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Kaize Ding*, Kai Shu, Xuan Shan, Jundong Li and Huan Liu, Fellow, IEEE

Abstract—Anomaly detection on attributed graphs has received
increasing research attention lately due to the broad applications
in various high-impact domains, such as cybersecurity, finance,
and healthcare. Heretofore, most of the existing efforts are
predominately performed in an unsupervised manner due to
the expensive cost of acquiring anomaly labels, especially for
newly formed domains. How to leverage the invaluable auxiliary
information from a labeled attributed graph to facilitate the
anomaly detection in the unlabeled attributed graph is seldom
investigated. In this study, we aim to tackle the problem of
cross-domain graph anomaly detection with domain adaptation.
However, this task remains non-trivial mainly due to: (1) the
data heterogeneity including both the topological structure and
nodal attributes in an attributed graph; and (2) the complexity
of capturing both invariant and specific anomalies on the target
domain graph. To tackle these challenges, we propose a novel
framework COMMANDER for cross-domain anomaly detection on
attributed graphs. Specifically, COMMANDER first compresses the
two attributed graphs from different domains to low-dimensional
space via a graph attentive encoder. In addition, we utilize
a domain discriminator and an anomaly classifier to detect
anomalies that appear across networks from different domains.
In order to further detect the anomalies that merely appear in
the target network, we develop an attribute decoder to provide
additional signals for assessing node abnormality. Extensive
experiments on various real-world cross-domain graph datasets
demonstrate the efficacy of our approach.

Index Terms—Attributed Graphs, Anomaly Detection, Graph
Neural Networks, Domain Adaptation.

I. INTRODUCTION

TTRIBUTED graphs are a type of graphs that not only

model the attributes of each data instance, but also
encode the inherent dependencies among them. They have
been widely used to model complex systems such as social
media networks [1], academic graphs [2], financial transaction
networks [3]. However, anomalous nodes — whose patterns
significantly deviate from the majority — can be rampant in
attributed graphs and cause real-world societal effects. For
example, spammers in social networks can coordinate among
themselves to launch various attacks such as spreading ads to
generate sales, disseminating pornography, viruses, phishing,
etc [4]; fraud behaviors in financial networks may lead to huge
financial loss for both customers and merchants [5]. Therefore,
it is critical to detect anomalies on attributed graphs.
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Fig. 1. An example of cross-domain graph anomaly detection. A; and B;
can be considered as the shared anomalies since they show similar behaviors
across two graphs from different domains, while B> is an instance of unshared
anomalies since such type of anomalies only exist in the target graph.

For a real-world anomaly detection system, it is often unre-
alistic to obtain abundant labeled data for every domain (e.g.,
Hotels and Restaurants are two different domains in Yelp) due
to the expensive labeling cost [6], [7]. As such, graph anomaly
detection is commonly performed in the single-domain set-
ting, and unsupervised methods are proposed to handle those
unlabeled domains [3]. However, the performances of unsu-
pervised approaches may be limited without any supervision
information. Thus when the target graph is from an unlabeled
domain, it is natural and important to explore the auxiliary
knowledge from other related domains that come from the
same data platform. Specifically, we would like to investigate
whether the anomaly detection performance on an unlabeled
attributed graph (target graph) can be improved by leverag-
ing another labeled attributed graph (source graph). Recent
advancements on domain adaptation have shown promising
results in learning domain-invariant features across domains
in various research disciplines, including computer vision [8],
[9], [10] to natural language processing [11], [12]. In light of
this, we propose to tackle the novel problem of cross-domain
graph anomaly detection by adapting domain discrepancies
between two attributed graphs.

Despite the unprecedented success of deep domain adapta-
tion, directly grafting it for detecting anomalies on attributed
graphs is infeasible due to the following challenges. First,
compared to conventional text or image data, attributed graphs
are notoriously difficult to handle due to the data heterogeneity
from both structure and attribute perspectives [13]. As such,
applying conventional domain adaptation techniques to our
problem may result in unsatisfactory results as they are not
tailored for attributed graphs. Therefore, the first challenge
centers around how to model two arbitrarily structured at-
tributed graphs from different domains and learn domain-
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invariant node representations for detecting anomalies. Second,
in order to detect anomalies on the unlabeled target graph, one
straightforward solution is to train a domain-adapted classifier
as existing work shows [9], [14], [6]. However, the domain-
adapted classifier may render unsatisfactory anomaly detec-
tion performance. Figure 1 shows an example of detecting
anomalies on attributed graphs in the cross-domain setting.
As we can see, the labeled fraudulent reviewers in the Books
domain (e.g., A;) continuously spread promotion links instead
of reviewing books, which can be treated as a typical type of
anomalies. Although we are able to detect the anomalies that
reveal similar behaviors (i.e., shared anomalies) in the Clothes
domain (e.g., B1) by domain adaptation, domain B has another
type of fraudulent reviewers who generate negative reviews to
sabotage the reputation of targeted products (e.g., B3). The
domain-adapted classifier may not work well for detecting
such type of anomalies (i.e., unshared anomalies) since they
do not appear in the source domain graph. Therefore, the
second challenge lies in how to spot both the shared and
unshared anomalies on the target graph simultaneously.

