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Abstract. In recent years, brain network analysis has attracted considerable in-
terests in the field of neuroimaging analysis. It plays a vital role in understanding
biologically fundamental mechanisms of human brains. As the upward trend of
multi-source in neuroimaging data collection, effective learning from the differ-
ent types of data sources, e.g. multimodal and longitudinal data, is much in de-
mand. In this paper, we propose a general coupling framework, the multimodal
neuroimaging network fusion with longitudinal couplings (MMLC), to learn the
latent representations of brain networks. Specifically, we jointly factorize multi-
modal networks, assuming a linear relationship to couple network variance across
time. Experimental results on two large datasets demonstrate the effectiveness of
the proposed framework. The new approach integrates information from longi-
tudinal, multimodal neuroimaging data and boosts statistical power to predict
psychometric evaluation measures.
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1 Introduction

It is widely accepted that brain has one of the most complex networks known to man.
One of the modern approaches in neuroscience is considering the brain regional inter-
actions as a graph network, referred to as brain connectome or brain network [7]. By
learning network properties, researchers could draw a broad picture about how the brain
controls and regulates information through the orderly transfer of neural signals within
brain regions [9]. However, effectively learning features from few noisy brain networks
is difficult. It is a common belief that the exploitation of auxiliary and complementary
information from the multimodal and longitudinal data would be highly beneficial to
improve the effectiveness of brain network analysis.

In practice, brain networks can be analyzed from two perspectives, i.e., multimodal
and longitudinal. For multimodal data, functional magnetic resonance imaging (fM-
RI) and diffusion tensor imaging (DTI) are the most widely used modalities which
could yield complementary information of brain networks. Several studies proposed
the linear [1] or non-linear [10] multimodal integration approaches for brain network
analysis, which significantly improve the detection power of brain structural or mental
changes. On the other hand, the longitudinal analysis of brain network portrays progres-
sive changes in brain functional activities or anatomical architectures. For example, as
a supplement to baseline analysis, the longitudinal study of age-related changes in the
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Fig. 1: The proposed MMLC framework. Three levels of information couplings are
considered: the cross-sectional coupling (Population), the longitudinal coupling (Multi-
scan) and the multimodal coupling (Multi-modality).

topological organization of structural brain networks effectively explored new patterns
of normal aging [15]. It worth noting that the multimodal and longitudinal studies are
also inherently related. However, existing works on brain networks usually only consid-
er one perspective of brain networks. It remains a major challenge to achieve multilevel
fusion of neuroimages by exploiting these two different types of brain networks.

In this paper, we aim to empower the longitudinal multimodal neuroimaging da-
ta fusion with brain network representation learning. We develop a theoretical mod-
el (MMLC) which achieves multimodal and longitudinal coupling simultaneously. It
bases on two assumptions: 1) both functional and structural networks reflect the re-
gional interactions inside the brain. Thus they should share a similar basis in network
topology; 2) the longitudinal changes should relate to the previous as well as the next
brain stages. To the best of our knowledge, it is the first work that fuses multimodal
and longitudinal brain networks simultaneously. We expect such data fusion model will
significantly improve the statistical power of brain network analysis.

2 Brian Network Representation Learning

Our brain network fusion framework is presented in Fig. 1, which consists of three
coupling components: cross-sectional, multimodal and longitudinal couplings.

2.1 Modeling Cross-Sectional Coupling

It is natural to couple subjects in a population to achieve the individual and group prop-
erties. In the cross-sectional coupling, we use the consensus matrix to model group
properties. We defined a graph g = (V,X) for the individual brain network, where V is
the set of all n brain regions and X is the connectivity matrix which records the connec-
tivity strength between pairs of the regions. For each subject, we have two connectivity
matrices, Xf and Xd, for functional and structural network respectively. For the whole
dataset, suppose we have N subjects and each subject was scanned T times, we have
a set of functional and structural connectivity matrices, {Xf

i,j , X
d
i,j |i = 1, ..., N, j =

1, ..., T}. We conduct network embedding with matrix factorization to map the graph
data into a lower dimensional latent space. Xi,j ≈ Ui,jV

T
i,j and V T

i,j ∈ RN×P will be
the new representation of network in the latent P -dimensional space. To look for the
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consistent patterns among a population of subjects, we adopt the concept of consensus
matrix. If subjects are from the same group, it is natural to hypothesize that it has the
similar representations in all graph matrix but only differ on new basis matrix (Ui,·).
Hence, Vi,· should be the target to measure disagreement of the network patterns. Here,
we introduce a new variable V ∗ ∈ RN×P named the consensus matrix of Vi,· and the
following loss function to couple the network representations within a group of items,∑N

i=1 ∥ Vi,· − V ∗ ∥2F . Note that all Vi,· are at the same scale because entries of all
the original network matrix Xi,· locate within the range of [−1, 1]. Even though the
general factorization problem might exist multiple solutions due to the uncertainty of
basis matrix, the inter-subjects coupling problem described as below is solvable with
the added consensus matrix term and assumption that Xi is within the same range.

