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ABSTRACT The accurate and timely estimation of river discharge plays an important role in hydrological
modeling, especially for avoiding the consequences of flood events. The majority of existing work on
hydrologic prediction focuses on modeling the inherent physical process for specific river basins, while the
geographic-connections between rivers are largely ignored. Geographically connected rivers provide rich
spatial information that can be used to predict discharge amounts. In this paper, we study a novel problem
of exploiting both temporal patterns and spatial connections for hydrological prediction. We construct three
relationship graphs for hydrological gauges in the study area: the hydraulic distance graph, the Euclidean
distance graph and the correlation graph. We fuse these graphs into one hydrological network graph, and
propose a novel framework ST-Hydro which exploits Graph Convolutional Networks (GCN) for learning the
spatial feature representations, and Recurrent Neural Networks with carefully designed activation functions
for capturing temporal features simultaneously for hydrological prediction. Experimental results on real
world data set demonstrate that the proposed framework can predict the river discharge effectively and at an

early stage.

INDEX TERMS Hydrologic prediction, spatial and temporal modeling, graph convolutional networks.

I. INTRODUCTION

With global warming, changeable weather and frequent
extreme precipitation events in recent years, flood events
have occurred more frequently and drastic than usual. For
example, it is reported that the Midwestern United States has
been experiencing major floods since mid-March 2019, and
nearly 14 million people have been affected by the flooding.'
To mitigate the detrimental effects caused by flood disas-
ters, hydrologic prediction becomes particularly important.
Hydrologic prediction is to forecast the hydrological infor-
mation (e.g., runoff, water level) in a certain period of time
(e.g., few hours) in the future according to the hydrological
and meteorological data in the early stage. It can provide a
basis for decision-making in flood control and disaster relief,
and is important for the rational utilization of water resources.

The associate editor coordinating the review of this manuscript and
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Therefore, it is critical to predict hydrological events effec-
tively and timely to help hydrologists for decision making.
The majority of existing methods fall into three types:
conceptual model, physical model and data-driven model.
The conceptual model is based on the physical concept and
empirical formula of hydrological phenomena, and the phys-
ical model is based on the physical process. They can predict
hydrological events for specific rivers. But these models may
need a large number of hydrologic parameters, and can not
be easily adapted to other water basins. Specifically, since
the parameters of the physical process in different basins
are quite disparate, and the parameters and even the struc-
ture of physical-based models may need to be significantly
modified. Therefore, recently the data-driven hydrologic pre-
diction model has gained increasing attention for predict-
ing hydrological events. For example, Hwang et al. [24]
proposed an improved support vector machine method
for nonlinear hydrological time series prediction with bet-
ter prediction accuracy and prediction performance, and
Kratzert et al. [27] proposed a new Rainfall-Runoff
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Model using Long Short-Term Memory (LSTM) networks.
However, most of the existing data-driven models focus on
the learning the temporal characteristics from historical data.

In fact, hydrological data has rich spatial information.
For example, the upstream of a river can directly affect the
runoff of the downstream, and the two nearby rivers are
likely to have similar rainfall processes, which results in
similar changes in runoff. The spatial relationships across
rivers provide important signals and have great potential to
advance the hydrological prediction performance [10], [37].
However, most of the current data-driven hydrological
forecasting methods focus on modeling the temporal pat-
terns, without considering the rich spatial characteristics.
In essence,we investigate: (1) How to build a hydrological
topology map and mine spatial information; (2) How to com-
bine temporal features with spatial features to improve pre-
diction accuracy. The solution to these challenges results in a
novel framework ST-Hydro, which incorporates Graph Con-
volutional Networks (GCN) for learning the Spatial feature
representations and Recurrent Neural Networks with care-
fully designed activation functions for capturing Temporal
features simultaneously for Hdrologic prediction. The con-
tributions are as follows:

« We study a novel problem of exploiting both spatial
and temporal information for data-driven hydrological
prediction;

« We propose a principled way to jointly learn spatial
features with Multi-Graph Convolutional Networks and
capture temporal features with an adaptive Gated Recur-
rent Unit for hydrological prediction;

« We conduct extensive experiments on real world datasets
to demonstrate the effectiveness and timeliness of the
proposed model.

