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ABSTRACT
The rapid growth of Location-based Social Networks (LB-
SNs) provides a vast amount of check-in data, which facili-
tates the study of point-of-interest (POI) recommendation.
The majority of the existing POI recommendation methods
focus on four aspects, i.e., temporal patterns, geographi-
cal influence, social correlations and textual content indica-
tions. For example, user’s visits to locations have temporal
patterns and users are likely to visit POIs near them. In
real-world LBSNs such as Instagram, users can upload pho-
tos associating with locations. Photos not only reflect users’
interests but also provide informative descriptions about lo-
cations. For example, a user who posts many architecture
photos is more likely to visit famous landmarks; while a user
posts lots of images about food has more incentive to visit
restaurants. Thus, images have potentials to improve the
performance of POI recommendation. However, little work
exists for POI recommendation by exploiting images. In
this paper, we study the problem of enhancing POI recom-
mendation with visual contents. In particular, we propose a
new framework Visual Content Enhanced POI recommenda-
tion (VPOI), which incorporates visual contents for POI rec-
ommendations. Experimental results on real-world datasets
demonstrate the effectiveness of the proposed framework.

Keywords
POI recommendation; Visual contents; Location-based So-
cial Networks

1. INTRODUCTION
As an increasingly popular application of location-based

services, location-based social networks (LBSNs), such as
Yelp, Instagram and Foursquare, have attracted millions of
users. Users in LBSNs can check in their preferred points-of-
interest (POIs), e.g., museums, restaurants and stores, and
share their experiences of visiting these POIs with friends,
resulting in huge amount of user check-in data. The avail-
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Figure 1: An Example of Images Posted by Users.

ability of user check-in data in large volume brings in new
opportunities to design appealing services to facilitate user’s
travels and social interactions. Personalized POI recommen-
dation, which aims at recommending personalized POIs to a
user who has not visited them before, is one of such services.
Various POI recommendation methods have been proposed,
which mainly study four aspects, i.e., geographical influence,
social correlations, temporal patterns and textual content
indications [8, 37, 35, 4, 34, 10]. These aspects have been
proven to be effective for improving POI recommendations.

As the growth of LBSNs, more and more LBSNs are now
encouraging users to associate POIs with images. For exam-
ple, Yelp users can check-in a POI and add images to that
check-in. When uploading images to Instagram, users can
choose to add locations to images. Images associated with
POIs contain rich unique information about user preferences
and POI properties, such as shapes, structures and textures
of POIs that are not available in the aforementioned four
aspects. Thus, images can provide added value to improve
the performance of POI recommendations. Figure 1 gives
an example of images posted by users in Instagram, where
images in the three yellow dashed rectangles are posted by
users u1, u2, and u3, respectively. The purple line connect-
ing an image and a location means that the image is asso-
ciated/tagged with the location. In the figure, u3 posts lots
of architectures, which implies that u3 likes architectures of
the style shown in images. Location l2 is associated with
p6, and p6 contains visual contents, such as shapes, struc-
tures and textures that are similar to images posted by u3,
which suggests that l2 could satisfy u3’s interests and we
may recommend l2 to u3. u1 is a cold-start user without
any check-in records. Based on the food images posted by
u1, we still could recommend l1 to u1 as the visual contents
of images associated with l1 indicate l1 as a restaurant. Pre-
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vious work also suggests that images and POIs have strong
connections [16]. Thus, incorporating images could improve
the performance of POI recommendations. However, there’s
little existing work on exploiting images for POI recommen-
dations.

In this paper, we study the problem of enhancing POI rec-
ommendation with visual contents. In essence, we solve two
challenges - (1) how to extract useful visual contents from
images as we are lack of ground truth of what are contained
in the images; and (2) how to incorporate visual contents
for POI recommendations. In an attempt to solve these two
challenges, we propose a novel POI recommendation frame-
work called Visual Content Enhanced POI recommendation
(VPOI). The major contributions of this paper are summa-
rized next:

• Studying the new problem of enhancing POI recom-
mendation using visual contents;

• Proposing a novel POI recommender system, which
incorporates visual contents into a probabilistic model
for learning user and POI latent features; and

• Conducting experiments on real-world datasets to demon-
strate the effectiveness of the proposed framework.

The rest of the paper is organized as follows. In Section 2,
we present related work. In Section 3, we introduce the pro-
posed framework VPOI. In Section 4, we present a method
to solve the optimization problem of VPOI. In Section 5, we
show empirical evaluation with discussions. In Section 6, we
give conclusion with future work.

2. RELATED WORK
In this section, we will briefly review related works on POI

recommendation and visual contents for data mining.

2.1 POI Recommendation
POI recommendation, also called location recommenda-

tion, has been recognized as an essential task on recom-
mender systems. Existing work on POI recommendation
generally focuses on four aspects, i.e., geographical influence,
social correlations, temporal patterns and textual content in-
dications [8]. Ye et al. [36] introduced POI recommendation
on LBSNs and investigated the geographical influence [37]
and social influence [35] for POI recommendation. Cheng
et al. [4] investigated the geographical and social influence
through a multi-center Gaussian model. Zhang et al. [39]
further exploits categorical correlations together with ge-
ographical and social correlations. Temporal information
has also attracted much attention from researchers. Gao et
al. [9] investigated the temporal cyclic patterns of check-ins
in terms of temporal non-uniformness and temporal con-
secutiveness. Yuan et al. [38] incorporated both temporal
cyclic information and geographical information for time-
aware POI recommendation. Cheng et al. [5] introduced
the task of successive personalized POI recommendation in
LBSNs with a matrix factorization method. Recently, re-
searchers started to explore the textual content information
on LBSNs for POI recommendation. Yang et al. [34] in-
troduced sentiment information and reported its better per-
formance over state-of-the-art approaches. Liu et al. [18]
studied the effect of POI-associated tags with an aggregated
LDA model. Gao et al. [10] studied document content infor-
mation on LBSNs w.r.t. POI properties, user interests, and

sentiment indications. Though various aspects are investi-
gated for POI recommendation, image contents haven’t been
studied for POI recommendation while image contents, i.e.,
visual contents, have been proven to be effective for many
data mining tasks, which will be introduced next.

