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ABSTRACT
Topic mining extracts patterns and insights from text data (e.g., doc-

uments, emails and product reviews), which can be used in various

applications such as intent detection. However, topic mining can

result in severe privacy threats to the users who have contributed

to the text corpus since they can be re-identified from the text data

with certain background knowledge. To our best knowledge, we pro-

pose the first differentially private topic mining technique (namely

TopicDP) which injects well-calibrated Gaussian noise into the ma-

trix output of any topic mining algorithm to ensure differential

privacy and good utility. Specifically, we smoothen the sensitivity

for the Gaussian mechanism via sensitivity sampling, which ad-

dresses the major challenges resulted from the high sensitivity in

topic mining for differential privacy. Furthermore, we theoretically

prove the differential privacy guarantee under the Rényi differential

privacy mechanism and the utility error bounds of TopicDP. Finally,

we conduct extensive experiments on two real-word text datasets

(Enron email and Amazon Reviews), and the experimental results

demonstrate that TopicDP is a model-agnostic framework that can

generate better privacy preserving performance for topic mining

as compared against other differential privacy mechanisms.
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1 INTRODUCTION
Billions of documents are generated everyday via personal comput-

ers, email servers, IoT devices, cloud, among others. These docu-

ments include considerable amounts of information, and they are
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frequently collected and shared for text analysis in various applica-

tions. One important type of applications is to extract topics from

those documents, which can facilitate sentiment analysis [22], opin-

ion summarization [28], recommender systems [31], and anomalous

texts detection [23]. Topic mining statistically analyzes a corpus of

documents to identify the discussion topics in them. The text data

in each document is analyzed using probabilistic models and statis-

tical analysis to discover patterns for the underlying topics. Thus,

topic mining is widely used in the above real-world applications.

However, when topics of those documents are extracted and

shared to untrusted third parties for further analysis, it raises se-

vere privacy risks since the untrusted recipients may re-identify

the owners of those documents with a diverse set of possible back-

ground knowledge related to the user and his/her documents (e.g.,

some keywords in the documents, and linguistic patterns). Thus,

privacy preserving solutions for topic mining should be explored.

A simple privacy-enhancing technique is to replace the real user

IDs of these documents with pseudonyms. This has been proven

to be vulnerable to re-identification attacks [18, 27] (e.g., the AOL

data leak incident [21]). As a rigorous privacy model against arbi-

trary background knowledge known to the adversaries, differential
privacy (DP) has been extensively studied to address the privacy

concerns in the text data [17, 21, 32]. However, such techniques

only consider the privacy of term frequencies or related quantities

in the documents. In practice, topic mining with differential privacy

for documents should be a more complicated function rather than

calculating the frequency of terms.

To our best knowledge, we propose the first differentially private

topic mining technique (namely TopicDP) that protects the privacy

of individuals involved in the documents used for any topic min-

ing model (model-agnostic). It ensures indistinguishable analysis

result derived from the input data with and without any user’s all

the documents. Specifically, we attempt to inject well-calibrated

Gaussian noise into the result of topic mining (usually as a matrix

with probability entries for different keywords in different topics),

which would work regardless of the topic mining models. Thus, the

untrusted recipient cannot distinguish whether any user is included

in the documents or not.

Recall that topic mining generates a matrix output in which each

row represents a topic and each entry in the row is a keyword

and its probability of occurrence in the topic. Therefore, different

from generic differential privacy mechanisms on statistical queries

[10, 19, 25], TopicDP should address three major challenges: (1)

topic mining generates a matrix output (many entries) rather than

an aggregated value such as count, max, average, and sum, (2) each

user’s documents may include a unique word, which is not found

https://doi.org/10.1145/3534678.3539417
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in other users’ documents, and (3) each user may include a large

number of documents (high sensitivity).

To this end, we define a novel privacy notion for protecting the

individuals in the documents for topic mining: “(𝜖, 𝛿,𝛾 )-random

differential privacy”, which is a relaxed notion extended from 𝜖-

differential privacy. First, 𝛿 (close to 0, e.g., 0.0001) is used to ensure

that the probability of generating any unique word in the output

matrix is bounded by 𝛿 . Second, 𝛾 (close to 0, e.g., 0.02) is used

to smoothen the sensitivity [29] such that at least (1-𝛾 ) portion

of users can be protected with (𝜖, 𝛿)-differential privacy, which

ensures indistinguishability (bounded by 𝑒𝜖 ) for the topic mining

results regardless of the presence or absence of each user’s all docu-

ments. Moreover, we apply the Rényi differential privacy (RényiDP)

mechanism to approximate (𝜖, 𝛿)-differential privacy, and design

algorithms that evaluate the Rényi divergence for the output of

neighboring matrices and add noise for (𝜖, 𝛿)-differential privacy.

Thus, the contributions of this paper are summarized as below:

• We propose the first model-agnostic differentially private

technique TopicDP to protect the privacy of users in the

documents used for topic mining. The well-calibrated noise

is generated for the matrix output of topic mining, and thus

works for any topic mining algorithm (model-agnostic). It

can also be readily extended for other machine learning

models which generate matrix outputs.

• We design a novel differential privacy mechanism for sensi-

tivity smoothing of topic mining. This new relaxed privacy

notion could significantly improve the utility of topic mining

while approximating (𝜖, 𝛿)-differential privacy.

• We learn the relationship between (𝜖, 𝛿)-differential privacy

and Rényi differential privacy and provide an approach to

approximate (𝜖, 𝛿)-DP with RényiDP mechanism.

• We formally prove the privacy, utility error bound and the

smaller noise with the RényiDP mechanism for (𝜖, 𝛿)-DP.

• We have conducted extensive experiments to validate the

performance of TopicDP on two real text datasets under

different topic mining models.

2 PRELIMINARIES
In this section, we present some preliminaries, including the topic

mining and the differential privacy models.

2.1 Topic Mining Models
Recall that topic mining aims to identify the foci of discussions from

a set of text documents (e.g., emails). Specifically, topic mining dis-

covers the patterns of words to represent the topics, each of which

is defined as a set of words that frequently occur together in the text

corpus. For instance, while mining topics from a bunch of emails,

the email bodies are analyzed to identify the topics to discover

patterns of word usage. There are many existing algorithms used

for topic mining, e.g., Latent Dirichlet Allocation (LDA) [1], Latent

Semantic Indexing (LSI) [6], Probabilistic Latent Semantic Analysis

(PLSA) [14], and Hierarchical Dirichlet Processing Model (HDP)

[33]. Our TopicDP algorithm can guarantee differential privacy for

any of the topic mining models.

Some generative probabilistic models (e.g., LDA) define the topic

as a group of words that have a high likelihood of co-occurrence

in the document corpus (see details in Appendix B). These words

can be noun, verb, adjective and adverb. Therefore, topic mining

generates a set of keywords and their corresponding probabilities

in the topic. Thus, the output of topic mining can be denoted as a

matrix of keywords and their probabilities. Each row in the matrix

represents a topic discussed in the text documents, and the entries

in the row refer to the probabilities of different keywords in the

given topic (sum of the entries in each row is 1).

Formally, we denote the output of topic mining as a matrix𝑊

(rows: top 𝑚 topics, columns: 𝑛 words) with 𝑚 × 𝑛 probabilities

𝑊 ∈ [0, 1]𝑚×𝑛 . Since different topics may involve different sets

of keywords, 𝑛 words are the union of the keywords in all𝑚 top

topics, and the probability in the matrix would be 0 if any topic

does not include such word.