In this paper, we propose COMMANDER (cross-domain
anomaly detection on attributed networks), a novel end-to-end
framework which consists of four principled components to
address the above challenges. For the first challenge, COM-
MANDER employs a shared graph attentive encoder building
on top of the graph attention networks [15] to learn node
representations of both source and target attributed graphs.
Meanwhile, by deceiving the domain discriminator to distin-
guish the domain assignment of nodes, the graph attentive
encoder gradually maps node representations from both source
and target graphs to a domain-invariant feature space. For
the second challenge, COMMANDER can detect the shared
anomalies with the domain-adapted anomaly classifier trained
from the labeled source graph. Meanwhile, COMMANDER
uses an attribute decoder to spot the unshared anomalies by
measuring the attribute reconstruction error of each node. As
such, the synergistic collaboration between anomaly classifier
and attribute decoder empowers COMMANDER to achieve
superior anomaly detection performance on the target graph.
To summarize, our contributions of this study are as follows:

o Problem: To the best of our knowledge, we are the first to
study the novel problem of cross-domain graph anomaly
detection. In particular, we emphasize its importance and
give a formal problem definition.

o Algorithm: We develop an end-to-end framework for
cross-domain graph anomaly detection. The proposed
framework bridges the domain discrepancy between two
attributed graphs and detects both the shared and un-
shared anomalies on the target graph.

o Evaluation: We perform extensive experiments on real-
world datasets to verify the effectiveness of our proposed
model. The experimental results demonstrate its superior
performance for cross-domain graph anomaly detection.

II. PROBLEM DEFINITION

To legibly describe the studied problem, we follow the
commonly used notations throughout the paper. Specifically,
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Fig. 2. Cross-domain data analysis w.r.z. feature similarity between different
user groups.

we use lowercase letters to denote scalars (e.g., A\), boldface
lowercase letters to denote vectors (e.g., x), boldface upper-
case letters to denote matrices (e.g., X), and calligraphic fonts
to denote sets (e.g., V).

Given an attributed graph G = (V, £, X), where V denotes
the set of nodes {v1,vs, ..., v, } and £ denotes the set of edges
{e1,€2,...,em}. The d—dimensional attributes of n nodes
are denoted by X = [x;,Xo,...,X,] € R"¥9, Therefore, the
attributed graph can also be represented as G = (X, A) for
simplicity. Here A = {0,1}™*™ is an adjacency matrix where
A, ; = 1 indicates that there is an edge between node v; and
node v;; otherwise, A; ; = 0.

In order to provide more interpretable results, graph
anomaly detection is commonly considered as a ranking
problem [3], [13]. Accordingly, we define the problem of
cross-domain graph anomaly detection as follows:

Problem 1: Cross-domain Graph Anomaly Detection:
Given a labeled attributed graph G° = (X*, A®) from the
source domain and another unlabeled attributed graph G* =
(Xt A?) from the target domain, here we follow previous
works and assume G° and G* share the same feature space
but do not have overlapped nodes or edges. The objective
is to learn an anomaly detection model, which is capable
of generalizing the knowledge from the labeled graph G°,
to detect the anomalies on the target graph G!. Ideally,
anomalous nodes should be ranked on higher positions over
normal nodes in the returned list.

III. PRELIMINARIES
A. Anomaly Analysis Across Domains

To gain insight into the relations between anomalies in a
single domain or across different domains, we conduct an
initial exploration on a pair of real-world datasets covering
two different domains (i.e., Hotel and Restaurant) in Yelp
(The details of the datasets are introduced in Section V-A).
There are regular users and anomalies in both domains. In this
analysis, we regard Hotel as our target domain for which we
want to detect anomalies. As shown in Figure 2, we compare
the cosine similarity between different user pairs. Note that
each user is represented with a feature vector constructed with
the bag-of-word features from all his/her reviews. For Group
3 (G3), we calculate the similarity between each anomaly
and all the regular users in Hotel and show the average
value for each anomaly. Compared with G1, in which we
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show the average similarity between each anomaly and the
other anomalies in the same domain, the values in G3 are
significantly smaller. Such discrepancy between anomalies
and regular users—which represent the majority of users in
the platform— can be utilized for anomaly detection under
the unsupervised setting. To investigate whether the labeled
anomalies in the source domain (Restaurant in this case) can
give guidance to anomaly detection in Hotel, we evaluate
the similarities between anomalies across these two domains
(shown in G2). The fact that the anomalies in Hotel are
closer to anomalies in Restaurant than regular users in Hotel
demonstrates that the supervised information from the source
domain (Restaurant) can be potentially leveraged for detecting
anomalies in the target domain (Hotel). However, the values
of similarity in G2 are still smaller than those in G1, meaning
that there exist some anomalies in Hotel revealing unshared
patterns compared with anomalies in Restaurant. We observe
similar data patterns in other pairs of cross-domain datasets,
which motivates our design of COMMANDER.