min
Ui,·;Vi,·

N∑
i=1

∥ Xi,· − Ui,·V
T
i,· ∥2F +λ ∥ Vi,· − V ∗ ∥2F . (1)

2.2 Modeling Multimodal Coupling

The structural network builds the anatomical foundations of the functional network.
Therefore, there should be the topological similarities between them. Here, we share
the basis matrix in Eq. 1 across modality. In this study, we chose a newly proposed
brain atlas which has 246 brain regions and reflects both functional and structural con-
nectivity patterns [4]. Ideally, the brain network created from fine-grained atlas contains
more details of the regional interaction [16]. After matrix factorization, we get two new
network representations for each subject i as V f

i,· and V d
i,· with the corresponding basis

matrices Uf
i,· and Ud

i,·. We hypothesize that there are quite significant similarities be-
tween those two kinds of networks that can be interpreted with specific presentations
in latent space. In other words, given a subject i, the functional and structural networks
share the same basis matrix Uf

i,· = Ud
i,· = Ui,·. Though the similarities of multimodal

brain networks might be deciphered as the linear or non-linear relationships, we only
focus on the linear relationship in this study. For future study, we could model the non-
linear relationship with the high-order of basis matrix. Eventually, together with the
inter-subject coupling model, we propose the multi-modality coupling model as below:

min
Ui,·;Vi,·

N∑
i=1

∥ Xf
i,· − Ui,·(V

f
i,·)

T ∥2F +α ∥ Xd
i,· − Ui,·(V

d
i,·)

T ∥2F

+ λ1 ∥ V f
i,· − V f∗ ∥2F +λ1 ∥ V d

i,· − V d∗ ∥2F .

(2)

2.3 Modeling Longitudinal Coupling

In the longitudinal coupling, we track how the brain evolves over time. We model the
smooth variation of brain networks as a Procrustes problem which maps the consensus
matrix to a same effect space [8]. First, we improve the model by adding an orthog-
onality constraint (V d∗

· )TV d∗
· = I to the consensus matrix in the structural network.

The matrix factorization with orthogonality constraint plays a similar role as the clus-
tering [12] which is consistent with the subgraph organization in human brain networks.
After adding the orthogonality constraint in every time point, we further model the re-
lationships between each consecutive pairs of consensus matrix. Suppose we have two
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consensus matrixes V d∗
j and V d∗

j+1 from two consecutive time points j and j + 1. Due
to the relative stability of structural network within subject, we expect that V d∗

j shares
a rotation relationship with V d∗

j+1, i.e. V d∗
j = Rj,j+1V

d∗
j+1. Rj,j+1 ∈ Rn×n is a rotation

matrix thus det(Rj,j+1) = 1 and Rj+1,j = R−1
j,j+1 = RT

j,j+1. As (V d∗
j )TV d∗

j =
I is satisfied for all j, taking the rotation relationship into such orthogonality, we
could construct a new symmetric matrix, M̃j+1,j = Rj+1,jV

d∗
j+1(V

d∗
j+1)

TRT
j+1,j , that

(V d∗
j )T M̃j+1,jV

d∗
j = I . Then we merge the consecutive relations from time j to j + 1

of V d∗
j into a single time variable j as Mj = (M̃j−1,j + M̃j+1,j)/2. The constraint,

(V d∗
j )T M̃j+1,jV

d∗
j = I , is called the generalized Stiefel constraint [2] with the mass

matrix Mi,j . In this paper, we applied an optimization algorithm involves the Stiefel
manifold based on the Cayley transform for preserving the constraints [6].

2.4 The Proposed Model - MMLC

Now let’s reformulate the problem for all N subjects and T time points. The multimodal
brain network fusion with longitudinal coupling framework is to solve the problem of
minimizing the following objective function, L, with the corresponding constraint:

min
U,V f ,V d,

V f∗,V d∗

N∑
i=1

T∑
j=1

∥ Xf
i,j − Ui,j(V

f
i,j)

T ∥2F +α ∥ Xd
i,j − Ui,j(V

d
i,j)

T ∥2F

+ λ1 ∥ V f
i,j − V f∗

j ∥2F +λ1 ∥ V d
i,j − V d∗

j ∥2F +λ2G

s.t. (V d∗
j )TMi,jV

d∗
j = I

(3)

where G =∥ Ui,j ∥2F + ∥ V f
i,j ∥2F + ∥ V d

i,j ∥2F + ∥ V f∗
j ∥2F + ∥ V d∗

j ∥2F is the
regularization term to prevent overfitting.