2.2 Differential Privacy (DP)
To protect the matrix outputs of topic mining, we first consider two

input document datasets 𝐷 and 𝐷 ′ that differ in any user as two

neighboring datasets. It is worth noting that any user may have

multiple documents (e.g., all his/her emails) in the dataset. The DP

model in case of topic mining would be interpreted as: adding or

removing any user’s all documents should not cause significant

changes to the output of the topic mining. Thus, the privacy risks

resulted from each user’s documents can be bounded, even if the

adversary possesses arbitrary background knowledge on all the

users. Therefore, the DP model can be defined as below:

Definition 1 (𝜖-Differential Privacy). A randomized mecha-
nismA satisfies 𝜖-differential privacy if for any two input datasets 𝐷
and𝐷 ′ that differ in any user𝑢 (including at least one document), and
for any output 𝑆 ∈ 𝑟𝑎𝑛𝑔𝑒 (A), we have 𝑒−𝜖 ≤ 𝑃𝑟 [A(𝐷) ∈𝑆 ]

𝑃𝑟 [A(𝐷′) ∈𝑆 ] ≤ 𝑒𝜖 .

Before designing a DP mechanism for topic mining, we need to

explore its sensitivity. We start from the global sensitivity which

refers to the maximum output difference of the function applied to

the neighboring datasets. For example, the 𝐿2-norm sensitivity of

the query function 𝑓 for Gaussian mechanism [7] is:

Definition 2 (Global Sensitivity). Given a function 𝑓 , its 𝐿2-
sensitivity is defined as:

Δ𝑔𝑠 (𝑓 ) = max

𝐷,𝐷′

����𝑓 (𝐷) − 𝑓 (𝐷 ′)
����

2
(1)

As discussed in Section 1, different from generic DP mechanisms

(e.g., Laplace, and Gaussian), we should address three new chal-

lenges in the mechanism design for TopicDP. First, topic mining

will be considered as a complex function that generates a matrix

output with probability entries. Thus, we first define the sensitivity

for such function that returns matrix entries [3]:

Definition 3 (Sensitivity for Matrix-Output Function).

Given a matrix-output function 𝑓 (𝐷) ∈ R𝑚×𝑛 , the 𝐿2-sensitivity is,

Δ (𝑓 ) = max

𝐷,𝐷′

����𝑓 (𝐷) − 𝑓 (𝐷 ′)
����
𝐹

(2)

where | | · | |𝐹 is the Frobenius norm.



A Model-Agnostic Approach to Differentially Private Topic Mining KDD ’22, August 14–18, 2022, Washington, DC, USA

The global sensitivity of topic mining might be very high since

each user may include a large number of documents. Thus, the

noise may be very large for the output.

Second, every user may include some unique words. Given any

output 𝑃 that includes any unique keyword from any user, the

probabilities of applying topic mining to 𝐷 and 𝐷 ′ to generate

such output 𝑃 cannot be bounded with
𝑃𝑟 [A(𝐷)=𝑆 ]
𝑃𝑟 [A(𝐷′)=𝑆 ] ≤ 𝑒𝜖 and

𝑃𝑟 [A(𝐷′)=𝑆 ]
𝑃𝑟 [A(𝐷)=𝑆 ] ≤ 𝑒𝜖 since one of 𝑃𝑟 [A(𝐷) = 𝑆] and 𝑃𝑟 [A(𝐷 ′) = 𝑆

is equal to 0. Thus, the probabilities of such extreme cases should be

bounded by a small number 𝛿 to ensure (𝜖, 𝛿)-differential privacy.
To address these two challenges, we relax the protection to

(𝜖, 𝛿,𝛾)-random differential privacy (RDP) [29] where the confi-

dence parameter of satisfying (𝜖, 𝛿)-DP is denoted as 𝛾 ∈ [0, 1).
Then, 1−𝛾 portion of the dataset satisfies (𝜖, 𝛿)-DP while the prob-

ability of any unique keyword in the output is bounded by 𝛿 .

Definition 4 ((𝜖, 𝛿,𝛾)-Random Differential Privacy). A ran-
domizedmechanismA:𝐷𝑁 → R responding with values in arbitrary
response setR preserves (𝜖, 𝛿,𝛾 )-RDP, at privacy level 𝜖 > 0, 𝛿 ∈ [0, 1),
and confidence parameter 𝛾 ∈ [0, 1), if 𝑃𝑟 [∀𝑆 ⊂ R, 𝑃𝑟 [(A(𝐷) ∈
𝑆) ≤ 𝑒𝜖 · 𝑃𝑟 (A(𝐷 ′) ∈ 𝑆) + 𝛿] ≥ 𝑃𝑟 [|𝑓 (𝐷) − 𝑓 (𝐷 ′) | ≤ Δ] ≥ 1 − 𝛾 ,
with the inner probabilities over the mechanism’s randomization, and
the outer probability over neighboring datasets 𝐷,𝐷 ′.

Intuitively, given the sensitivityΔ > 0, when neighboring datasets

𝐷 and 𝐷 ′ satisfy |𝑓 (𝐷) − 𝑓 (𝐷 ′) | ≤ Δ, the randomized mechanism

A(𝐷, 𝜖, 𝛿,𝛾) enjoys (𝜖, 𝛿)-DP. Then, the probability of holding 𝜖-

DP is at least (1 − 𝛿) (1 − 𝛾) since the maximum leakage occurs

if two leakages are disjoint [16]. Thus, TopicDP satisfies such DP

notion with minor relaxations since very small 𝛿 and 𝛾 make the

probability (1 − 𝛿) (1 − 𝛾) very close to 1.

Third, we have to inject the same well-calibrated Gaussian noise

to all the matrix entries. In practice, some real-world topics might

be disjoint (e.g., from completely different users), then the matrix

entries may follow parallel composition [25]. However, to protect

the worst case that the involved user records of each topic in the

matrix𝑊 are all correlated, all entries of matrix satisfy sequential

composition and the privacy budgets have to be allocated to each

entry. Thus, the budget for each entry might be too small to retain

good utility in the randomized matrix output.

To address this challenge, we apply a relaxation of differen-

tial privacy based on the Rényi divergence [26], which evaluates

the divergence of overall data. For two probability distributions

𝑃 and 𝑄 over R, the Rényi divergence of order 𝛼 is D𝛼 (𝑃 | |𝑄) =
1

𝛼−1
log𝐸𝑥∼𝑄 [ 𝑃 (𝑥)𝑄 (𝑥) ]

𝛼
. Thus, the privacy notion is defined as below:

Definition 5 ((𝛼, 𝜖)-Rényi Differential Privacy). A random-
ized mechanism A : D ↦→ R is said to satisfy 𝜖-Rényi differ-
ential privacy (RényiDP) of order 𝛼 , if for any 𝐷,𝐷 ′ it holds that
𝐷𝛼 [𝑓 (𝐷) | |𝑓 (𝐷 ′)] ≤ 𝜖 .

The definition of 𝜖-DP coincides with (∞, 𝜖)-RényiDP. By mono-

tonicity of the Rényi divergence, (∞, 𝜖)-RényiDP implies (𝛼, 𝜖)-
RDP for all finite𝛼[26]. In turn, an (𝛼, 𝜖)-RDP implies (𝜖, 𝛿)-differential
privacy for any given probability 𝛿 > 0. The 𝛼 can be any number

other than 1. In our formulation, we treat 𝛼 as a parameter in opti-

mization of error bound. The outcomes of 𝑓 (𝐷) and 𝑓 (𝐷 ′) should
be all feasible probability distribution output of topic mining.

3 TOPIC MININGWITH RÉNYI
DIFFERENTIAL PRIVACY

In this section, we illustrate the details of TopicDP.

3.1 Threat Model
We adopt the standard threat model setting of differential privacy

in this paper. A trusted data owner collects a large number of users’

documents and perturbs the topic mining algorithm with DP guar-

antee. Thus, other untrusted data recipients (adversaries) would

request the topic mining analysis on the documents, but cannot in-

fer if any user’s document (e.g., any user’s email) is included in the

topic mining even if the adversaries possess arbitrary background

knowledge (e.g., knowing the contents of all the users’ emails). We

assume that all the parties are honest-but-curious to follow the

procedures without maliciously manipulating the data.

Data 

Distribution

Adaptive Tuning Noise

Documents

Topic Mining 

Model

cat company food …

Topic 1 0% 30% 52% …

Topic 2 23% 35% 0% …

Creation of Topics (Matrix-Value)

Gaussian 

Mechanism

~𝑵(𝟎, 𝜎2
𝟐)

Trusted Data Owner

Untrusted

Recipients

(LDA, LSA, 

PLSA, etc.)