B. Graph Neural Networks

Recently graph neural networks (GNNs) have demonstrated
their remarkable performance in different graph learning
tasks [16], [17], [18], [19]. The early proposed graph neu-
ral networks extend the operation of convolution on graph-
structured data in the spectral domain for network repre-
sentation learning. In the meantime, many prevailing GNN
models follow the neighborhood aggregation strategy have
been proposed and are analogous to Weisfeiler-Lehman (WL)
graph isomorphism test. Specifically, the representation of a
node is computed by iteratively aggregating representations of
its local neighbors. Formally, a GNN layer can be defined as:

h! = TRANSFORM (hﬁ_la hj\/) ;
(D
hly, = AGGREGATEI<{h§-_1|Vj € Ni}>’

where h! is the node representation of node i at layer [ and
N; is the local neighbor set of node i. AGGREGATE and
TRANSFORM are two key functions of GNNs and have a series
of possible implementations [16], [20], [15].

By stacking multiple GNN layers, the learned node repre-
sentations are able to capture the long-range node dependen-
cies in the input graph, which mitigates the network sparsity
issue beyond the observed links among nodes.

IV. PROPOSED APPROACH

In this section, we present the details of the proposed
framework that consists of four dedicated components (see
Figure 3): (1) a graph attentive encoder; (2) a domain discrim-
inator; (3) an anomaly classifier; and (4) an attribute decoder.
Specifically, COMMANDER accomplishes domain adaptation
on attributed graphs with the graph attentive encoder and
domain discriminator. The anomaly classifier and attribute de-
coder are employed to detect anomalies on the target attributed
graph synergistically.

A. Domain Adaptation on Attributed Graphs

Deep domain adaptation has recently drawn much atten-
tion with the booming development of deep neural networks
(DNNs). Those deep domain adaptation methods have been
proven to be effective in different learning tasks, such as image
classification, sentiment classification and text matching [9],
[6]. The main intuition behind these methods is to learn the
domain-invariant representations of combined samples from
both source and target domains. In order to perform cross-
domain anomaly detection on attributed graphs, we propose
to follow a prevalent line of study [9], [21], [22] and first
employ a shared encoder to extract the latent representation
of each node in both G° and G*. However, apart from the
image or text data that we can directly feed the combined
samples from both source and target domains into a shared
feature extractor, different attributed graphs have distinctive
topological structures. Thus, it is unclear that how we can
model two arbitrarily structured attributed graphs using a
shared encoder.

Graph Attentive Encoder (Enc). To counter this problem,
we build our shared encoder grounded on the graph attention
networks [15] (GATs). GAT is an attention-based GNN model
that allows specifying fine-grained weights when aggregating
information from neighbors (as shown in Figure 3). Formally,
in each layer [, node v; integrates the features of neighboring
nodes to obtain representations of layer [ + 1 via:

> aijWh§-”>, 2)

hﬁ-l“) =c (
jGNiUvi

where o denotes the nonlinear activation function (e.g.,
ReLU). N; denotes the set of neighbors for v; and o is
the attention coefficient between node v; and node v;, which
can be computed as:

exp(o (a”[Wh” @ Whi'}))
Q5 = 7
" Do oo @ WH o wiT))

3)

where @ is the concatenation operation and the attention vector
a is a trainable weight vector that assigns importance to the
different neighbors of node v;, allowing the model to highlight
the features of the important neighboring node that is more
task-relevant.

The benefits of using graph attention networks are mainly
two-fold: (1) graph attention networks employ a trainable
aggregator function to learn the representation of each node,
which eliminates the dependency on the global graph structure.
In this way, our shared encoder is capable of learning node
representations for both G* and G* [15]; (2) due to the fact that
malicious users might build spurious connections with normal
users to camouflage their noxious intentions, graph attention
networks can better assess the abnormality of each node by
specifying fine-grained attentions on the neighboring nodes.
Thus, the graph attentive encoder is able to learn high-quality
node representations from the two attributed graphs G° and
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Fig. 3. Overview of the COMMANDER framework for cross-domain graph
anomaly detection. Figure best viewed in color.

G*. Moreover, we build the graph attentive encoder Enc with
multiple GAT layers:

—o( Y

FEN;Uv;

hZ(-l) agjl-)W(l)xj),

“4)

Z OZ(L)W h(L 1))
JEN Uw;

where z; is the latent representation of node <. In this way, the
graph attentive encoder Enc can capture the non-linearity of
topological structure and nodal attributes. Following previous
domain adaptation works [23], [24], we use Enc as a shared
architecture and encodes G* and G* one by one in each epoch.
This way the graph attentive encoder is able to map the learned
node representations from two graphs to an aligned embedding
space and further enables knowledge transfer across graphs
from different domains.

Domain Discriminator (Dis). In order to further perform
domain adaptation on two attributed graphs from different
domains, we adopt the idea of adversarial machine learn-
ing [25] to perform adversarial domain adaptation [14], [26]
in a two-player minimax game. As illustrated in Figure 3,
the first player is the domain discriminator Di¢s which tries
to distinguish whether an embedded node is from the source
domain or the target domain, and the second player is the
graph attentive encoder E'nc which is adversarially trained to
deceive the domain discriminator. The domain discriminator

Dis is built with a feed-forward layer with tanh non-linearity,
followed by a sigmoid function:

= tanh(WPz; + bP),
( T D) (5)

3

¢; = sigmoid(u

where WP and b” denote the trainable parameter matrix
and bias, respectively. o” is the output of the feed-forward
layer. Here u is another trainable weight vector, and g; is the
predicted domain label. The adversarial domain loss can be
mathematically formulated as:

Np

Lp=— [di log §; + (1 — d;) log(1 — ;) |,  (6)

ND i=1
where Np denotes the number of all the nodes in both G*
and G*. Here d; represents the domain label of node i and ;
is the predicted domain label.