2.2 Visual Contents for Data Mining
The famous saying that “A picture is worth a thousand

words” suggests that images posted on LBSNs contain rich
information, which have potentials to facilitate data mining
tasks such as recommendations. Recently, researchers have
started to pay attention on investigating images for data
mining tasks. McAuley et al. [21] developed a system that
can recommend which clothes and accessories will go well
together by utilizing visual contents extracted from cloth
and accessory images. He et al. [13] studied evolving visual
factors that people consider when evaluating products so as
to make better recommendations. Wang et al. [31] infers
sentiments from visual contents. In [32, 33], tags and la-
bels of images are predicted from visual contents. The work
on images and locations can be generally categorized into
two types. One type is dividing the concerned region into
grids and predicting the grid where an image resides [11,
19]. Hay and Efros [11] proposed a data driven approach
to calibrate Flickr images to grids on the earth by using
visual contents. The other type is associating images with
landmarks or POIs [16, 6]. Li et. al [16] predicted which
POI a photo is taken by using bag-of-words visual contents.
The work on associating images with POIs suggests that im-
ages have strong connections with POIs and can be used to
describe the properties of POIs.

Our problem is different from the aforementioned approaches.
Instead of associating images with POIs, we use images to
help learn the latent features of both users and POIs for the
task of personalized POI recommendation.

3. A VISUAL CONTENT ENHANCED POI
RECOMMENDER SYSTEM

Before introducing details about the proposed framework,
we will first introduce notations used in this paper. Through-
out this paper, matrices are written as boldface capital let-
ters and vectors are denoted as boldface lowercase letters.
For an arbitrary matrix M ∈ Rn×m, Mij denotes the (i, j)-
th entry of M while mi and mj mean the i-th column and
j-th row of M, respectively. ‖M‖F is the Frobenius norm of
M. Capital letters in calligraphic math font such as P are
used to denote sets and |P| denotes the cardinality of P.

There are three types of objects in the studied problem,
namely, users, locations and images. Let U = {u1, u2, . . . , un}
be the set of users, L = {l1, l2, . . . , lm} be the set of loca-
tions and P = {p1, . . . , pN} be the set of photos, where n,
m and N are the number of users, POIs and images, respec-
tively. Users can check in at locations. We use X ∈ Rn×m
to denote user-POI check-in matrix. Xij means the check-in
frequency or rating of ui on lj . Following the common way
to deal with check-in frequency [9, 10], we use R ∈ Rn×m
to denote the normalized version of X with Rij = g(Xij)
and g(x) = 1

1+exp−x . A user can upload images to LBSNs.

Pui denotes the set of images uploaded by ui. A user can
also choose to add locations to images. Plj denotes the set
of images that are tagged lj . For example, in Figure 1,
Pu1 = {p1, p2, p3} and Pl1 = {p5}. Then the problem is for-

392



28 × 28 × 512 

112 × 112 × 128 

224 × 224 × 64 224 × 224 × 3 

56 × 56 × 256 

14 × 14 × 512 
7 × 7 × 512 

1 × 1 × 4096 1 × 1 × 1000 

Convolution + ReLU 

maxpooling 

Fully connected + ReLU 
softmax 

Figure 2: The architecture of VGG16 model .

mally stated as: given check-in matrix R, user images Pui ,
i = 1, . . . , n and POI images Plj , j = 1, . . . ,m, we aim to
recommend k un-visited POIs to each user.

3.1 A Basic POI Recommendation Model
We choose Probabilistic Matrix Factorization (PMF) [25]

as the basic model for POI recommendation. PMF is one
of the most popular models in collaborative filtering [30, 29]
and has been widely adopted for POI recommendation [4,
18]. It assumes Gaussian distribution on the residual noise
of observed data as,

P (R|U,V, σ) =

n∏
i=1

m∏
j=1

[N (Rij |uTi vj , σ
2)]Yij , (1)

where U ∈ RK×n and V ∈ RK×m are the latent feature
matrices of users and POIs, respectively. N (x|µ, σ2) is the
Gaussian distribution with mean µ and variance σ2. Y is the
indicator matrix with Yij = 1 if Rij > 0 and 0 otherwise.
PMF also places Gaussian priors on the latent matrices U
and V as P (U|σu) =

∏n
i=1N (ui|0, σ2

uI) and P (V|σv) =∏m
j=1N (vj |0, σ2

vI), where σ2
u and σ2

v are the variances of
the two Gaussian distributions and I is the identity matrix.
Then the posterior distribution can be written as,

P (U,V|R) =

n∏
i=1

N (ui|0, σ2
uI)

m∏
j=1

N (vj |0, σ2
vI)

n∏
i=1

m∏
j=1

[N(Rij |uTi vj , σ
2)]Yij .

(2)

Note that POI recommendation is one class collaborative
filtering, where only positive samples are given. Following
the standard way to solve the one-class problem in CF, we
sample the same number of unobserved data from the user-
poi matrix and treat them as the frequency to 0 [23, 17,
4].

3.2 Extracting and Modeling Visual Contents
To model images for POI recommendation, we first need

to extract useful features from images. Convolutional neu-
ral network (CNN) is a powerful deep network for extracting
high-level visual contents for image classification and object
detection. Thus, we choose CNN for feature extraction. We
choose VGG16 model as it is the state-of-the-art CNN archi-
tecture [26]. Figure 2 gives an illustration of the architecture
of VGG16. It is composed of 13 convolution, 5 max pooling,
3 fully connected and 1 softmax layers. The input to VGG16
is an image of size 224x224x3, where 224x224 is the size of
the image and 3 is the number of channels, i.e., RGB chan-
nels. Thus, we first resize each image to 224x224 as input.