Results

(Random)

Topics?

Sentiment Analysis

Recommender

Systems

…

𝜺, 𝜹 -𝐃𝐏 to 𝜶, 𝜺𝑹 -𝑹𝒆𝒏𝒚𝒊𝐃𝐏

𝜶, 𝜺𝑹 -𝑹𝒆𝒏𝒚𝒊𝐃𝐏
Guarantee𝜎1

𝜎2

𝜎 Search

Sensitivity Sampling

∆𝑠~Uniform(γ, 𝐷
𝑁+1)

Sensitivity

Cum. Probability

∆𝑠

𝜸-based 

Sampling ∆𝒔

Figure 1: Overview of the TopicDP Framework.

3.2 The TopicDP Framework
Since TopicDP requires (𝜖, 𝛿)-DP, we adapt the Gaussian mecha-

nism [7] in TopicDP which is widely used to ensure (𝜖, 𝛿)-DP by

injecting a Gaussian noise N(0, 𝜎2) to the query (or analysis func-

tion) where 𝜎2 = 2Δ2
log(1.25/𝛿)/𝜖2

and Δ refers to the sensitivity

of the query/function. However, as discussed earlier, the sensitivity

might be too large and the privacy budget might be too small to

generate noise. Thus, we propose a framework that injects well-

calibrated Gaussian noise into the matrix. Such noise can satisfy

the privacy requirement and provide better utility.

Figure 1 illustrates the framework of TopicDP.We carefully inject

Gaussian noise into the topic matrix (output perturbation) with the

sampled sensitivity and variance 𝜎2
of Gaussian mechanism. Thus,

DP can be ensured for any topic mining algorithm (model-agnostic).
TopicDP includes the following major steps.

Step 1 : The trusted data owner collects all documents 𝐷 from

𝑁 users, and specifies the privacy parameters (𝜖, 𝛿).
Step 2 : The untrusted recipient requests to identify topics

from all documents 𝐷 .

Step 3 : The trusted data owner applies any topic mining algo-

rithm (e.g., LDA) to extract the topic matrix𝑊 with proba-

bility entries for a set of keywords.

Step 4 : The trusted data owner first uniformly samples the

smooth sensitivity Δ (denoted as Δ𝑠 ) of dataset 𝐷 with pa-

rameter 𝛾 . Then, the trusted data owner converts the given

(𝜖, 𝛿)-DP guarantee to (𝛼, 𝜖𝑅)-RényiDP with privacy param-

eters 𝜖 and 𝛿 . Finally, the parameter 𝜎𝑅 of Gaussian noise is
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searched to satisfy the (𝛼, 𝜖𝑅)-RényiDP with sampled sensi-

tivity Δ𝑠 . The noise with variance 𝜎𝑅 from Gaussian mecha-

nism is injected to the topic matrix𝑊 .

Step 5 : The noisy topic matrix𝑊 ′ (normalized) is returned to

the untrusted recipient for further analyses.

Note that the sensitivity sampling in Step 4 is extended from the

Pain-Free algorithm [29] (which only considers a single aggregated

result) to the matrix-output query. We will discuss the details for

smoothing the sensitivity using the distribution in the dataset 𝐷

and the value of 𝜎𝑅 to satisfy the privacy requirement as follows.

Input :Database size 𝑁 , topic mining function 𝑓 , the

distribution 𝑃 , the confidence parameter 𝛾

Output :The sampling sensitivity Δ𝑠

1 Compute the sample size ℎ =

⌈
log(1/𝜌 )
2(𝛾−𝜌 )2

⌉
where

𝜌 = 𝑒𝑥𝑝 (𝑊−1 (− 𝛾

2

√
𝑒
) + 0.5)

2 Compute the order statistic index

𝑘 = ℎ (1 − 𝛾 + 𝜌 +
√︁

log(1/𝜌)/(2ℎ))
3 𝑃 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 ()
4 foreach 𝑖 = 1 to ℎ do
5 Sample 𝐷1,..,𝑁−1 ∼ 𝑃𝑁 , 𝐷𝑁 ∼ 𝑃𝑁 and 𝐷𝑁 +1 ∼ 𝑃𝑁
6 𝐷 ← 𝐷1,..,𝑁−1 ∪𝐷𝑛
7 𝐷′ ← 𝐷1,..,𝑁−1 ∪𝐷𝑁 +1
8 Δ𝑖 =

����𝑓 (𝐷) − 𝑓 (𝐷′) ����
𝐹

9 end
10 Sort Δ1, ....,Δℎ with the ascending order

11 Return Δ𝑠 = Δ𝑘

Algorithm 1: Sensitivity Sampling

3.3 Sensitivity Derivation
The sensitivity sampler in Pain-Free algorithm [29] obviates the

challenge of unbounded sensitivity in DP. With it, we can approx-

imate the global sensitivity with very high probability, assuming

only oracle access to the target query function 𝑓 evaluations.

Algorithm 1 presents the details of sampling sensitivity for topic

mining. With the given confidence parameter 𝛾 , we compute the

value of sampling size ℎ and order index 𝑘 , which can guarantee

(𝜖, 𝛿,𝛾)-RDP (see detailed privacy analysis in Section 3.6). These

two parameters are involved in the the Lambert-W function [30].

The distribution 𝑃 is chosen to match the desired distribution of

dataset 𝐷 . There are a number of natural choices for the dataset

distribution 𝑃 [29]. We use the uniform distribution for our doc-

uments since the Pain-Free algorithm and its privacy guarantee

are derived by assuming a uniform distribution defined over the

domain 𝐷 . We empirically demonstrate the improvement of utility

with the sensitivity sampler for matrix-output query rather than

the single aggregated result (see details in Section 4). However, the

accuracy should be significantly boosted if we can approximate

the distribution of dataset with some background knowledge (e.g.,

users’ linguistic patterns).

With the distribution 𝑃 , in each iteration, we independently

sample the 𝑁 +1 records from the domain to construct the database

𝐷 and 𝐷 ′ which differ in one user. Then, the sensitivity can be

computed for these pairs of neighboring datasets. After ℎ iterations,

there are ℎ sensitivities and sort them in an ascending order. The

final smooth sensitivity should be the 𝑘th sensitivity.

3.4 Parameter 𝜎𝑅 Derivation
Proposition 1 (From RényiDP to (𝜖, 𝛿)-DP [26]). If 𝑓 satisfies

(𝛼, 𝜖)-RényiDP, it also satisfies (𝜖 + 𝑙𝑜𝑔
1

𝛿

𝛼−1
, 𝛿)-differential privacy.

Proposition 2 (From (𝜖, 𝛿)-DP to (𝛼, 𝜖𝑅)-RényiDP [2]). For
any 𝛼 > 1, 𝜖 ≥ 0, 𝛿 ∈ (0, 1), and 0 < 𝛼𝛿 < 1, we have:

𝜖𝑅 ≥ max{𝜖 − 1

𝛼 − 1

log

𝜁𝛼

𝛿
, 𝜖 + 1

𝛼 − 1

log( (𝑒𝜖 − 𝛼𝛿) ( 𝛿 − 1

𝛿 − 𝑒𝜖 )
𝛼 + 𝛼𝛿) }

where 𝜁𝛼 = 1

𝛼 (1 −
1

𝛼 )
𝛼−1.