3 An Optimization Framework for MMLC

The problem proposed in Eq. 3 is a non-convex problem which is difficult to optimize
directly. To estimate the optimal, we propose an iterative update procedure together
with a Stochastic block coordinate descent algorithm.

Fixing V f∗
j and V d∗

j , minimize L over Ui,j, V
f
i,j and V d

i,j . For brevity in this

subsection, we use U, V f , V d, V f∗ and V d∗ to represent Ui,j , V
f
i,j , V

d
i,j , V

f∗
j and V d∗

j .
First, we fix V f and V d to update U . For a given subject i and time point j, we could
take the derivative of L with respect to U .

∂L

∂U
=2(U(V f )TV f −XfV f ) + 2α(U(V d)TV d −XdV d)) + λ2G

′
(U). (4)

Here, G
′
(U) is the derivative of U with respect to U . Given a step size l, we update U

as Unew = Upre − l ∗ ∂L1

∂Upre
. Then, we fix V d and U to update V f . The gradient of L

with respect to V f is:

∂L

∂V f
=2(V fUTU −XfU) + 2λ1(V

f − V f∗) + λ2G
′
(V f ). (5)
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Similarly, we update V d with the same procedure as V f ,

∂L

∂V d
=2α(V d(U)TU −XdU) + 2λ1(V

d − V d∗) + λ2G
′
(V d). (6)

Fixing Ui,j, V
f
i,j and V d

i,j , minimize L over V f∗
j and V d∗

j . For brevity, we use

V f
i , V d

i , V
f∗ and V d∗ to represent V f

i,j , V
d
i,j , V

f∗
j and V d∗

j . We observe that for each
time j, the framework will generate a group-wise V f∗

j and V d∗
j . After updating all

individual Ui, V
f
i and V d

i , we could take the derivative of L with respect to V f∗.

∂L

∂V f∗ = 2λ1

N∑
i=1

(V f∗ − V f
i ) + λ2G

′
(V f∗). (7)

For V d∗, an equality constraint (V d∗)TMV d∗ = I will regulate the gradient direc-
tion of L with respect to V d∗, which makes the solution difficult. Instead of directly
finding an optimal direction with gradient descent on the surface described by original
object function, we construct the descent curves on the constraint-based Stiefel man-
ifold [6]. Specifically, V d∗ will be divided into two submatrixes V d∗ = [V d∗

1 ;V d∗
2 ],

where V d∗
1 ∈ Rs×p is the free variable to be solved and V d∗

2 ∈ R(n−s)×p is the fixed
variable treated as constants. Then we rearrange the constraint as:[

V d∗
1

V d∗
2

]T [
M11 M12

MT
12 M22

] [
V d∗
1

V d∗
2

]
= I. (8)

It is easy to conclude that M11 is a full rank positive definite matrix. Then a de-
scent curve based on the previous V d∗ will be constructed and it starts at the point
Ps = V d∗

1 + M
− 1

2
11 M12V

d∗
2 which is the initial point for the line search on the gener-

alized Stiefel manifold. Given the descending gradient −L
′
(P ) = − ∂L

∂V d∗ ◦ ∂V d∗

∂P at
point P , we further project −L

′
(P ) onto the tangent space of the Stiefel manifold by

constructing a skew-symmetric matrix A = L
′
(P )PT

s − PsL
′
(P )T . This will lead to a

curve function Y (τ) by the Crank-Nicolson-like design as in paper [14].

Y (τ) = (I +
τ

2
AM11)

−1(I − τ

2
AM11)Ps. (9)

The above function gives a linear search procedure of updating point P by Pnew =
Y (τ) for small τ which results sufficient decrease in L2. Finally, the next feasible V d∗

new

will be given as:

V d∗
new(P ) =

[
P −M

− 1
2

11 M12V
d∗
2

V d∗
2

]
. (10)

4 Experiment

4.1 Experimental Settings and Baseline Methods

In this paper, we use two datasets to test the effectiveness of the proposed method in pre-
dicting anxiety and depression scores, respectively. They are all from the SLIM Repos-
itory (Southwest University Longitudinal Imaging Multimodal Brain Data) 1. Dataset1

1 http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
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contains 105 healthy subjects and the trait anxiety score (TAIs) based on the State Trait
Anxiety Inventory (STAI) was set as the predicted variables. Dataset2 includes 77 sub-
jects with the assessment of ATQ (Automatic Thoughts Questionnaire) self-report mea-
sures which reflect mental states associated with depression and was the predicted vari-
ables in this trial. All subjects in two datasets are right-handed college students with the
close age gaps and similar education level. We preprocessed fMRI data by using AFNI
software2 and using FSL3 for DTI data. Then we construct the functional and structural
networks with brain connectivity toolbox4. The gap between each pair of consecutive
imaging scans is 1.5 years and 3 scans per person are collected. We aim to predict the
score of anxiety and depression, which is a regression task. To evaluate the regression
performance, we adopt the two wildly used evaluation metrics, i.e., root mean square
error (RMSE) and mean absolute error (MAE).