Each cubic in the figure is a feature map with the dimension
given above it. For example, the leftmost one is the feature
map of size 224x224x64 after the connvolution layer. Cubics
of the same size has the same dimension. The last layer is
softmax layer that is used for classification. We refer readers
to [26] for the details of VGG16. We remove the last two
layers of VGG16, which are used for classification purpose.
Then for an input image pk, the visual contents are the out-
put of VGG16 with the last two layer removed, which is a
vector of dimension d = 4096. We denote it as CNN(pk)
because we treat CNN as a feature learning function whose
weights will be updated during the learning process. As a
common practice, we don’t train VGG16 from scratch, in-
stead we use pre-trained VGG16 and then fine-tune certain
CNN [24]. More detail will be discussed in Section 4.3. With
the image features extracted by CNN, we are going to in-
corporate these features for POI recommendation.

First, considering an image ps posted by ui, it is natural to
assume that ps contains certain visual contents that meets
ui’s preferences; while for an arbitrary image pw posted by
other user, i.e., pw /∈ Pui , pw is less likely to contain visual
contents that meets ui’s preferences. At the same time, ui’s
preferences are now captured by the latent features ui. This
implies that ui should be able to differentiate if an image ps
is posed by ui or not based on the visual feature CNN(ps).
With this intuition, we define the probability that ps belongs
to ui as P (fis = 1|ui, ps), where fis denotes if ps is posted
by ui or not. P (fis = 1|ui, ps) is given as

P (fis = 1|ui, ps) =
exp(uTi ·P · CNN(ps))∑

pk∈P
exp(uTi ·P · CNN(pk))

(3)

where P ∈ RK×d is the interaction matrix between the vi-
sual contents and latent user features, and d is the dimension
of the visual contents. Thus, for ps ∈ Pui , by maximizing
P (fis = 1|ui, ps), we force ui to be similar to the visual con-
tents through the interaction matrix P. In this way, visual
contents can guide the learning process of ui.

Similarly, considering an image pt associated with lj , vi-
sual contents of pt is likely to describe POI lj ; while for an ar-
bitrary image pw not associated with lj , the visual contents
of pw is less likely to describe lj . Since lj is now described
by the latent features vj , vj should be able to differentiate if
an image pt is associated with lj or not based on the visual
feature CNN(pt). Thus, we define the probability that pt
is associated with lj as P (gjt = 1|lj , pt), where gjt denotes
if pt is associated with lj or not. Similarly, P (gjt = 1|lj , pt)
is given as

P (gjt = 1|lj , pt) =
exp(vTj ·Q · CNN(pt))∑

pk∈P
exp(vTi ·Q · CNN(pk))

(4)
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Figure 3: A Graphical Representation of the Model
.

where Q ∈ RK×d is the interaction matrix between visual
contents and latent POI features. Thus, for pt ∈ Plj , by
maximizing P (gjt = 1|lj , pt), we force vj to be close to the
visual contents through the interaction matrix Q. In this
way, visual contents involve in the learning process of vj .

With P (fis = 1|ui, ps) and P (gjt = 1|lj , pt) defined in
Eq.(3) and Eq.(4), we can model visual contents by the fol-
lowing likelihood function

P (F ,G|P,U,V,P,Q)

=[

n∏
i=1

∏
ps∈Pui

P (fis = 1|ui, ps)] · [
m∏
j=1

∏
pt∈Plj

P (gjt = 1|lj , pt)]

(5)
where F = {fis : ps ∈ Pui ∀ ui ∈ U} and G = {gjt :
pt ∈ Plj ∀ lj ∈ L}. Similarly, we also assume Gaussian

priors for P and Q as P (P|σp) =
∏K
i=1

∏d
j=1N (Pij |0, σ2

p)

and P (Q|σq) =
∏K
i=1

∏d
j=1N (Qij |0, σ2

q), where σ2
p and σ2

q

are the variances.

3.3 The Proposed Framework–VPOI
With Eq.(2) modeling user-POI check-in data and Eq.(5)

modeling the image features, we propose the visual feature
enhanced POI recommendation framework as,

max
U,V,P,Q,CNN

logP (U,V,P,Q|R,F ,G,P) (6)

where the posterior distribution P (U,V,P,Q|R,F ,G,P)
can be written as

P (U,V,P,Q|R,F ,G,P)

∝P (R,F ,G|U,V,P,Q,P)P (U,V,P,Q|P)

=P (R|U,V)P (F ,G|P,U,V,P,Q)P (P)P (Q)P (U)P (V).

The graphical representation of the model is shown in Figure
3. By substituting Eq.(2), Eq.(5) and equations for priors,
the objective function in Eq.(6) can be written as

max
U,V,P,Q,CNN

− ‖Y � (R−UTV)‖2F − λ1(‖U‖2F + ‖V‖2F )

+α

n∑
i=1

∑
pk∈Pui

logP (fik = 1|ui, pk)− λ2‖P‖2F

+α

m∑
j=1

∑
pk∈Pvj

logP (gjk = 1|vj , pk)− λ2‖Q‖2F

(7)

where we set λ1 = σ2

σ2
u

= σ2

σ2
v

, λ2 = σ2

σ2
p

= σ2

σ2
q

to reduce hyper-

parameters and α = 2σ2. � is the Hadamard product.

4. AN OPTIMIZATION FRAMEWORK
In this section, we give a framework to solve the opti-

mization problem. We use gradient descent to update the
variables alternatively.