With the Proposition 1 and 2, the relationship between DP and

RényiDP enables us to derive the optimal RényiDP parameters of

a mechanism that satisfies a given level of strict DP. Thus, with

the given (𝜖, 𝛿)-DP requirement, we apply the mechanisms that

satisfy the corresponding RényiDP. It is worth noting that we only

consider 𝛼 as an parameter to provide results when calculating the

Rényi divergence. We set the value 𝛼 = 2 and use the exact map

of privacy values from 𝜖 to 𝜖𝑅 [2]. We illustrate the relationship

between DP and RényiDP with 𝛼 = 2, 𝛿 = 0.0001, 𝛾 = 0.1 as an

example in Figure 2. The parameter 𝜎𝑅 then has to satisfy 𝜎2

𝑅
≥ 𝛼Δ2

𝑠

2𝜖𝑅
for satisfying the (𝛼, 𝜖𝑅)-RényiDP with Gaussian mechanism. We

will prove that it satisfies (𝛼, 𝜖𝑅)-RényiDP with the condition that

𝜎2

𝑅
≥ 𝛼Δ2

𝑠

2𝜖𝑅
and the noise amount to guarantee (𝜖, 𝛿)-DP under a

composition of RényiDP mechanisms is less than the noise amount

under direct DP mechanism in Section 3.6.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Figure 2: Privacy Bound: 𝜖 in DP equals 𝜖𝑅 in RényiDP (𝛼 = 2,
𝛿 = 0.0001, 𝛾 = 0.1).

3.5 Algorithm for Differential Privacy
After computing the parameter 𝜎𝑅 , the DP algorithm can be de-

signed. Algorithm 2 presents the details for topic mining (matrix

outputs) with RényiDP mechanism to satisfy (𝜖, 𝛿)-DP for 1 − 𝛾
portion of dataset. We then add the noise matrix to the topic mining

output (the probability matrix) and release the noisy result. Note

that the estimation of sampled sensitivity can always be the same

for a specific domain. Thus, such sensitivity sampling could be

performed entirely in an offline stage and executed once.

3.6 Privacy and Utility Analysis
We first analyze the privacy bound of TopicDP.

Theorem 1. [29]: Consider any non-private function 𝑓 : 𝐷𝑁 →
B, any sensitivity-induced (𝜖,𝛾)-differentially private mechanism
mapping B to (randomized) responses in R, any database 𝐷 of N
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Input :Database 𝐷 , the query size𝑚 ×𝑛, the sampled sensitivity

Δ𝑠 , the parameter 𝜎𝑅 and the privacy parameter 𝜖𝑅

Output :The noisy matrix result𝑊 ′

1 Apply the topic mining algorithm to extract the𝑚 topics and

keywords probabilities𝑊 of dataset 𝐷

2 foreach entry 𝑒𝑖 in the matrix𝑊 do

3 𝑒𝑖 ← 𝑒𝑖 + N(0, 𝜎2

𝑅
) and 𝜎2

𝑅
≥ 𝛼Δ2

𝑠
2𝜖𝑅

4 Update the 𝑒𝑖 with 𝑒𝑖

5 end
6 𝑊 ′ ←𝑊

7 Return the noisy matrix𝑊 ′

Algorithm 2: Generating Noise with Gaussian Mechanism

records, privacy parameters 𝜖 > 0, 𝛿 ∈ [0, 1], 𝛾 ∈ (0, 1), and sampling
parameters sizeℎ ∈ N, order statistic indexℎ ≥ 𝑘 ∈ N, approximation
confidence 0 < 𝜌 < 𝑚𝑖𝑛{𝛾, 1/2}, distribution 𝑃 on D. If

ℎ ≥
⌈

log(1/𝜌)
2(𝛾 − 𝜌)2

⌉
(3)

𝑘 ≥ ℎ
(
1 − 𝛾 + 𝜌 +

√︁
log(1/𝜌)/(2ℎ)) (4)

then Algorithm 1 running with 𝐷,Δ𝑠 , 𝑓 , ℎ, 𝑘, 𝑃 , preserves (𝜖, 𝛿,𝛾)-
random differential privacy.

Proof. See Appendix A.1. □

Theorem 1 proves that the probability of RDP of AΔ𝑠 running

on fixed Δ𝑠 is at least 𝑃𝑟 (𝐺 < Δ𝑠 ), where 𝐺 is the sampled sen-

sitivity group Δ1, ...,Δℎ drawn from the Algorithm 1. Then, by

the Dvoretzky-Kiefer-Wolfowitz inequality [24], we can prove the

probability of RDP of AΔ𝑠 is at least 1 − 𝛾 .

Theorem 2. Let 𝜖 > 0, 𝛿 > 0, 𝛼 > 1, for 𝜎2

𝑅
≥ 𝛼Δ2

𝑠

2𝜖𝑅
, the Gaussian

mechanism Gf (𝜎2

𝑅
) satisfies (𝛼, 𝜖𝑅)-RényiDP.

Proof. With the definition of RényiDP, we can calculate the

error bound of Rényi divergence between distribution 𝑃 and 𝑄 of

Gaussian distribution N(0, 𝜎2

𝑅
).

D𝛼 (𝑃 (𝑥) | |𝑄 (𝑥)) =
1

𝛼 − 1

log

∫ ∞

−∞
𝑝 (𝑥)𝛼𝑞(𝑥)1−𝛼𝑑𝑥

=
1

𝛼 − 1

log

∫ ∞

−∞

1

𝜎𝑅
√

2𝜋
𝑒𝑥𝑝 ( −𝛼𝑥

2

2𝜎2

𝑅

)𝑒𝑥𝑝 ( (𝛼 − 1) (𝑥 − Δ𝑠 )2

2𝜎2

𝑅

)𝑑𝑥

=
1

𝛼 − 1

log{𝑒𝑥𝑝 𝛼 (𝛼 − 1)Δ2

𝑠

2𝜎2

𝑅

} = 𝛼Δ2

𝑠

2𝜎2

𝑅

Since D𝛼 (𝑃 | |𝑄) ≤ 𝜖𝑅 , we have

𝜎2

𝑅 ≥
𝛼Δ2

𝑠

2𝜖𝑅
(5)

Thus, the Gaussian mechanism satisfies (𝛼, 𝜖𝑅)-RényiDP. □

Theorem 3. When 𝛼 < [ 𝜉−
√
𝜉2−4𝜖 log(1/𝛿)

2𝜖 + 1]2 in which 𝜉 =

(2
√︁

log(1.25/𝛿)𝜖 − 𝜖), the noise amount to guarantee the given level
of differential privacy under a composition of RényiDP mechanisms
is less than the noise amount using DP mechanism directly.

Proof. First, assuming that the goal is to achieve (𝜖 + log
1

𝛿

𝛼−1
, 𝛿)-

DP, we then can apply𝜎 =

√
2 log(1.25/𝛿)Δ

𝜖+
log

1

𝛿
𝛼−1

to guarantee (𝜖+ log
1

𝛿

𝛼−1
, 𝛿)-

DP directly. Given the Proposition 1, we know that it needs to

guarantee (𝛼, 𝜖)-RényiDP with RényiDP mechanism, which also

satisfies (𝜖 + log
1

𝛿

𝛼−1
, 𝛿)-DP. To achieve (𝛼, )-RényiDP, we can apply

Gaussian noise with 𝜎𝑅 =

√︃
𝛼
2
× Δ
𝜖 . Thus, we have:

𝜎

𝜎𝑅
=

√
2 log(1.25/𝛿)Δ

𝜖+
log

1

𝛿
𝛼−1√︃

𝛼
2
× Δ
𝜖

(6)

Note that
𝜎
𝜎𝑅

> 1 means the noise with DP mechanism to guar-

antee (𝜖, 𝛿)-DP is greater than the noise with RényiDP mecha-

nism, when
𝜎
𝜎𝑅

> 1, 0 < 𝛿 < 1, and 𝛼 > 1. Thus, we have

𝛼 < [ 𝜉−
√
𝜉2−4𝜖 log(1/𝛿)

2𝜖 +1]2 in which 𝜉 = (2
√︁

log(1.25/𝛿)𝜖−𝜖). □

Theorem 4. The noisy matrix output in Algorithm 2 satisfies
(𝜖, 𝛿)-differential privacy for 1 − 𝛾 portion of dataset.