Since our goal is to bridge the domain discrepancy between
two graphs, here we choose to maximize the above cross-
entropy loss. In other words, after the feature encoding phase,
the domain label of nodes would not be accurately recognized
by the domain discriminator, and the shared graph attentive
encoder would be able to extract domain-invariant node rep-
resentations from both source graph G* and target graph G®.

B. Cross-domain Anomaly Detection

In the previous subsection, we have discussed how to bridge

the domain discrepancy between two attributed graphs from
different domains. This subsection introduces how to detect
both shared anomalies and unshared anomalies on the target
graph G*.
Anomaly Classifier (CIf). Following the idea of other domain
adaptation learning tasks [22], we train an anomaly classifier
Clf right after the shared graph attentive encoder, to distinguish
whether a node from G*® is an anomaly or not. CIf is built
with a feed-forward layer with tanh non-linearity, followed by
a sigmoid function:

of = tanh(W%z; + b%), o
7; = sigmoid(vTo?),

where W and b® are the trainable parameter matrix and

bias, v is a trainable weight vector. Specifically, the anomaly

classification loss can be defined as the binary cross-entropy:

= TN Z l:yz log yj; + 1 - yz) IOg(l - yl) ) ®)

where N denotes the number of nodes sampled from the
labeled graph G*. y; and g; denote the ground truth anomaly
label and the predicted anomaly label of node 7, respectively.
Note that here we sample an equal number of normal nodes
and abnormal nodes from G* for addressing data imbalance.
The shared graph attentive encoder maps data from different
domains to a domain-invariant feature space by deceiving the
domain discriminator, then the domain-adapted anomaly clas-
sifier can be directly used for detecting the shared anomalies
on the target attributed graph.
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Nevertheless, one critical issue is that not all anomalies
share similar characteristics across graphs from different do-
mains. As discussed in the previous sections, some specific
types of anomalies that exist in G may not appear in G*.
Thus solely relying on a classifier trained on the labeled
source graph cannot accurately trace such unshared anomalies,
rendering unsatisfactory anomaly detection performance on the
target attributed graph.

Attribute Decoder (Dec). As suggested by recent studies [27],
[28], [13], the reconstruction error between original data and
estimated data is a strong indicator to show the abnormality
of each data instance. The intuition is that anomalies usually
cannot be well reconstructed from the observed data and
have large reconstruction errors since their patterns deviate
significantly from the majority. Therefore, we build an attribute
decoder Dec following the graph attentive encoder for recon-
structing two attributed graphs. Since node dependency infor-
mation is inherently encoded in each GAT layer, we propose
to reconstruct the node attributes for simplicity. Specifically,
we build Dec with multiple GAT layers:

h,EL’Ll):U( Z a,EjL“)W(LH)z]—),

JEN;Uv;

)

_ (L)xx7 (D)1, (E-1)

xi—a( Z o wi )hj ),
jGNiU’Ui

where X; is the estimated attribute of node v;. The reconstruc-
tion error computed by this deep autoencoder network provides
a precise assessment of node abnormality [29], [30], [13] and
enables us to spot the unshared anomalies. Specifically, the
reconstruction loss can be defined as:

Lr=|IX* - X% + || X! - X*||3, (10)

where X = [X1, X2, ...
tribute matrix of a graph.

,X,] denotes the reconstructed at-

In this way, our anomaly classifier and attribute decoder are
able to synergistically perform anomaly detection on the target
attributed graph. Intuitively, the anomaly classifier would spot
the shared anomalies with high precision, meanwhile the at-
tribute decoder is capable of providing complementary insight
for detecting the unshared anomalies. As another benefit, the
incorporation of the attribute decoder can also improve the
feature learning quality of the graph attentive encoder through
back-propagation, and relieve the overfitting problem when
training the anomaly classifier [31].

C. Model Learning

So far, we have introduced the architecture of our framework
COMMANDER for solving the problem of cross-domain graph
anomaly detection. This joint architecture requires dedicated

Algorithm 1: The training process of COMMANDER

Input: G*, G*, Np, N¢, a, epoch.
Output: Anomaly scores of all nodes in G*.
1 while i ; epoch do

2 // Adversarial domain adaptation
training

3 Sample Np nodes from G° and Gt

4 Compute the adversarial domain loss according to Eq.
(%)

5 Take gradient steps and update the parameters;

6 // Anomaly classification training

7 Sample N¢ nodes from G*;

8 Compute the anomaly classification loss according to Eq.
Ny

9 Take gradient steps and update the parameters;

10 /| Graph reconstruction training

11 Compute the reconstruction loss according to Eq. (9);

12 Take gradient steps and update the parameters;

13 Compute anomaly score of each node in G* using Eq. (11)

training objective for each component. The complete objective
function can be formulated as follows:

L=—Lp+Lc+ LR

Np

1 . N
=~ Z |:di log §; + (1 — d;)log(1 — Z/z)}
"= 11
| Ne (an
N {yi log 7 + (1 — yi)log(1 — ¥;)

i=1

X = XEIE + X = X1

We summarize the training procedure of COMMANDER in
Algorithm 1. By minimizing the dedicated objective functions,
COMMANDER gradually closes the domain shift between G°
and GY, and learns a powerful anomaly detector. All the
parameters of COMMANDER are optimized by the standard
back-propagation algorithm [31]. Specifically, for each node,
we use the output from CIf as a learned weight to re-weight
the reconstruction errors from Dec, and the final anomaly score
of node v; can be formulated as:

12)

score(v;) = Uil |%; — x4[3,

where §; € [0,1] and the final scores represent the node
abnormality computed by both the anomaly classifier and the
attributed decoder.