4.1 Negative Sampling
The gradients of logP (fik = 1|ui, pk) and logP (gjk =

1|vj , pk) w.r.t U, V, P, Q involve the calculation of
∑
pk∈P

exp

(uTi ·P ·CNN(pk)) or
∑
pk∈P

exp(vTi ·Q ·CNN(pk)), which
requires the summation of all the images and costs a lot of
computational operations. To accelerate the speed, follow-
ing the idea previous work [22, 28], we use negative sampling
to approximate logP (fik = 1|ui, pk) as

log σ(uTi ·P·CNN(pk))+

r∑
s=1

log σ(−uTi ·P·CNN(pks)) (8)

where pks, s = 1, . . . , r, are r negative samples for pk. pks
are called negative samples. The general idea here is: for
each image pk ∈ Pui , we randomly sample r images, i.e.,
pks, from images that are not posted by ui. We then try
to maximize the similarity between ui and the visual con-
tents of pk and minimize the similarity between ui and pks.
Similarly, logP (gjk = 1|vj , pk) is approximated as

log σ(vTj ·Q·CNN(pk))+

r∑
t=1

log σ(−vTj ·Q·CNN(pkt)) (9)

where pkt, t = 1, . . . , r, are r images randomly sampled from
images not tagged with li. With negative sampling, the
gradients are simplified, which will be given next.

4.2 Update Rules
To simplify notation, we use J to denote the objective

function in Eq.(7) with the approximations given above.

4.2.1 Update U

The partial derivative of J w.r.t U is given as

∂J
∂U

= 2V(Y�R)T −2V[Y�(UTV)]T −2λ1U+αA (10)

where A = {a1, . . . ,an} ∈ RK×n is a matrix with its i-th
column ai given as

ai =
∑

pk∈Pui

[
(1− σ(uTi P · CNN(pk)))P · CNN(pk)

−
r∑
s=1

(1− σ(−uTi P · CNN(pks)))P · CNN(pks)
]

We can further write ai in the vectorized form as

ai = PFi(1|Pui
|−σ(FTi PTui))−PF̃i(1r·|Pui

|−σ(−F̃Ti PTui))

where Fi ∈ Rd×|Pui
| is a matrix with each column being

CNN(pk), pk ∈ Pui . Similarly, F̃i ∈ Rd×r·|Pui
| is also a

matrix with each column being CNN(pks) where pks is the
negative samples corresponding to pk ∈ Pui . 1x is an all
one vector of length x.

4.2.2 Update V

The partial derivative of J w.r.t V is given as

∂J
∂V

= 2U(Y �R)− 2U[Y � (UTV)]− 2λ1V + αB (11)
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where B = {b1, . . . ,bm} ∈ Rk×m is a matrix with its j-th
column bj given as

bj = QKj(1|Plj
|−σ(KT

j QTvj))−QK̃i(1r·|Plj
|−σ(−K̃T

j QTvj))

and Kj ∈ Rd×|Plj
|

is a matrix with each column being

CNN(pk), pk ∈ Plj . Similarly, K̃i ∈ Rd×r·|Plj
|

is also a
matrix with each column being CNN(pkt) where pks is the
negative samples corresponding to pk ∈ Plj .

4.2.3 Update P and Q

The gradient of Eq.(7) w.r.t P is given as

∂J
∂P

= α

n∑
i=1

∑
pk∈Pui

[
(1− σ(uTi ·P · CNN(pk)))uiCNN(pk)T

−
r∑
s=1

(1− σ(−uTi ·P · CNN(pks)))uiCNN(pks)
T
]
− 2λ2P

which can be written as

∂J
∂P

= α

n∑
i=1

ui(1
T − σ(uTi PFi))F

T
i − 2λ2P

− α
n∑
i=1

ui(1
T − σ(−uTi PF̃i))F̃

T
i

(12)

Similarly, the gradient of Eq.(7) w.r.t Q is given as

∂J
∂Q

= α

m∑
j=1

vj(1
T − σ(vTj QKj))K

T
j − 2λ2Q

− α
m∑
j=1

vj(1
T − σ(−vTj QK̃j))K̃

T
j

(13)

4.2.4 Fine-tune CNN
To update the parameters for CNN, we fix U, V, P and
Q and remove terms irrelevant to CNN, then the partial
derivative of J w.r.t θ is given as

∂J
∂θ

=

n∑
i=1

∑
pk∈Pui

[(
1− σ

(
uTi ·P · CNN(pk)

)) d∑
h=1

pThui
∂CNN(pk)h

∂θ

−
r∑
s=1

(
1− σ

(
− uTi ·P · CNN(pks)

)) d∑
h=1

pThui
∂CNN(pks)h

∂θ

]

+

m∑
j=1

∑
pk∈Plj

[(
1− σ

(
vTl ·Q · CNN(pk)

)) d∑
h=1

qThvl
∂CNN(pk)h

∂θ

−
r∑
t=1

(
1− σ

(
− vTi ·Q · CNN(pkt)

)) d∑
h=1

qThvl
∂CNN(pkt)h

∂θ

]
(14)

where θ is the set of CNN weights to be tuned, which doesn’t
include the fixed layers. CNN(pk)h denotes the h-th el-
ement of CNN(pk). From Eq.(14), we can see that ∂J

∂θ
involves the gradients of CNN, while the calculation of gra-
dients of CNN using backpropagation (BP) can be find in [1]
and we omit the detail here.