Proof. It is straightforward to prove that Algorithm 2 ensures

(𝜖, 𝛿)-DP. Per Theorem 1, the sampled sensitivity Δ𝑠 ensures (𝜖, 𝛿)-
DP for 1 − 𝛾 portion of dataset 𝐷 . With Theorem 2, adding the

Gaussian noise with Δ𝑠 to each entry of matrix𝑊 can make the di-

vergence of twomatrices of neighboring datasets𝐷 and𝐷 ′ bounded
by 𝜖𝑅 , which also satisfies (𝜖, 𝛿)-DP for 1−𝛾 portion of dataset. □

Finally, we analyze the utility error bound of TopicDP.

Theorem 5. The expectation of the amplitude of noise in TopicDP

is 2𝜎√
2𝜋

where 𝜎𝑅 =

√︃
𝛼Δ2

𝑠

2𝜖𝑅
.

Proof. See Appendix A.2. □

4 EXPERIMENTS
In this section, we present the experimental evaluations on TopicDP.

Without loss of generality, we first use LDA as the example topic

mining algorithm to examine the performance of TopicDP. We

then also investigate the performance of proposed TopicDP under

different topic mining models.

4.1 Experimental setting
We conduct experiments on two real text datasets as below.

(1) Enron Email Dataset [20] is collected by the CALO Project.

It contains data from about 158 users, mostly senior man-

agement of Enron, organized into folders and contains thou-

sands of mails exchanged among the employees. The dataset

has been pre-processed to remove the email headers and

duplicate emails. Figure 11(a) in Appendix C shows the three

attributes of the dataset (“body”, “to”, “from”). The attribute

“to” is used to identify the email recipients (users). All the

emails associated to each “to” email address will be consid-

ered as a specific user’s emails.
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Figure 3: 𝐿1-Distance and RMSE vs Privacy Bound 𝜖 on the Enron Dataset (a, b) and Amazon Dataset (c, d).
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Figure 4: 𝐿1-Distance and RMSE vs 𝛾 on the Enron Email Dataset (a, b) and Amazon Product Review Dataset (c, d).
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Figure 5: 𝐿1-Distance and RMSE vs Matrix Size with Fixed 𝜖 = 3 on the Enron Dataset (a, b) and Amazon Dataset (c, d).

(2) Amazon Product Review Dataset [12] is a collection of

product reviews created by users on the product pages. It

includes reviews (ratings, text, helpfulness votes), product

metadata (descriptions, category information, price, brand,

and image features), and links (also viewed/also bought

graphs).We pre-processed the dataset to retain two attributes

of this dataset. Figure 11(b) in Appendix C shows some re-

tained attributes: user name and text reviews.

Table 1: Characteristics of Experimental Datasets

Dataset User # Docs # Avg Word # Avg Docs #/User

Enron 158 24,151 154 152

Amazon 3,815 50,000 31 13

Table 1 presents the characteristics of the datasets. To evaluate

the utility of TopicDP, we perform three groups of experiments.

First, we adopt the 𝐿1-distance and the Root-Mean-Square Error
(RMSE) metric to quantify the noise. Specifically, we compare the

original output probability matrix and noisy output probability

matrix with these two metrics. Second, we use the Kendall’s Tau
distance to evaluate the misalignment between the keyword rank-

ing before and after adding noise. Finally, we visualize the keyword

distributions in some example topics before and after noise.

Moreover, we evaluate TopicDP by varying the privacy param-

eters 𝜖 and 𝛿 , confidence 𝛾 , and output matrix size𝑚 × 𝑛 (top𝑚

topics and 𝑛 keywords in each topic). We also set 𝛿 as a very small

bound 10
−4

and𝑚 = 𝑛 since one benchmark Multivariate Gaussian

(MVG) mechanism [3] only works for square matrix outputs.

4.2 Evaluating TopicDP
We compare the TopicDP with the well-known Laplace mechanism

(adapted for matrix outputs) and MVG mechanism [3] which also

aims to protect privacy for matrix outputs.
1
Specifically, in the

Laplace mechanism, we use the 𝐿1 sensitivity and a global sensitiv-

ity 2𝑚 based on the extreme case that the topics and keywords are

totally different (the probability difference of each topic should be

2). The setting of the MVG mechanism is the same as TopicDP in

which the neighboring datasets differ in a single user and the sensi-

tivity may be unbounded. However, in the MVG mechanism, there

is a threshold for the unbounded sensitivity. For a fair comparison,

we also use the smooth sensitivity in the MVG mechanism.

𝐿1 and RMSE. First, Figure 3 demonstrates the 𝐿1-distance and

RMSE by varying the privacy bound 𝜖 from 1 to 10 with a step

1
[33] uses Laplace mechanism for the LDA algorithm, which cannot be model-agnostic

for multiple topic mining algorithms (due to input/query perturbation). Thus, we adapt

it to output perturbation for fair comparisons with TopicDP and the MVG mechanism.
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Figure 6: 𝐿1-Distance and RMSE vs Matrix Size with Fixed 𝜖 = 5 on the Enron Dataset (a, b) and Amazon Dataset (c, d).
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Figure 7: Kendall’s Tau Distance on the Enron Dataset.
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Figure 8: Kendall’s Tau Distance on the Amazon Dataset.

of 0.5 while fixing the confidence 𝛾 = 0.1 and output matrix size

as 10 × 10. Figure 3(a) and 3(b) show the 𝐿1-distance and RMSE

results on the Enron Email Dataset, respectively. Similarly, Figure

3(c) and 3(d) demonstrate the results on the Amazon Product Review

Dataset. As 𝜖 increases, the 𝐿1-distance and RMSE decrease (noise

gets smaller for all mechanisms while increasing 𝜖). Second, the

noise generated by Laplace mechanism (output perturbation) is

far larger than other two mechanisms due to the very large global

sensitivity. Third, in Figure 3(a), given a small 𝜖 (strong privacy),

the 𝐿1-distance between the actual output and the noisy output

is greater than 2500 in MVG mechanism but less than 6 in our

TopicDP. For large 𝜖 (weak privacy, e.g., 𝜖 = 10), the 𝐿1-distance for

the MVG mechanism is still much higher than TopicDP. Similarly,

we can also observe such trend from Figure 3(b), 3(c) and 3(d).

Second, Figure 4 shows the 𝐿1-distance and RMSE by varying

the confidence parameter 𝛾 from 0.02 to 0.22 with a step of 0.05 and

fixing 𝜖 = 3 and output matrix size 10×10. Figure 4(a), 4(b), 4(c), and

4(d) show the results for 𝐿1-distance and RMSE, respectively. Since

the global sensitivity is not related to𝛾 , the sensitivity and the utility

of Laplace mechanism should not be changed. We can observe

that, as the 𝛾 increases, the 𝐿1-distance and RMSE of other two

mechanisms generate smaller noise. The main reason is that smaller

𝛾 gives stronger privacy by ensuring 𝜖-differential privacy for a

higher percent of records (thus the sampled sensitivity should be

larger). Second, although the MVGmechanism decreases drastically

as𝛾 increases, the lowest result of MVG is still higher than the result

of TopicDP (e.g., the range of 𝐿1 distance for TopicDP is from 0.1389

to 8.4426 whereas the range for MVG is from 4.8034 to 6475.0496,

as shown in Figure 4(a)).

Third, Figure 5 shows the 𝐿1-distance and RMSE by varying the

matrix size𝑚 × 𝑛 and fixing 𝜖 = 3 and 𝛾 = 0.1. Both𝑚 and 𝑛 vary

from 2 to 10 with a step of 1. For both datasets, as𝑚,𝑛 get larger,

the 𝐿1-distance exponentially increases for both Laplace and MVG,

whereas TopicDP increases much slower. The increasing trends

on growing𝑚 × 𝑛 are consistent with the sequential composition

for adding noise to the matrix entries. Larger𝑚 and 𝑛 mean less

privacy budget allocated for each entry and the utility should be

worse. Clearly, the Laplace mechanism generates a much larger

noise than other two mechanisms.