D. Complexity Analysis

Our proposed framework COMMANDER is composed of
four principled components introduced in the previous section.
In particular, the graph attentive encoder and attribute decoder
are built with a L-layer graph attention network [15]. As
shown in [15], the time complexity of each graph attentional
layer can be expressed as O(ndd' + md'), where d is the
dimensionality of the input feature and d’ is the dimensionality
of output feature. For the anomaly classifier and domain
discriminator, those two components are built with L’ fully-
connected layers, and the corresponding time complexity of
each fully-connected layer can be expressed as O(dd’). As
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m >> n in general, the computational complexity of COM-
MANDER is linear with respect to the number of edges.

V. EXPERIMENTS

In order to verify the effectiveness of our proposed frame-
work, in this section, we conduct empirical evaluations on
various real-world attributed graph datasets.

A. Experiment Settings

Evaluation Datasets. To evaluate the performance of different
methods, we adopt two pairs of real-world datasets for evalu-
ation. All the datasets are public and have been widely used
for graph anomaly detection problems [32], [33]. The dataset
statistics are listed in Table I and we summarize the details of
those two dataset pairs as follows:

e YelpHotel = YelpRes: YelpHotel and YelpRes are col-
lected from Yelp on two major business domains, i.e., hotel
and restaurant, in the Chicago area [32]. For each dataset,
users are considered as nodes and a link will be created if
two users commented on the same hotel or same restaurant.
By using the Yelp anti-fraud filter, the users from each
dataset can be separated into two classes: anomaly (authors
of filtered reviews), and regular users (authors with no
filtered reviews), which can be considered as the ground
truth labels.

e YelpNYC = Amazon: To further study the effect of
different levels of domain discrepancy on the performance
improvements, we also adopt another pair of attributed
graphs collected from two different platforms (domains
with higher discrepancy), i.e., Yelp and Amazon. Specif-
ically, YelpNYC collects data for the restaurants located
in New York City [32]. Amazon is another attributed
graph collected from an E-commerce platform by [33].
In this dataset, a user is flagged as a fraudulent user if
he/she has reviewed two or more products that have been
targeted by crowdsourcing efforts [33], otherwise the user
is considered as legitimate.

For all the datasets above, we apply bag-of-words
model [34] to obtain the attributes of each node. The vo-
cabulary is built on top of the textual contents related to the
nodes from both source and target graphs. With the processed
datasets, we are able to conduct the evaluation across 4 domain
shifts in our experiments, including YelpHotel — YelpRes,
YelpRes — YelpHotel, YelpNYC — Amazon, and Amazon
— YelpNYC. Notably, “A — B” represents the task which
aims at detecting anomalies on the target domain attributed
graph B, by adapting the knowledge from the labeled source
domain attributed graph A. In addition, as anomalies usually
consist of a small portion of a dataset, we randomly sampled
out part of the spammers or fraudulent reviewers to make our
experiments more realistic and challenging.

Compared Methods. In the experiments, we compare the
proposed framework COMMANDER with several state-of-the-
art representative anomaly detection methods. Specifically,
LOF [35] detects anomalies at the contextual level and only
considers nodal attributes. ConOut [36] detects anomalies in

6
TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

YelpHotel = YelpRes \ YelpNYC =  Amazon
# nodes 5,196 5,102 21,040 18,601
# edges 171,743 239,738 303,949 274,458
# attributes 8,000 8,000 10,000 10,000
# anomalies 250 275 1000 750

the local context by determining its subgraph and its relevant
subset of attributes. AMEN [37] uses both attribute and graph
structure information to detect anomalous neighborhoods.
Specifically, it analyzes the abnormality of each node from the
ego-network point of view. DOMINANT [13] is the state-of-
the-art model for detecting anomalies on attributed graphs. By
developing a graph convolutional networks based autoencoder,
the reconstruction errors can be used for spotting anomalies.
ADDA [14] is an adversarial domain adaptation model for
image classification. We adopt the architecture of this model
to conduct cross-domain graph anomaly detection by omitting
the graph structures.

Due to the fact that cross-domain graph anomaly detection
remains an under-studied task, it is worth mentioning that none
of the above methods is exactly developed for solving our
studied problem. Since no labels are available on the target
graph, we first select four state-of-the-art baselines (i.e., LOF,
ConOut, AMEN and DOMINANT) for unsupervised anomaly
detection on attributed graphs. We directly run each of them
on the target graph, and report the corresponding detection
performance to make a fair comparison. Additionally, we
also compare with ADDA, which is a state-of-the-art domain
adaptation method. As it is not designed for graph-based
anomaly detection problem, we omit the topological structure
and use the probability predicted by ADDA to rank all the
nodes on the target graph.