4.3 The Learning Algorithm of VPOI
With the aforementioned update rules, the algorithm of

VPOI is summarized in Algorithm 1. In line 1, we first ini-
tialize the weights of VGG16 by the pre-trained weights on

Algorithm 1 An Optimization Algorithm of VPOI

Require: R, Pui for ui ∈ U , Plj for lj ∈ L
Ensure: Top-k POIs for each user
1: initialize VGG16 by using pretrained weights on Ima-

geNet
2: initialize U,V,P,Q
3: repeat
4: update U as U← U + η ∂J

∂U

5: update V as V← V + η ∂J
∂V

6: update P as P← P + η ∂J
∂P

7: update Q as Q← Q + η ∂J
∂Q

8: fine-tune CNN using backpropagation
9: until convergence

10: return the top-k POIs based on UTV

ImageNet1 for image classification. ImageNet is a very large
image dataset and contains 14,197,122 images with ground
truth. It is demonstrated that by initializing CNN using pre-
trained weights on ImageNet and then fine-tune CNN, we
can save computational costs of training and also be able to
train a good CNN [24]. In practice, we keep the earlier layers
fixed and only fine-tune the last few layers of VGG16. This
is motivated by the observation that the earlier features of a
ConvNet contain more generic features (e.g. edge detectors
or color blob detectors) that should be useful to many tasks,
but later layers of the ConvNet becomes progressively more
specific to the details of the original dataset and should be
fine-tuned for POI recommendation datasets. In line 2, we
randomly initialize U,V,P and Q. From line 3 to line 9, we
update the parameters until convergence. Finally, for each
user ui, we sort elements in uTi V in descending order and
recommend top-k un-visited POIs.

4.4 Time Complexity
Let’s first consider the time complexity of VGG16. Con-

volutional and fully connected layers are the most time con-
suming parts in VGG16, thus, we will focus on time com-
plexity of these two kinds of layers. Let fl be the number of
input channels of the l-th convolutional layer, nl be the num-
ber of filters/channels in the l-th convolutional layer, sl be
the spatial size of the filter and ml be the spatial size of the
output feature map. Then updating filter weights of the l-
th convolutional layer for one input costs O(fls

2
l nlm

2
l ) [12].

Note that for VGG16, the filter size is fixed with 3, i.e.,
sl = 3. Figure 2, the input image is 224x224x3 and first
convolutional feature map (first gray cubic) is 224x224x64,
thus we have f1 = 3, n1 = 64, ml = 224 and s1 = 3.
Similarly, consider the third convolutional layer (third gray
cubic), we have f3 = 128, n3 = 56, ml = 112 and s1 = 3.
Therefore, if we fix the first L-convolutional layers, and only
fine-tune weights of the last 13 − L layers then the cost
is O((r + 1)|P|

∑13
l=L+1(flnlm

2
l )) in each iteration, where

we have neglected s2l = 9. We don’t consider the cost
of the first L convolutional layers as they are fixed don’t
change during the learning process. The costs of updating
weights of the two fully connected layers in one iteration
are O((r+ 1)|P|m2

12n13d) and (r+ 1)|P|O(d2), respectively.
Now let’s focus on the time complexity of updating other
parameters. Considering the fact that R is very sparse, the
computational cost of U is mainly the computation of A,

1http://www.image-net.org/
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which is O((r + 1)Kd
∑n
i=1 |Pui |), where d is the dimen-

sion of the visual contents from CNN. Similarly, the cost
of updating V is O((r + 1)Kd

∑m
j=1 |Plj |). The cost of

updating P and Q are also O((r + 1)Kd
∑n
i=1 |Pui |) and

O((r + 1)Kd
∑m
j=1 |Plj |), respectively. Since

∑n
i=1 |Pui | ≤

|P| and
∑m
j=1 |Plj | ≤ |P|, the time complexity in each itera-

tion isO
(
(r+1)·|P|·[Kd+

∑13
l=L+1(flnlm

2
l )+d

2+m2
12n13d]

)
.

One thing to mention is that usually we only need to tune
the weights of last few layers, i.e., L = 10 or L = 11, and
the feature map in the last few layers are not large. Thus,
Kd+

∑13
l=L+1(flnlm

2
l ) + d2 +m2

12n13d is also not large sig-
nificantly.

5. EXPERIMENT
In this section, we conduct experiments to evaluate the

effectiveness of the proposed framework VPOI. Specifically,
we aim to answer the following three questions:

• Can the proposed framework VPOI improve POI rec-
ommendation performance by incorporating images?

• Is VPOI able to mitigate the cold-start problem for
POI recommendation by incorporating images? and

• Are visual contents extracted by CNN effective for
VPOI compared to other visual contents such as SIFT?

We begin by introducing the datasets and experimental set-
tings, then we compare VPOI with the state-of-the-art POI
recommendation systems to answer the first question and
we investigate the capability of VPOI in handling the cold-
start problem to answer the second question. We then use
different visual contents for VPOI to find out the effects of
visual contents. Finally, further experiments are conducted
to investigate the sensitivity of VPOI to the parameters.

5.1 Datasets and Experimental Settings
We collected two experimental datasets2, i.e. New York

City (NYC) and Chicago (CHI), from a real-world social
media site Instagram using Instagram API from Oct. 2015
to Feb. 2016. Instagram allows users to check in at a
physical location by posting images and associate the im-
age with geo-tags via his/her cellphone. We crawled the
check-ins of users along with the associated images. In ad-
dition, we also crawled images posted by users but not ex-
plicitly tagged with geo-tags. Following the common way [9],
we select check-in locations which have been visited by at
least two distinct users, and users who have checked in at
least 8 distinct locations. We also remove images that are
tagged with ”selfie”, which we checked manually and find
that the majority of images tagged with “selfie” don’t con-
tain enough information of POIs or user’s interests toward
POIs because human body/face takes up almost the whole
space of the image. Removing these images can reduce noisy
information and improve the performance. The statistics
of the final datasets are shown in Table 3. It is evident
from the statistics in the table that, both datasets are very
sparse, which may cause the data saprsity problem for POI-
recommendations; while images are very rich, which have
potentials to mitigate the data sparsity and cold-start prob-
lems.

2The datasets will be publicly available from the first au-
thor’s homepage

Two widely used evaluation metrics, i.e., precision@N
and recall@N are adopted to evaluate the recommendation
performance. In our experiment, N is set to 5 and 10, re-
spectively.