We compare the performance of MMLC with representative and state-of-the-art
brain network representation learning algorithms as follows: MFCSMC: the collective
matrix factorization [13] on multiple modalities with the cross-sectional coupling; Ei-
gLC [5]: a state-of-the-art method which models the longitudinal coupling on a single
modality, i.e., structural networks; sMFLC: a variant of EigLC by removing the terms
concerning functional networks in our model and remaining the matrix factorization
(MF) with longitudinal coupling of structural networks; MFCSLC: MF with cross-
sectional and Longitudinal coupling without sharing the basis matrix U . It is a variant
of MMLC. Subject i will obtain his new feature set [V f

i,j , V
d
i,j ] at time point j as the

new representation of his original network graphs. We feed the vectorized features and
the corresponding scores into a linear regression model for training by using LIBSVM
toolbox [3]. In this experiment, each time we randomly pick 70% subjects as the train-
ing set and test on the rest. We repeat this process 30 times and the average performance
and standard deviation are reported.

4.2 Results

We present the regression performance of our proposed model as opposite to other com-
pared methods in Table 1. We set α = 1, λ1 = 20 for Dataset 1 and α = 5, λ1 = 20
for Dataset 2 according to the cross validation and empirically chose λ2 to be 0.1 and
dimension of the new feature space P = 10. From Table 1, we see that our proposed
model outperforms other methods in two datasets. For example, sMFLC, the single
modality version of our proposed model with longitudinal coupling have better perfor-
mance than EigLC significantly. The difference of regression performance between the
full coupling and partial coupling of multimodal or longitudinal fusions is small but
significant. For example, in Dataset 2, the result of the partial coupling of brain net-
works in the multimodal fusion (MFCSMC) has the higher value of MAE (p < 0.0006,
two-sample t-test) and RMSE (p < 0.153) than MMLC. Besides, MMLC outperforms
MFCSLC which contains only longitudinal coupling in two datasets. In all, MMLC has
the smallest MAE and RMSE values together with the relatively low variance compared
with other testing methods in our experiments.

2 https://afni.nimh.nih.gov/afni/doc/program_help/
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
4 https://sites.google.com/site/bctnet/
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Table 1: Regression Performance on Anxiety and Depression
Datasets

Methods
Dataset 1 (Anxiety) Dataset 2 (Depression)

MAE RMSE MAE RMSE
EigLC 3.401± 0.931 5.037± 1.464 3.536± 0.729 5.227± 0.886

sMFLC 2.329± 0.135 4.422± 0.770 1.872± 0.556 3.117± 1.405

MFCSLC 2.225± 0.185 4.223± 1.120 1.788± 0.092 3.050± 0.504

MFCSMC 2.285± 0.151 4.340± 0.918 1.741± 0.080 2.924± 0.392

MMLC 2.173±0.098* 4.015±0.751* 1.672±0.067* 2.773±0.416*
* Significant with p < 0.05, two-sample t-test of MMLC with the other
methods.

The proposed framework has two important parameters, i.e., α controling the con-
tribution of multimodal and λ1 controling cross-sectional coupling. In this section, we
evaluate the affects of α and λ1 on MMLC. Specifically, we vary α as {0.5, 1, 5, 10, 20}
and λ1 as {1, 10, 20, 30, 40}. The results in terms of MAE and RMSE are shown in Fig-
ure 2 and Figure 3. From the figure, we observe that: (i) In Dataset 1, both MAE and
RMSE value reach the relatively lowest points when α = 1. Then, there is a tendency
that MAE and RMSE increases along with the increase of α. In Dataset 2, the variation
of MAE and RMSE is more apparent when α increases to a higher value, e.g., α > 10
and meanwhile the prediction performance has a significant drop. (ii) Moreover, when
λ1 = 20, our framework has the relatively best performance in both datasets. In this ex-
periment, we observe the different optimal parameter settings on tasks from two differ-
ent domains, i.e., anxiety and depression. This is consistent with the previous discovery
in brain networks that the distinct roles of functional and structural connectivities shift
in different cognition tasks [11].
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5 Conclusion and Future Works

This paper describes a novel network fusion framework which simultaneously con-
siders multiple levels of information such as relationships between brain functional



8 Zhang et al.

and structural organizations and longitudinal brain development. We test our proposed
framework with two large cohorts and experimental results demonstrate the effective-
ness of the generated network representations for prediction of cognitive status. There
are several interesting directions that are warranted for further investigation. For exam-
ple, in the future, we could add the non-linear relationship of multimodal networks to
our framework or investigate subnetwork patterns that can be derived from the learned
network representations.
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