Implementation Details. The proposed model is implemented
in TensorFlow and optimized with Adam optimizer [38]. For
the graph attentive encoder, we use two graph attention layers
with 128 and 32 dimensions and are both activated by ReLU
function [39]. The attribute decoder is a single layer neural
network with 128 neurons, in which ReLU function is used
to activate the hidden layer and Linear function is used to
activate the output layer. As for the domain discriminator, it
is a single layer neural network with 16 neurons using the
tanh activation function for the hidden layer and the sigmoid
activation function in its output layer. The anomaly classifier
is implemented using the same way. While optimizing the
attribute decoder loss L, we set the learning rate to 0.001. For
optimizing both the adversarial domain loss £p and anomaly
classification loss L¢, we use the initial learning rate of 0.005
and reduce it to 0.001 after training for 50 epochs. We choose
the parameter o with the best performance for each domain
shift scenario, and the details can be found in Section 4.4.
We grid search for the parameter « in {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9} and select 0.5 for achieving the overall best
results on different datasets.

Evaluation Metrics For the problem of graph anomaly de-
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Fig. 4. Results of cross-domain graph anomaly detection w.r.t. AUC scores.

tection, previous research usually consider it as a ranking
problem [36], [13]. Following this line of work, we use three
standard evaluation metrics to measure the performance of
different anomaly detection algorithms:

e AUC: As a widely used evaluation metric in anomaly
detection methods [28], [40], [13], AUC value is the area
under the ROC curve, representing the probability that a
randomly chosen abnormal node is ranked higher than a
normal node. If AUC approaches 1, the method is of high
quality for detecting anomalies.

Precision@ K: As each anomaly detection method out-
puts a ranking list according to the anomalous scores
of different nodes, we use Precision@ /K to measure the
proportion of true anomalies that a specific detection
method discovered in its top K ranked nodes.

Recall@K: This metric measures the proportion of true
anomalies that a specific detection method discovered in
the total number of ground truth anomalies.

B. Evaluation Results

Firstly, we evaluate the performance of the proposed frame-
work COMMANDER and other unsupervised baseline methods
on four different domain shifts. The results with respect to
AUC scores are presented in Figure 4. We also report the
Precision@K scores and Recall@K scores in Table II and
Table III, respectively. From a comprehensive view, we can
clearly find our approach COMMANDER achieves considerable
improvements over the state-of-the-art unsupervised methods
on all the domain shifts. Take AUC value as an example,
the performance of COMMANDER is 2.6% higher than the
best baseline on the YelpHotel — YelpRes case, and the
corresponding improvements on YelpHotel — YelpRes, Yelp-
NYC — Amazon, Amazon — YelpNYC are reported with
5.4%, 1.7% and 1.6%, respectively. Meanwhile, our approach
consistently outperforms the best performing baselines accord-
ing to Precision@K and Recall@K results, which indicates
that COMMANDER is capable of discovering more anomalous
nodes in its top return lists and once again demonstrates the
effectiveness our approach.

Note that the unsupervised methods, including LOF, ConOut
and AMEN, cannot achieve competitive results in comparison.
In particular, the performance of LOF is limited by its inability

AUC(%)

LOF
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- AMEN
= Dominant
== ADDA
== Commander

LOF
ConOut
= AMEN
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56.657.3!

AUC(%)
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of modeling node dependencies. We also observe that AMEN
performs poorly in the task of ranking anomalous nodes. One
explanation is that AMEN is designed for detecting anomalous
neighborhoods rather than nodes. Even though DOMINANT
performs best amongst all the unsupervised methods owing to
the excellent expressive power of graph convolutional network
(GCN)), it is still largely behind our approach as it is unable
to accurately spot those shared anomalies by utilizing labeled
data from the source graph.

Next, we compare the performance of the domain adaptation
method ADDA with our proposed framework COMMANDER.
With the reported results (w.r.t. AUC scores), we observe
that COMMANDER outperforms ADDA by a significant mar-
gin, reaching around 10% to 20% relative improvement in
most cases. Meanwhile, as shown in Table II and Table
III, COMMANDER is able to discover more true anomalies
on its top anomaly ranking list than ADDA. There are two
major reasons that result in the ineffectiveness of ADDA for
the studied problem: First, node dependency information is
indispensable for assessing the abnormality of a node while
ADDA cannot model such information modality; Second,
ADDA is unable to detect the unshared anomalies on the target
graph since it is not tailored for anomaly detection problem.
On the contrary, our approach COMMANDER is able to detect
unshared anomalies on the target graph using the Attribute
Decoder Dec.

Additionally, the results show that our approach is able to
achieve larger improvements in the first two domain shifts than
the last two. Compared with the attributed graphs YelpHotel
and YelpRes, the attributed graphs YelpNYC and Amazon
are not only from two different business domains, but also
from two different platforms. Thus, this observation implies
that the model performance is strongly associated with the
degree of domain discrepancy. In brief, smaller domain dis-
crepancy could be easier adapted, leading to better cross-
domain anomaly detection performance.