For each individual user in the check-in matrix, we ran-
domly select x% of all POIs that he has checked-in for train-
ing. The rest of the observed user-POI pairs are used as
testing. We also remove the images that are associated with
check-ins in the test data to ensure that no information of
the test data are exposed during the training process. To
investigate the capability of the proposed framework in han-
dling the data sparsity problem, we vary x as {20, 40} in
this work. The random selection is carried out 10 times in-
dependently. The average and standard deviation in terms
of precision@N and recall@N with N = 5, 10 are reported.

5.2 Performance Comparison of Recommender
Systems

To answer the first question, we compare the proposed
system with several representative systems. The compari-
son results are summarized in Table 1 and Table 2. The
representative systems in the table are defined as:

• UCF: User-based collaborative filtering is a state-of-
the-art approach for memory-based recommender sys-
tems. We adopt the user-based recommender [40] for
location recommendation. The interest from ui to lj is
predicted as an aggregation of check-in frequencies of
K most similar users of ui to pj . Visual information
is not considered.

• VUCF: Visual UCF is a variant of UCF, which uses
both visual contents and check-in frequencies to cal-
culate the similarity of two users. Then, the interest
from ui to lj is predicted as an aggregation of check-in
frequencies of K most similar users of ui to pj .

• NMF: Non-negative Matrix Factorization [15] is a pop-
ular method used for POI recommendation [9, 17]. It
decomposes user-POI check-in matrix into two non-
negative matrices and predict check-ins with the mul-
tiplication of these two matrices.

• PMF: Probabilistic matrix factorization [25] assumes
that user preference features and item latent features
follow the Guassian distribution. It is our basic lo-
cation recommendation model,as defined in Eq. (2),
without considering the images.

• VBPR: Visual Bayesian personalized ranking [14] in-
corporates visual contents to Bayesian personalized rank-
ing model. The visual contents are extracted from pre-
trained CNN without fine-tuning. These visual con-
tents are directly used as parts of descriptions of POIs
to predict preference scores of users w.r.t items. VBPR
is not specifically designed for POI recommendation
and doesn’t consider visual contents for users.

Parameters of all baseline methods are determined via
cross validation. For VPOI, we set α = 0.001, K = 10,
λ1 = λ2 = 1 and r = 5 through the experiments. We use
pre-trained VGG16 on ImageNet to initialize the weights3.
We also fine-tune the last three layers of VGG-16. More de-
tails about parameter selection for VPOI will be discussed

3download here: http://www.vlfeat.org/matconvnet/pretrained/
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Table 1: Performance comparison on NYC and CHI in terms of Precision@5 and Recall@5.

Dataset Metric UCF VUCF NMF PMF VBPR VPOI

NYC 20%
prec@5 0.0326±0.0025 0.0377±0.0031 0.0647±0.0034 0.0664±0.0009 0.0697±0.0013 0.0773±0.0011
recall@5 0.0197±0.0015 0.0251±0.0023 0.0391±0.0021 0.0401±0.0006 0.0421±0.0010 0.0467±0.0006

NYC 40%
prec@5 0.0440±0.0012 0.0473±0.0021 0.0512±0.0036 0.0509±0.0008 0.0547±0.0018 0.0618±0.0008
recall@5 0.0355±0.0010 0.0385±0.0018 0.0414±0.0029 0.0411±0.0006 0.0430±0.0015 0.0499±0.0006

CHI 20%
prec@5 0.043±0.0010 0.0502±0.0015 0.0925±0.0045 0.0911±0.0020 0.1045±0.0013 0.1126±0.0010
recall@5 0.0172±0.0004 0.0235±0.0014 0.0369±0.0018 0.0364±0.0055 0.0418±0.0005 0.0450±0.0004

CHI 40%
prec@5 0.0609±0.0050 0.0649±0.0034 0.0926±0.0023 0.0949±0.0044 0.0995±0.0016 0.1052±0.0014
recall@5 0.0324±0.0028 0.0359±0.0025 0.0493±0.0012 0.0505±0.0023 0.0529±0.0009 0.0560±0.0008

Table 2: Performance comparison on NYC and CHI in terms of Precision@10 and Recall@10.

Dataset Metric UCF VUCF NMF PMF VBPR VPOI

NYC 20%
prec@10 0.0288±0.0011 0.0348±0.0014 0.0538±0.0016 0.0558±0.0003 0.0571±0.0013 0.0606±0.0005
recall@10 0.0348±0.0013 0.0405±0.0017 0.065±0.0020 0.0675±0.0004 0.0690±0.0016 0.0732±0.0006

NYC 40%
prec@10 0.0318±0.0008 0.0367±0.0015 0.0435±0.0027 0.0422±0.0004 0.0439±0.0009 0.0472±0.0005
recall@10 0.0515±0.0012 0.0562±0.0013 0.0703±0.0043 0.0683±0.0006 0.0710±0.0012 0.0763±0.0007

CHI 20%
prec@10 0.0340±0.0005 0.0403±0.00011 0.0789±0.0026 0.0773±0.0090 0.0845±0.0012 0.0923±0.0011
recall@10 0.0272±0.0005 0.0332±0.0015 0.0631±0.0021 0.0618±0.0072 0.0675±0.0008 0.0738±0.0009

CHI 40%
prec@10 0.0424±0.0028 0.0475±0.0019 0.074±0.0013 0.0727±0.0048 0.0773±0.0005 0.0821±0.0008
recall@10 0.0451±0.0031 0.0502±0.0024 0.0787±0.0014 0.0774±0.0051 0.0823±0.0007 0.0874±0.0009

Table 3: Statistics of the Datasets.
Dataset NYC CHI

No. of users 9,893 9,062
No. of POIs 17,153 18,414

No. of check-ins 119,905 159,335
No. of images 464,358 538,830

Check-in Density 7.07× 10−4 9.55× 10−4

in the following subsections. From the results in the Table
1 and 2, we make the following observations:

• In general, matrix factorization based POI recommen-
dation systems outperform the user-oriented CF method
and this observation is consistent with that in [10].

