* 75.16* 77.89* 85.65* 94.16* 82.15* 92.78*
(±2.62) (±3.13) (±0.93) (±0.70) (±3.28) (±0.37) (±0.67) (±0.68)

Table 7: Different downstream task results (%) with ratio of masked samples m on PubMed.

Task Node Classification Link Prediction

Metric Macro-F1 Micro-F1 AUC MRR

m = 0.05 52.97 56.33 83.16 93.47
m = 0.15 60.42* 62.33* 85.65* 94.16*
m = 0.25 53.80 56.09 82.92 93.75
m = 0.35 52.22 55.61 82.38 92.72

for fine-tuning, which can achieve a good balance of performance and efficiency. Furthermore, for
the ratio of masked samples m, the specific results are listed in Table 7. Overall, WalkLM is sensitive
to m, where the optimal value across different tasks is 0.15, which is consistent with the empirical
selection in our paper and the previous work [7, 31, 40, 60]

(b) N on link prediction(a) N on node classification (d) 𝛼𝛼 on link prediction(c) 𝛼𝛼 on node classification

Figure 5: Analysis of the number of sampled walks N and the termination probability α.
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