C. Ablation Study

To investigate how much is the contribution of each com-
ponent, in this subsection, we design the ablation study and
show the corresponding experimental results. Specifically, we
compare our proposed framework COMMANDER with the
following three variants:
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TABLE I

RESULTS OF CROSS-DOMAIN GRAPH ANOMALY DETECTION W.R.T. PRECISION@ K.

decoder from COMMANDER, and only use the anomaly
classifier to detect anomalies on the target domain at-
tributed graph G*.

[ Precision@ K

YelpHotel — YelpRes YelpRes — YelpHotel YelpNYC — Amazon Amazon — YelpNYC
K 50 [ 150 | 230 50 [ 150 | 250 50 [ 150 | 250 50 [ 150 | 250
LOF 0.460 | 0.260 | 0.176 || 0.440 | 0.213 | 0.172 || 0.140 | 0.073 | 0.052 || 0.380 | 0.200 | 0.168
ConOut 0.260 | 0.107 | 0.064 || 0.480 | 0.280 | 0.216 || 0.040 | 0.020 | 0.012 || 0.660 | 0.407 | 0.328
AMEN 0.040 | 0.073 | 0.092 || 0.160 | 0.113 | 0.080 || 0.020 | 0.013 | 0.012 || 0.580 | 0.333 | 0.264
DOMINANT 0.580 | 0.327 | 0.236 || 0.560 | 0.320 | 0.224 || 0.480 | 0.433 | 0.444 || 0.620 | 0.407 | 0.320
ADDA 0.460 | 0.233 | 0.176 || 0.500 | 0.247 | 0.172 || 0.380 | 0.220 | 0.184 || 0.540 | 0.353 | 0.312
COMMANDER || 0.620 | 0.360 | 0.244 || 0.600 | 0.347 | 0.228 || 0.500 | 0.460 | 0.456 || 0.680 | 0.420 | 0.332

TABLE III
RESULTS OF CROSS-DOMAIN GRAPH ANOMALY DETECTION W.R.T. RECALL@ K.
[ Recall@ K

YelpHotel — YelpRes YelpRes — YelpHotel YelpNYC — Amazon Amazon — YelpNYC
K 50 ] 150 [ 250 50 [ 150 [ 250 50 ] 150 [ 250 50 ] 150 [ 250
LOF 0.084 | 0.142 | 0.160 || 0.088 | 0.128 | 0.172 || 0.009 | 0.015 | 0.017 || 0.019 | 0.030 | 0.042
ConOut 0.047 | 0.058 | 0.058 || 0.096 | 0.168 | 0.216 || 0.003 | 0.004 | 0.004 || 0.033 | 0.061 | 0.082
AMEN 0.007 | 0.040 | 0.084 || 0.032 | 0.068 | 0.080 || 0.001 | 0.003 | 0.004 || 0.029 | 0.050 | 0.066
DOMINANT 0.105 | 0.178 | 0.215 || 0.112 | 0.192 | 0.224 || 0.032 | 0.087 | 0.148 || 0.031 | 0.061 | 0.080
ADDA 0.084 | 0.127 | 0.160 || 0.100 | 0.148 | 0.172 || 0.025 | 0.044 | 0.061 || 0.027 | 0.053 | 0.078
COMMANDER || 0.113 | 0.196 | 0.222 || 0.120 | 0.208 | 0.228 || 0.033 | 0.092 | 0.152 || 0.034 | 0.063 | 0.083

e Clf: We exclude the domain discriminator and attribute TABLE V

ABLATION RESULTS ON TWO CROSS-DOMAIN SETTINGS: YELPNYC —
AMAZON AND AMAZON — YELPNYC.

YelpNYC — Amazon Amazon — YelpNYC

. . Methods
e CIf+Dis: We exclude the attribute decoder from the pro- Pre@50 AUC Pre@50 AUC
posed framework COMMANDER and use the anomaly Clf 0.040 0.558 0.320 0.445
classifier and domain discriminator to detect anomalies on Clf+Dis 0.420 0.812 0.560 0.677
. . t Dec 0.480 0.848 0.600 0.696
the target domain attributed graph G*. wo GAT 0.460 0857 0.640 0702
° COMMANDER 0.500 0.873 0.680 0.715

Dec: We exclude the anomaly classifier and domain dis-
criminator from the proposed framework COMMANDER
and only employ attribute decoder for detecting anomalies
on the target domain attributed graph G®.

w/o GAT: We replace the GAT layers in COMMANDER
with GCN layers to examine the effectiveness of using
GAT for anomaly detection.

The comparison results on YelpHotel — YelpRes and Yel-

pRes — YelpHotel are shown in Table IV, and the results on
YelpNYC — Amazon and Amazon — YelpNYC are shown in
Table V. Due to the space limit, we only show the results in
terms of Precison@50 and AUC in our ablation study. From
the reported results, we make the following observations:

e By examining the performance of CIf on four domain

TABLE IV

ABLATION RESULTS ON TWO CROSS-DOMAIN SETTINGS: YELPHOTEL —

YELPRES AND YELPRES — YELPHOTEL.