• The proposed framework VPOI obtains better perfor-
mance than baseline methods based on matrix factor-
ization. We perform t-test on these results, which sug-
gests that the improvement is significant. These re-
sults indicate that incorporating visual contents can
improve the recommendation performance.

• Both UCF and VUCF are user-based collaborative fil-
tering, however, by considering visual contents for find-
ing K similar users, VUCF significantly outperforms
UCF. This is because the rating frequency matrix is
very sparse, and visual contents can provide comple-
mentary information to alleviate the data sparsity prob-
lem. This further demonstrates the effectiveness of
considering visual contents for POI recommendation.

• Though both VBPR and VPOI utilize visual contents
for recommendation, VPOI outperforms VBPR. The
differences between VBPR and VPOI include: (i) VBPR
only models images for POIs while VPOI considers
images for both users and POIs; (ii) Images from In-
stagram are noisy, which contains a lot of irrelevant
information w.r.t POIs. VBPR directly uses them as
descriptions of locations to predict preference scores
while VPOI uses them to help learn latent features
of users and POIs, which is more robust to noise as

it doesn’t directly influence the preference scores; (iii)
VBPR doesn’t fine-tune pre-trained CNN that is trained
for image classification, while VPOI fine-tunes CNN to
make the extracted features adoptive to POI recom-
mendation.

Via aforementioned analysis, we can draw an answer to the
first question – our framework VPOI can significantly im-
prove POI recommendation performance via incorporating
visual contents.

5.3 Capability of Handling Cold-Start Users
To answer the second question, we investigate the capabil-

ity of the proposed framework VPOI in handling cold-start
users. Note that for POI recommendation, a cold-start user
means a user who doesn’t have check-in history. Thus, a user
who only post photos without adding geo-tag are also con-
sidered as cold-start user as we lack check-in history of this
user. It is reported that less than 30% images are explicitly
tagged with POIs in Instagram[16], which is also consistent
with observations from our datasets. Thus, the ability of a
recommender system making recommendation for cold-start
users are important and necessary. In detail, for each indi-
vidual user, we first randomly select x% of all POIs that he
has checked-in for training. The rest of the observed user-
POI pairs are used as testing data. We then remove the
images that are associated with check-ins in the test data.
After that, we randomly select 5% users from the training
set and remove their check-ins from the training set. We
also remove images explicitly tagged with geo-locations that
are posted by these 5% users. In this way, these 5% users
don’t have any check-in history and don’t have any images
that are explicitly tagged with geo-locations; thus we consider
these users as cold-start users. These 5% users still have im-
ages that aren’t explicitly tagged with POIs, which can help
to reveal their interests and have potentials to mitigate the
cold-start problem. For those baseline methods that cannot
handle cold-start users, we randomly guess their check-ins
for cold-start users. The results with cold-start users are
summarized in Table 4 and Table 5. From the tables, we
make the following observations:

397



Table 4: Performance comparison on NYC and CHI with 5% cold-start users in terms of Precision@5 and
Recall@5. Note that numbers inside parentheses in the table denote the performance reductions compared
to the perforamnce without cold-start users in Table 1.

Dataset Metric UCF VUCF NMF PMF VBPR VPOI

NYC 20%
prec@5 0.0304(6.75%) 0.0358(5.03%) 0.0606(6.34%) 0.0623(6.17%) 0.0662(5.02%) 0.0754(2.46%)
recall@5 0.0184(6.60%) 0.0239(4.78%) 0.0366(6.39%) 0.0377(5.99%) 0.0400(4.99%) 0.0456(2.36%)

NYC 40%
prec@5 0.0419(4.77%) 0.0453(4.23%) 0.0485(5.27%) 0.0475(6.68%) 0.0511(6.58%) 0.0597(3.40%)
recall@5 0.0339(4.51%) 0.0369(4.16%) 0.0392(5.31%) 0.0384(6.57%) 0.0413(3.95%) 0.0483(3.21%)

CHI 20%
prec@5 0.0362(15.81%) 0.0457(8.96%) 0.0865(6.49%) 0.0859(5.71%) 0.0975(6.70%) 0.1098(2.49%)
recall@5 0.0144(16.28%) 0.0215(8.51%) 0.0345(6.50%) 0.0343(5.77%) 0.0390(6.70%) 0.0439(2.44%)

CHI 40%
prec@5 0.0582(4.43%) 0.0622(4.16%) 0.0887(4.21%) 0.0912(3.90%) 0.0948(4.72%) 0.1015(3.52%)
recall@5 0.0310(4.32%) 0.0344(4.18%) 0.0472(4.26%) 0.0485(3.96%) 0.0504(4.73%) 0.0540(3.57%)

Table 5: Performance comparison on NYC and CHI with 5% cold-start users in terms of Precision@10 and
Recall@10. Note that numbers inside parentheses in the table denote the performance reductions compared
to the performance without cold-start users in Table 2.