Thus, we will compare the utility of MVG and TopicDP. In Figure

5(a), the range of 𝐿1-distance for TopicDP is from 0.0179 to 0.8954,

whereas the range for MVG is from 0.0794 to 77.1487. In Figure 5(b),

the range of RMSE for TopicDP is from 0.0122 to 0.2838, whereas it is

from 0.0562 to 24.3965 for MVG. When the matrix size is small (e.g.,

2 × 2 and 3 × 3), the noise generated by these two mechanisms can

be similar in terms of the 𝐿1-distance and RMSE metric. However,
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Figure 9: 𝐿1 Distance under Different Models on the Enron Dataset (a, b) and Amazon Dataset (c,d).

0 2 4 6 8 100.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

K
en

da
ll-

ta
u 

D
is

ta
nc

e

TopicDP(LSI)
MVG(LSI)
Laplace(LSI)
TopicDP(HDP)
MVG(HDP)
Laplace(HDP)

(a) 𝜖

0.00 0.05 0.10 0.15 0.20 0.250.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

K
en

da
ll-

ta
u 

D
is

ta
nc

e

TopicDP(LSI)
MVG(LSI)
Laplace(LSI)
TopicDP(HDP)
MVG(HDP)
Laplace(HDP)

(b) 𝛾

0 2 4 6 8 100.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

K
en

da
ll-

ta
u 

D
is

ta
nc

e

TopicDP(LSI)
MVG(LSI)
Laplace(LSI)
TopicDP(HDP)
MVG(HDP)
Laplace(HDP)

(c) 𝜖

0.00 0.05 0.10 0.15 0.20 0.250.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

K
en

da
ll-

ta
u 

D
is

ta
nc

e

TopicDP(LSI)
MVG(LSI)
Laplace(LSI)
TopicDP(HDP)
MVG(HDP)
Laplace(HDP)

(d) 𝛾

Figure 10: Kendall’s Tau Distance under Different Models on the Enron Dataset (a, b) and Amazon Dataset (c,d).

when the matrix output size is large (e.g., greater than 5), TopicDP

significantly outperforms MVG. We can draw the same conclusions

from Figure 5(b), 5(c) and 5(d) as well. Furthermore, in Figure 6, we

make the privacy bound 𝜖 = 5, and compare the results with Figure

5. Then, all metric values get smaller, and this is consistent with

the trends in Figure 3. Thus, we can conclude that TopicDP greatly

outperforms the MVG mechanism and Laplace mechanism.

Kendall’s Tau. We next evaluate the keywords rank of each topic

for top popular topic before and after adding noise, by using the

Kendall’s Tau to measure the misalignment between every two sets

of ranked keywords. The larger distance means higher dissimilarity.

Figure 7 shows the Kendall’s Tau distance on the Enron Email

dataset.With a larger 𝜖 , the Kendall’s Tau distance is slightly smaller

(see Figure 7(a)). This is consistent with what we observe in the

results of 𝐿1-distance and RMSE. We also observe that TopicDP

outperforms MVG and Laplace mechnaisms. Furthermore, we can

see the results get smaller as 𝛾 goes larger in Figure 7(b). Finally,

in Figure 7(c) and 7(d), the distance increases as the output matrix

size gets larger, but TopicDP always has the smallest distance for

the best utility. In Figure 8, four sub-figures illustrate the similar

observations and trends on the Amazon review dataset.

Keyword Distribution. Finally, we visualize specific topics ex-
tracted from two datasets and show the keyword distributions of

them before and after adding noise. In Figure 12 and 13 (Appendix

C), we randomly pick four topics from each dataset (topic 2, 4, 5 and

9 from the Enron dataset and topic 2, 4, 6 and 10 from the Amazon

dataset). From these figures, we observe that the keyword distribu-

tions after injecting the noise using TopicDP are still close to the

original distributions. This proves the practicality of the TopicDP.

4.3 Model-Agnostic Evaluation
In this section, we investigate the performance of TopicDP under

other two topic mining models: the Latent Semantic Indexing (LSI)

and Hierarchical Dirichlet Processing (HDP). These two models

both generate the probability matrix for key words. The setting is

the same as the setting in the Section 4.2.

We first compare the noise amountwith𝐿1-distance for these two

models. Figure 9(a) and 9(c) present the 𝐿1-distance with varying

𝜖 for the Enron and Amazon datasets. Blue lines denote the LSI

model while red lines denote the HDP model. We can observe that,

for any model, the noise is smaller as 𝜖 increases. Moreover, the

noise generated by TopicDP is the smallest that is very close to

the output probability matrix. Figure 9(b) and 9(d) present the 𝐿1-

distance results with varying confidence parameter 𝛾 . They also

show similar observations and trends on these two datasets.

Next, we investigate the performance of TopicDP on keyword

rank, as shown in Figure 10. Figure 10(a) and 10(c) present the

Kendall’s Tau distance with varying privacy 𝜖 . Figure 10(b) and

10(d) present the Kendall’s Tau distance with varying confidence

parameter 𝛾 . We can observe that, for any model and dataset, the

distance value generated by TopicDP is the smallest which illus-

trates the more similarity of the rank before and after adding noise.

In summary, such experimental results validate that TopicDP re-

tains good utility for different topic mining models (much better

than the two benchmarks) with rigorous privacy guarantees, which

make TopicDP more practical in the real-world applications.

5 DISCUSSION
Model-Agnostic Differential Privacy. The proposed TopicDP

only needs to perturb the output matrix, regardless of the topic

mining algorithm used by the trusted data collector. Thus, TopicDP

is a model-agnostic differentially private technique that can be

deployed with any topic mining model.

Other Applications with Matrix Outputs. Besides the applica-
tion of topic mining, many other applications (e.g., collaborative

filtering recommender systems [13], graph queries [11], and his-

togram releasing [10]) also return the matrix outputs. TopicDP can

also be readily adapted to preserve privacy in those applications
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by providing provable guarantees and good utility. Thus, TopicDP

can universally work for any analysis that returns a matrix out-

put even with a high sensitivity. It can provide better utility while

guaranteeing strong privacy.

6 RELATEDWORK
Privacy Preserving Text Analysis. Preserving user privacy in

text analysis has been extensively studied in the past decades

[4, 8, 15, 17, 32, 33]. For instance, [4] proposes a privacy-preserving

classification technique for personal text messages based on the

secure multiparty computation, which encompasses both private

feature extraction from texts, and private classification with logistic

regression and tree ensembles. It proves that when using the secure

text classification method, the application cannot learn anything

about the texts, and the author of the text cannot learn anything

about the text classification model either. [8] proposes a privacy pre-

serving keyword search scheme for searching over encrypted data.

To avoid the high computational cost of asymmetric encryption,

this scheme employs symmetric encryption and Bloom filter.

Differentially Private Text Analysis. Several other works focus
on the text analysis with differential privacy. Specifically, [32] pro-

poses an automated text anonymization approach that produces

synthetic term frequency vectors for the input documents with

differential privacy. [9] presents a formal approach to preserve pri-

vacy in text perturbation using the notion of 𝑑𝜒 -privacy which

is also extended from differential privacy. It considers the input

distance between any two inputs of the domain to achieve indis-

tinguishability. Some other works address privacy concerns in the

Latent Dirichlet Allocation (LDA) training process [5, 33, 34]. For

instance, [33] mainly proposes a HDP-LDA algorithm to protect the

entire training process on centralized datasets. However, in their

privacy model, the neighboring datasets only differ in one record

and the HDP-LDA algorithm is based on the collapsed Gibbs sam-

pling which adds noise to the word count statistics. [21] and [17]

release search query logs with differential privacy while ensuring

differential privacy for the query keywords and URLs.

However, these differential privacymodels are notmodel-agnostic

and cannot be applied to TopicDP (due to high sensitivity andmatrix

outputs) either.