The paper is organized as follows. Section 2 reviews the
related research about hydrological prediction and the appli-
cations of GCN. Section 3 introduces the details of the model.
In section 4, we compare the performance of our model with
that of other prediction models. Section 5 concludes the paper
and describes the future work.

Il. RELATED WORK

In this section, we briefly discuss the related work on:
(1) hydrologic prediction; and (2) graph neural networks for
temporal modeling.

A. HYDROLOGIC PREDICTION

The existing hydrological models are mainly divided into
conceptual model, physical model and data-driven model.
The conceptual model is based on the physical concept of
hydrological phenomena and some formulas, such as the
Xin’anjiang model [6] and the HBV model [31]. The physical
model is based on the laws of conservation of mass and
energy in physics, as well as the characteristics of runoff
generation and concentration, to construct a set of hydrody-
namic equations to simulate the changes of time and space
and calculate them, such as the SHE model [11] and the
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SWAT model [1]. The data-driven model uses some methods
to deduce the response function according to the input and
output data. It produces the corresponding output results for
some input data through empirical analysis, such as the ANN
model [25]. Many hydrologic models are often designed for
specific water basins and may not be easily adapted to other
watersheds. The parameters used between different basins
are quite different and not universal. When the same kind of
model is applied in different watersheds, the model param-
eters and even the model structure may need to be greatly
modified [7], [22]. In addition, hydrological time series-based
prediction methods that analyze the laws in historical hydro-
logical data and predict future trends have been developed for
hydrologic forecasting recently. Compared with other hydro-
logical models, data-driven models can make up for some
shortcomings of physical model and conceptual model. For
example, after training, a data-driven model can be applied
to other basins without a lot of parameter adjustment. In the
data age, data-driven models are becoming more and more
popular [32], [38].

Yule [46] established an autoregressive (AR) model to lay
the foundation for a time series model. Nowak et al. [33] first
used the AR model to predict runoff. Yu et al. [44] combined
chaos theory with SVM and applied it to chaotic time series
analysis with large sample data records. Hwang et al. [24]
proposed a least squares support vector machine (LS-SVM)
method for nonlinear hydrological time series prediction
with better prediction accuracy and prediction performance.
Xing et al. [41] proposed a new heuristic optimization algo-
rithm, BA algorithm, which is used to optimize SVM param-
eters and predict monthly average traffic in 2015. Compared
with cross-validated support vector machines, the accuracy is
improved. Li et al. [30]proposed an SVM flood forecasting
model based on kernel principal component analysis(KPCA)
and boosting algorithm. The nonlinear KPCA is applied to
extract the useful information from historical flood data.
Experiments show that the proposed SVM ensemble model
based on KPCA and boosting learning can improve the
flood forecasting accuracy effectively. Atiquzzaman and
Kandasamy [4] [5] proposed a fast prediction method of
hydrological time series by using the limit learning machine
(ELM), aiming at the uncertainty of traditional gradient
based slow learning algorithm in training and iteratively
determining network parameters. Based on the basic principle
of flooding formation, Chen et al. [13] proposed a data-driven
hydrology forecasting model, Convolution Regression based
on Machine Learning. This model could reflect the impact
of hourly rainfall on the future flow changes and the flow
changes are predicted by superimposing these impacts.