YelpHotel — YelpRes

YelpRes — YelpHotel

Methods
Pre@50 AUC Pre@50 AUC
CIf 0.280 0.461 0.220 0.431
CIf+Dis 0.500 0.758 0.420 0.688
Dec 0.540 0.765 0.540 0.695
w/o GAT 0.580 0.776 0.580 0.722
COMMANDER 0.620 0.793 0.600 0.748

shifts, we can clearly find that it performs poorly overall.
On the contrary, the variant CIf+Dis improves the detection
performance to a large extent with the join of Dis, which
demonstrates that an anomaly classifier trained on the G*
cannot be directly used on G* without domain adaptation.

e Comparing to the variant Clf+Dis, Dec achieves superior

detection performance in our experiments. The reasonable
explanation is that the attribute decoder provides a more
comprehensive assessment and is capable of detecting both
shared anomalies and unshared anomalies to some extent.

e By replacing the GAT layers in the COMMANDER frame-

work with vanilla GCN layers, the performance decreases
a noticeable margin, which shows the advantage of using
graph attention mechanism for detecting anomalies.

e Despite Cilf+Dis and Dec considerably improve the de-

tection performance, they still cannot achieve competitive
results with our approach COMMANDER in the evaluations.
It validates our assumption that Dis assists the anomaly
classifier CIf to detect the shared anomalies, meanwhile
Dec is the key component to detect those unshared anoma-
lies on the target graph.

To summarize, the ablation study illustrates that the absence
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of any component will inevitably jeopardize the anomaly
detection performance of COMMANDER on G!. With all
the principled components, the proposed framework largely
outperforms all the variants under four domain shifts.

VI. RELATED WORK
A. Graph-based Anomaly Detection

Graph-based anomaly detection methods have a specific
focus on the graph-structured data. Previous research mostly
study the problem of anomaly detection on plain graphs [3]. As
graph structure is the only available information modality in a
plain graph, this category of anomaly detection methods try to
exploit the graph structure information to spot anomalies from
different perspectives [41], [42]. For instance, SCAN [41] is
one of the first methods that target to find structural anomalies
in graphs. In recent days, attributed graphs have been widely
used to model a wide range of complex systems due to their su-
perior capacity for handling data heterogeneity. In addition to
the observed node-to-node interactions, attributed graphs also
encode a rich set of features for each node. Therefore, anomaly
detection on attributed graphs has drawn increasing research
attention in the community, and various methods have been
proposed [43], [36], [44]. Among them, ConOut [36] iden-
tifies the local context for each node and performs anomaly
ranking within the local context. AMEN [37] aims to discover
anomalous neighborhoods on attributed graphs by considering
the ego-network information for each node. More recently,
researchers also propose to solve the problem of anomaly
detection on attributed graphs using graph neural networks
due to its strong modeling power [13], [45], [46], [47]. For
instance, DOMINANT [13] achieves superior performance
over other shallow methods by building a deep autoencoder
architecture on top of the graph convolutional networks. Zhao
et al. [47] propose a novel loss function to train GNNs
for anomaly-detectable node representations. However, the
aforementioned methods merely focus on a single graph and
are unable to transfer the knowledge of anomalies from an
auxiliary related domain.

B. Deep Domain Adaptation

Domain adaptation [48] aims at mitigating the general-
ization bottleneck introduced from domain shift. With the
rapid growth of deep neural networks, deep domain adaptation
has drawn much attention lately. In general, deep domain
adaptation methods are trying to locate a domain-invariant
feature space that can reduce the differences between the
source and target domains. This goal is accomplished either
by transforming the features from one domain to be closer
to the other domain, or projecting both domains into a
domain-invariant latent space [9], [49], [22]. For instance,
Tzeng et al. [50] leverage an adaptation layer and a domain
confusion loss to learn the domain-invariant representations.
TLDA [51] is a deep autoencoder-based model which tries to
learn to domain-invariant representations and useful for label
classification. Inspired by the idea of Generative Adversarial
Network (GAN) [25], researchers also propose to perform
domain adaptation in an adversarial training paradigm [9],

[23], [14], [22]. By exploiting a domain discriminator to
distinguish the domain labels while learning deep features
to confuse the discriminator, DANN [23] achieves superior
domain adaptation performance. ADDA [14] learns a dis-
criminative representation using labeled source domain data
and then map the target data to the same space through
an adversarial loss. Later on, researchers also try to apply
domain adaptation techiniques on graph-structured data [52],
[53], [54], [24] to handle the domain discrepancy between
source and target graphs. For example, DANE [52] applies a
shared weight graph convolutional network architecture with
constraints of adversarial learning regularization, enabling
cross-network knowledge transfer fro unsupervised network
embedding. Similarly, UDA-GCN [24] further propose a dual
graph convolutional networks to capture both the local and
global consistency relationship of each graph, and use inter-
graphed based attention mechanism to better represent each
node. However, cross-domain anomaly detection remains un-
solved in the graph learning community.

VII. CONCLUSION

In this paper, we propose a novel anomaly detection
framework called COMMANDER, to tackle the problem of
graph anomaly detection under the cross-domain setting. The
proposed framework consists of four principled components:
graph attentive encoder, anomaly classifier, domain discrimi-
nator and attribute decoder. These components are tightly cou-
pled to bridge the domain discrepancy between two attributed
graphs from different domains and then perform accurate
anomaly detection on the target attributed graph. We perform
extensive experiments to corroborate the effectiveness of the
proposed COMMANDER framework.
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