7 CONCLUSION
There is a high risk on re-identifying individuals from the topic

mining on documents with certain background knowledge. To our

best knowledge, we propose the first model-agnostic differentially

private topic mining technique that injects well-calibrated Gaussian

noise (with smooth sensitivity) to the output of any topic mining

algorithm. It can ensure high utility and guarantee differential

privacy for at least 1 − 𝛾 portion of records (𝛾 is close to 0). The

noisy result can be privately shared to any untrusted recipient for

further downstream analyses on the extracted topics.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation

(NSF) under the Grants No. CNS-2046335 and CNS-2034870, as well

as the Cisco Research Award. Also, the authors would like to thank

the anonymous reviewers for their constructive comments.

REFERENCES
[1] LDA. 2021.. NLP with LDA: Analyzing Topics in the Enron Email

dataset. https://medium.datadriveninvestor.com/nlp-with-lda-analyzing-topics-

in-the-enron-email-dataset-20326b7ae36f. Accessed: 2022-5-30.

[2] Shahab Asoodeh, Jiachun Liao, Flavio P Calmon, Oliver Kosut, and Lalitha Sankar.

2021. Three variants of differential privacy: Lossless conversion and applications.

IEEE Journal on Selected Areas in Information Theory 2, 1 (2021), 208–222.

[3] Thee Chanyaswad, Alex Dytso, H Vincent Poor, and Prateek Mittal. 2018. MVG

mechanism: Differential privacy under matrix-valued query. In CCS. 230–246.
[4] Martine De Cock, Anderson C Nascimento, Devin Reich, Rafael Dowsley, and

Ariel Todoki. 2019. Privacy-Preserving Classification of Personal Text Messages

with Secure Multi-Party Computation. In NeurIPS. 3752.
[5] Chris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-XiangWang, and Furong Huang.

2020. An end-to-end differentially private latent Dirichlet allocation using a

spectral algorithm. In ICML. 2421–2431.
[6] Susan T Dumais. 2004. Latent semantic analysis. Annual review of information

science and technology 38, 1 (2004), 188–230.

[7] Cynthia Dwork. 2007. Ask a better question, get a better answer a new approach

to private data analysis. In International Conference on Database Theory. 18–27.
[8] Ibrahim Elhenawy, Salwa H Mahmoud, Ahmed Moustafa, et al. 2021. A Light-

weight Privacy Preserving Keyword Search Over Encrypted Data in Cloud Com-

puting. Journal of Cybersecurity and Information Management 3, 2 (2021), 29–9.
[9] Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom Diethe. 2020. Privacy-

and utility-preserving textual analysis via calibrated multivariate perturbations.

In Proceedings of the Web Search and Data Mining. 178–186.
[10] Soheila Ghane, Lars Kulik, and Kotagiri Ramamohanarao. 2018. Publishing spatial

histograms under differential privacy. In SSDBM. 1–12.

[11] Chris Godsil and Gordon F Royle. 2001. Algebraic graph theory. Vol. 207.
[12] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In WWW.

[13] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. 2004.

Evaluating collaborative filtering recommender systems. TOIS (2004), 5–53.
[14] Thomas Hofmann. 2013. Probabilistic latent semantic analysis. arXiv:1301.6705.
[15] Yuan Hong, Xiaoyun He, Jaideep Vaidya, Nabil Adam, and Vijay Atluri. 2009.

Effecrtive anonymization of query logs. In CIKM. 2950–2959.

[16] Yuan Hong, Wen Ming Liu, and Lingyu Wang. 2017. Privacy Preserving Smart

Meter Streaming Against Information Leakage of Appliance Status. TIFS 12, 9
(2017), 2227–2241.

[17] Yuan Hong, Jaideep Vaidya, Haibing Lu, Panagiotis Karras, and Sanjay Goel. 2015.

Collaborative Search Log Sanitization: Toward Differential Privacy and Boosted

Utility. TDSC 12, 5 (2015), 504–518.

[18] Marek Jawurek, Martin Johns, and Konrad Rieck. 2011. Smart metering de-

pseudonymization. In ACSAC. 227–236.
[19] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential

privacy for SQL queries. VLDB Endowment 11, 5 (2018), 526–539.
[20] Bryan Klimt and Yiming Yang. 2004. The Enron Corpus: A New Dataset for Email

Classification Research. In Machine Learning: ECML. Vol. 3201. 217–226.
[21] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas. 2009. Releasing search queries and clicks privately. In WWW. 171–180.

[22] Bing Liu. 2012. Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies 5, 1 (2012), 1–167.

[23] Andrei Manolache, Florin Brad, and Elena Burceanu. 2021. DATE: Detecting

Anomalies in Text via Self-Supervision of Transformers. (2021). arXiv:2104.05591

[24] Pascal Massart. 1990. The tight constant in the Dvoretzky-Kiefer-Wolfowitz

inequality. The annals of Probability (1990), 1269–1283.

[25] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform for

privacy-preserving data analysis. In SIGMOD. 19–30.
[26] Ilya Mironov. 2017. Rényi differential privacy. In CSF. IEEE, 263–275.
[27] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of

large sparse datasets. In IEEE Symposium on Security and Privacy. 111–125.
[28] Vijay B Raut and DD Londhe. 2014. Opinion mining and summarization of hotel

reviews. In Computational Intelligence and Communication Networks. 556–559.
[29] Benjamin I. P. Rubinstein and Francesco Alda. 2017. Pain-free random differential

privacy with sensitivity sampling. In ICML. 2950–2959.
[30] Sree Ram Valluri, David J Jeffrey, and Robert M Corless. 2000. Some applications

of the Lambert W function to physics. In Can. J. Phys. 78, (9) (2000), 823–831.
[31] ChenyangWang,M. Zhang,WeizhiMa, Yiqun Liu, and ShaopingMa. 2019. Model-

ing Item-Specific Temporal Dynamics of Repeat Consumption for Recommender

Systems. The World Wide Web Conference (2019), 1977–1987.
[32] Benjamin Weggenmann and Florian Kerschbaum. 2018. Syntf: Synthetic and

differentially private term frequency vectors for privacy-preserving text mining.

In Research & Development in Information Retrieval. 305–314.
[33] Fangyuan Zhao, Xuebin Ren, Shusen Yang, Qing Han, Peng Zhao, and Xinyu

Yang. 2020. Latent Dirichlet Allocation Model Training With Differential Privacy.

TIFS 16 (2020), 1290–1305.
[34] Tianqing Zhu, Gang Li, Wanlei Zhou, Ping Xiong, and Cao Yuan. 2016. Privacy-

preserving topic model for tagging recommender systems. KAIS, 33–58.

https://arxiv.org/abs/2104.05591


KDD ’22, August 14–18, 2022, Washington, DC, USA Han Wang1∗, Jayashree Sharma1∗, Shuya Feng1, Kai Shu1, Yuan Hong1,2

SUPPLEMENTARY APPENDIX
A PROOFS
A.1 Proof of Theorem 1

Proof. Assume that the sampled sensitivities Δ1, · · · ,Δℎ are

sorted as Δ1 ≤ · · · , ≤ Δℎ , given any 𝜌 ′ ∈ (0, 1) satisfying the

following:

1 − 𝛾 + 𝜌 + 𝜌 ′ ≤ 1⇔ 𝜌 ′ ≤ 𝛾 − 𝜌 (7)

Then, the random sensitivity Δ𝑠 = Δ𝑘 , where ℎ(1 − 𝛾 + 𝜌 + 𝜌 ′),
is the smallest Δ ≥ 0 such that Φℎ (Δ) ≥ 1 − 𝛾 + 𝜌 + 𝜌 ′. Thus, we
have:

Φℎ (Δ𝑠 ) =
1

ℎ

ℎ∑︁
𝑖=1

1(Δ𝑖 ≤ Δ𝑠 ) ≥ 1 − 𝛾 + 𝜌 + 𝜌 ′ (8)