Dataset Metric UCF VUCF NMF PMF VBPR VPOI

NYC 20%
prec@10 0.0264(8.33%) 0.0324(6.89%) 0.0506(5.95%) 0.0529(5.20%) 0.0542(5.08%) 0.0589(2.81%)
recall@10 0.0318(8.62%) 0.0376(7.16%) 0.0612(5.85%) 0.0639(5.33%) 0.0655(5.07%) 0.0712(273%)

NYC 40%
prec@10 0.0301(5.35%) 0.0349(4.90%) 0.041(5.75%) 0.0391(7.35%) 0.0422(3.87%) 0.0456(3.39%)
recall@10 0.0487(5.44%) 0.0534(4.98%) 0.0662(5.83%) 0.0632(7.47%) 0.0682(3.94%) 0.0737(3.41%)

CHI 20%
prec@10 0.0306(10.00%) 0.0367(8.93%) 0.0709(10.14%) 0.0686(11.25%) 0.0817(3.31%) 0.0898(2.71%)
recall@10 0.0244(10.29%) 0.0301(9.34%) 0.0567(10.14%) 0.0549(11.17%) 0.0654(3.11%) 0.0718(2.71%)

CHI 40%
prec@10 0.0404(4.72%) 0.0454(4.42%) 0.0703(5.00%) 0.069(5.09%) 0.0741(4.14%) 0.0793(3.41%)
recall@10 0.0430(4.66%) 0.0480(4.38%) 0.0748(4.96%) 0.0734(5.17%) 0.0789(4.13%) 0.0844(3.43%)

• The performance of all methods degenerates when we
introduce cold-start users. For example, the perfor-
mance for PMF decreases up to 11.25% in terms of
precision@10 on CHI 20%.

• The performance reduction of VUCF is smaller than
UCF. This is because for VUCF, we can use visual con-
tents to find K most similar users for cold-start users;
while for UCF, since we are lack of visiting histories
of cold-start users, we cannot do prediction for these
users.

• Compared to the other methods, the performance re-
duction of VBPR and the proposed framework VPOI
are much smaller and the performance degeneration of
VPOI is smaller than VBPR. As aforementioned, the
proposed framework can learn user latent factors for
cold-start users. These results support that the pro-
posed framework can mitigate the cold-start problem
for POI recommendations.

In summary, the introduction of cold-start users could de-
grade POI recommendation performance and the proposed
framework is more robust to cold-start users by incorporat-
ing visual contents.

5.4 Effects of Different Visual Contents on VPOI
To answer the third question, we conduct POI recommen-

dation using VPOI with other traditional visual contents,
i.e., SIFT [20] and HOG [7], which are two popular manu-
ally crafted visual descriptors before the emergence of deep
CNN features. To get the features, we first re-size the input
image to 224x224x3 so that each image has the same size.
We then use VLFEAT 4, a visual feature extraction toolbox,
to extract SIFT and HOG features for each image. For each
kind of visual contents, we fix the parameter of VPOI as

4http://www.vlfeat.org/

 
 
 

(a) NYC 40%
 

 
 (b) CHI 40%

Figure 4: Performance of VPOI with Different Vi-
sual Contents.

α = 0.001,K = 10, λ1 = λ2 = 1 and r = 5. The POI recom-
mendation perform of VPOI with different visual contents
in terms of precision@5 and recall@5 are reported in Figure
4. From the figure, we observe that:

• Compared with PMF in Table 4, VPOI with SIFT,
HOG or CNN features all outperforms PMF, which
implies that visual contents do provide complementary
information for POI recommendation.

• CNN visual contents outperforms SIFT and HOG, which
is because CNN is pretrained on ImageNet which is
able to extract high-level discriminative features, while
SIFT and HOG are manually crafted low-level features
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Figure 5: Parameter Sensitivity of VPOI w.r.t to α
and r.

which are not so discriminative. However, by combing
both CNN and HOG features, we notice that the per-
formance improves a little bit, which implies that high
level and low level features together can give better
result.

5.5 Parameter Sensitivity
The proposed framework has two important parameters,

α and r, where α controls the contribution of images in
learning the latent features of users and POIs, and r con-
trols the accuracy of Eq.(8) and (9) in approximating Eq.(3)
and Eq.(4). In this section, we investigate the impact of the
parameters α and r on the performance of VPOI. We only
show results on NYC and CHI with 40% without cold-start
users since we have similar observations with other exper-
imental settings. We empirically set the latent dimension
K = 10, the regularization parameters λ1 = λ2 = 1. We
vary the values of α as {0.0001, 0.001, 0.01, 0.1, 1} and r as
{1, 3, 5, 10}. The results are shown in Figure 5. It can be
observed from the figure:

• When we set α = 0, the proposed framework VPOI
boils down to PMF. When we increase α, we incorpo-
rate visual contents for learning the latent features of
users and POIs. In most cases, the proposed frame-
work VPOI with α = 0.0001 and r = 1 obtains much
better performance than PMF. These results demon-
strate the effectiveness of images for POI recommen-
dation.

• Generally, with the increment of α, the performance
tends to first increase and then decrease. The perfor-
mance is relatively stable at certain region, which ease
the parameter selection for VPOI in practice.

• As r increases from 1 to 10, the performance increases
and then become stable, which is consistent with the
observation in [22]. This suggests that a large value of
r can achieve better performance; while large r means
more computational cost. Thus, there’s trade-off be-
tween computational cost and recommendation perfor-
mance.

6. CONCLUSION
In this paper, we investigate visual contents to advance

traditional POI recommender systems. To effectively uti-
lizes visual contents, we use CNN to extract features from
images and use it to guide the learning process of latent
user and POI features, which leads to a novel framework
VPOI. Experimental results show that the proposed frame-
work outperforms representative state-of-the-art POI rec-
ommender systems. Further experiments are conducted to
demonstrate the capability of the proposed framework in
mitigating the cold-start problem for recommendation by
incorporating images.

There are several directions needing further investigation.
First, the proposed VPOI is a flexible framework that is
easy to incorporate geographical influence, social correla-
tions, temporal patterns and textual content indications.
Thus, we would like to incorporate these factors to see if
they can give better performance together with visual con-
tents. For example, social dimensions [27], which captures
the affliction of users to different groups, may help to cap-
ture the common preferences of users in the same group for
POI recommendation. Second, as user check-in records are
streaming data, another direction is to extend VPOI using
streaming recommender system techniques [2, 3].
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