Define the events as

𝐴Δ𝑠 = {∀𝑆 ⊂ R, 𝑃𝑟 (AΔ𝑠 (𝐷) ∈ 𝑆) ≤
𝑒𝜖 · 𝑃𝑟 (AΔ𝑠 (𝐷 ′) ∈ 𝑆) + 𝛿}

𝐵𝜌′ =

{
sup

Δ𝑠

(Φℎ (Δ𝑠 ) − Φ(Δ𝑠 )) ≤ 𝜌 ′
}

where Φ(Δ𝑠 ) is the unknown CDF and Φℎ (Δ𝑠 ) is the correspond-
ing random empirical CDF. The former is the event that DP holds for

a specific DB pair, when the mechanism is executed with (possibly

random) sensitivity parameter Δ𝑠 ; the latter records the empiri-

cal CDF uniformly one-sided approximating the CDF to level 𝜌 ′.
Moreover, per the definition of differential privacy, we have

∀Δ𝑠 > 0, 𝑃𝑟𝐷,𝐷′∼𝑃𝑁 +1 (𝐴Δ𝑠 ) ≥ Φ(Δ𝑠 ) . (9)

The random 𝐷 , 𝐷 ′ on the left-hand side induce the distribution

on Δ𝑠 on the right-hand side under which Φ(Δ𝑠 ) = 𝑃𝑟 (Δ ≤ Δ𝑠 ).
The probability on the left-hand side is the level of random dif-

ferential privacy of AΔ𝑠 while running on the fixed Δ𝑠 . By the

Dvoretzky-Kiefer-Wolfowitz inequality [24], we have: for all 𝜌 ′ ≥√︁
(log 2)/(2ℎ),

𝑃𝑟Δ1,· · · ,Δℎ (𝐵𝜌′) ≥ 1 − 𝑒−2ℎ𝜌′2
(10)

Thus, we have

𝑃𝑟𝐷,𝐷′,Δ1,· · · ,Δℎ (𝐴Δ𝑠 )
=E(1[𝐴Δ𝑠 ] |𝐵𝜌′)𝑃𝑟 (𝐵𝜌′) + E(1[𝐴Δ𝑠 ] |𝐵𝜌′)𝑃𝑟 (𝐵𝜌′)
≥E[Φℎ (Δ𝑠 ) |𝐵𝜌′]𝑃𝑟 (𝐵𝜌′)

≥E[Φℎ (Δ𝑠 ) − 𝜌 ′ |𝐵𝜌′] (1 − 𝑒−2ℎ𝜌′2 )

≥(1 − 𝛾 + 𝜌 + 𝜌 ′ − 𝜌 ′) (1 − 𝑒−2ℎ𝜌′2 )
≥(1 − 𝛾 + 𝜌) (1 − 𝜌)
≥1 − 𝛾 + 𝜌 − 𝜌
=1 − 𝛾 (11)

The last inequality subjects to 𝜌 < 𝛾 ; the penultimate inequality

subjects to the setting

𝜌 ′ ≥
√︄
(log

1

𝜌
)/(2ℎ) (12)

and then the DKW condition, 𝜌 ′ ≥
√︁
(log 2)/(2ℎ), is satisfied

given 𝜌 ≤ 1/2. □

A.2 Proof of Theorem 5
Proof. In this paper, we use the Gaussian mechanism with sam-

pled sensitivity. The Gaussian distribution has a probability density

function:

𝑓 (𝑥) = 1

𝜎
√

2𝜋
𝑒
− 𝑥2

2𝜎2
(13)

where 𝜎𝑅 =

√︃
𝛼Δ2

𝑠

2𝜖𝑅
. Then, the expectation of the amplitude of

noise by Gaussian distribution is

E(𝑉 ) =
∫ ∞

−∞
|𝑥 |𝑓 (𝑥)𝑑𝑥 =

∫ ∞

0

2𝑥
1

𝜎
√

2𝜋
𝑒
− 𝑥2

2𝜎2 𝑑𝑥

=
−2𝜎
√

2𝜋
(
∫ ∞

0

𝑑𝑒
− 𝑥2

2𝜎2 ) = 2𝜎
√

2𝜋

We observe that the noise is related to the sampled sensitivity

that is dependent on the confidence 𝛾 . □

B LATENT DIRICHLET ALLOCATION
We illustrated the example topic mining model used in the exper-

iments: Latent Dirichlet Allocation (LDA). LDA is a generative

probabilistic model for collections of discrete data such as text cor-

pora. The goal is to find short descriptions of the members in a

collection that enable efficient processing of large collections while

preserving the essential statistical relationships useful for the basic

tasks such as classification, novelty detection, etc.

In generative probabilistic modeling, data are generated in a

generative process that includes hidden variables. This generative

process defines a joint probability distribution over both the ob-

served and hidden random variables. In LDA, the observed variables

are the words of the documents; the hidden variables are the topic

structure. We calculate the hidden topic structure from the doc-

uments by computing the posterior distribution (the conditional

distribution of the hidden variables given the documents).

We can describe LDA with formal notations. The topics are 𝛽1:𝐾 ,

where each 𝛽𝑘 is a distribution over the vocabulary. The topic

proportions for the 𝑑th document are 𝜃𝑑 , where 𝜃𝑑,𝑘 is the topic

proportion for topic k in document 𝑑 . The topic assignments for the

𝑑th document are 𝑧𝑑 , where 𝑧𝑑,𝑛 is the topic assignment for the 𝑛th

word in the document 𝑑 . Finally, the observed words for document

𝑑 are 𝑤𝑑 , where 𝑤𝑑,𝑛 is the 𝑛th word in document 𝑑 , which is

an element from the fixed vocabulary. Thus, the LDA algorithm

corresponds to the joint distribution of the words:

𝑃𝑟 (𝛽1:𝐾 , 𝜃1:𝐷 , 𝑧1:𝐷 , 𝑤1:𝐷 )

=

𝑘∏
𝑖=1

𝑃𝑟 (𝛽𝑖 )
𝐷∏
𝑑=1

𝑃𝑟 (𝜃𝑑 ) [
𝑁∏
𝑛=1

𝑃𝑟 (𝑧𝑑,𝑛 |𝜃𝑑 )𝑃𝑟 (𝑤𝑑,𝑛 |𝛽1:𝐾 , 𝑧𝑑,𝑛) ]
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(a) Enron Email Dataset

username reviews

llyyue I thought it would be as big as small paper bu...

Charmi This kindle is light and easy to use especiall...

johnnyjojojo Didnt know how much i'd use a kindle so went f...

Kdperry I am 100 happy with my purchase. I caught it o...

Johnnyblack Solid entry level Kindle. Great for kids. Gift...

(b) Amazon Product Review Dataset

Figure 11: The Attributes of Datasets

(a) Topic 2 (b) Topic 4 (c) Topic 5 (d) Topic 9

Figure 12: Keyword Distribution of Four Randomly Selected Topics in Enron Dataset

(a) Topic 2 (b) Topic 3 (c) Topic 6 (d) Topic 7

Figure 13: Keyword Distribution of Four Randomly Selected Topics in Amazon Dataset

The given distribution specifies various dependencies such as the topic

assignment 𝑧𝑑,𝑛 which in turn depends on the topic proportions per doc-

ument 𝜃𝑑 , the observed word 𝑤𝑑,𝑛 which in turn depends on the topic

assignment 𝑧𝑑,𝑛 and all of the topics.

C ADDITIONAL FIGURES
In this section, we present some additional figures of the experimental

datasets and results. Figure 11(a) and 11(b) demonstrate the attributes of

two datasets (Enron Email dataset andAmazon Product Review dataset) used

for experiments. In the Enron dataset, topic mining will be performed on the

body of all the emails, each of which is considered as a separate document. In

the Amazon dataset, topic mining will be performed on the specific reviews,

each of which is considered as a separate document. Finally, Figure 12 and

13 demonstrate the keyword distribution of four randomly selected topics

in the two datasets, respectively. The probability distributions of all the

keywords are quite close in the outputs of both TopicDP and original topic

mining.

D THE NOTATION TABLE

Table 2: Frequently Used Notations

Notations Comments

𝑊 output matrix of topic mining

ℎ sampling size

𝛾 confidence parameter

Δ𝑠 the smooth sensitivity

𝜎2
scale parameter of Gaussian distribution

𝜖, 𝛿 privacy parameter
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