B. GRAPH CONVOLUTIONAL NETWORKS FOR TEMPORAL
PREDICTION

Convolutional Neural Networks (CNN) [28] is a type of
feedforward neural network that includes convolution calcu-
lations and has a deep structure. It is one of the representative
algorithms of deep learning [21]. However, there are many
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graph structure or network structure data in the real world,
which are difficult to deal with by traditional Convolutional
Neural Networks(CNN). In 2017, Thomas N. Kipf proposed
a semi supervised classification with graph structural net-
work [26], which can process graph structure. Recently,
Graph Convolutional Networks(GCN) is widely used in
various domains such as social networks and information
networks for feature learning [16]. GCN is mainly used in
unstructured data such as social networks and information
networks to extract features for learning. However, few peo-
ple use GCN in temporal dependence data. For example,
Yan et al. [42] proposed the spatiotemporal convolution
network model ST-GCN, it solves the problem of human
motion recognition which is based on the key points of
the human skeleton. This model is built on the skeleton
map sequence and each node corresponds to a joint of the
human body. There are two sides, one is the spatial edge,
the other is the temporal edge. Average the eigenvectors of
all nodes in the neighborhood, and then calculate the inner
product with the parameter vectors of convolution kernel.
Chai et al. [12] used the inbound and outbound flows before
t time to predict the inbound and outbound flows at ¢ time.
This paper constructs a variety of spatial relationships, and
obtains the prediction effect by constructing multiple maps.
But the structure of encoder decoder is limited, and the
dimension of input and output is fixed. Zhao et al. [48]
proposed a temporary graph revolutionary network, which
combines GCN and Gated Recurrent Unit(GRU) to predict
traffic information. Kim et al. [36] considered the spatial
and temporal influence, and the influence of global variables,
such as weather and weekday/weekend to reflect non-station-
level changes. And then used graph convolutional network to
predict bike demands. They obtain the time and space depen-
dence from the T-GCN, and predict the vehicle speed in future
one hour.

Spatial features are also used for processing in many
aspects in hydrology (such as hydrological similarity anal-
ysis [49]). In this paper, we construct a novel hydrological
topological structure, and use improved GCN to mine the
spatial characteristics, improved GRU to mine the time char-
acteristics, and further perform hydrologic prediction.

lll. METHODOLOGY

In this section, we present the details of the proposed frame-
work ST-Hydro for hydrological prediction, which mainly
consists of three components (see Figure 1): (1) a spatial
feature learning component; (2) a temporal feature learning
component; and (3) a hydrological prediction component.

A. MODELING SPATIAL FEATURES

In hydrology, since hydrological process has a great rela-
tionship with geographical location and spatial features,
it is important to capture spatial dependence between rivers.
In this section, we establish the hydrological topology graph
and use GCN to mine spatial features.
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FIGURE 1. The proposed framework ST-Hydro for hydrological prediction
consists of three components including a spatial feature learning module,
a temporal feature learning module, and a hydrological prediction
module.

1) HYDROLOGICAL TOPOLOGY GRAPH GENERATION

Graph generation is an important first step for training graph
convolutional network model. If the graph can not reflect the
relationship between nodes well, the model will not mine
information effectively. The hydrological topology graph G is
represented as a weighted graph, whose nodes are stations and
edges are the geographical relationships between stations.
We use G = (V, E) to describe the topological structure of
the hydrological network, where V is a set of station nodes,
V = {vi,va, -, vy}, N is the number of the stations, and
E is aset of edges. The weights of edges represent the strength
of relationship between stations.

From the hydrological point of view, if a gauge is down-
stream to another gauge in the same river, the similarity of
the flow at these two gauges will be high because of their
hydraulic connections [34], [40]. However, if two gauges are
in different catchments without hydraulic connections (For
example, A and C in Figure2), the similarity of the flow at
two gauges is determined by the rainfall-runoff process in
each own catchment. If the two gauges are close in space
with short Euclidean distance, their discharge tends to have
high similarities because of the similar climatic and land
cover conditions. However, the short Euclidean distance is
not the degerminator because the topographic conditions can
significantly vary even in small local scale, the discharge
series may still significantly differ in this case if they are not
with the upstream-downstream connection.

Here we construct three different graphs to show the rela-
tionships between hydrological stations.

a: HYDRAULIC DISTANCE GRAPH

Here we use latitude and longitude to calculate the upstream
and downstream relationship, and the distance of the river
channel. The hydraulic connection between hydrological is
estimated with regards to Digital Elevation Model (DEM).
As water in each grid flows to its neighbouring grid with
the steepest slope. Then, we can find the flow path of water
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FIGURE 2. The case of different distances. Best viewed in colors.

from any point to the ocean or out of the study area. If the
water path of an upstream gauge (e.g., G;) goes through a
downstream gauge (e.g., Gj), the hydraulic distance is the
length of the flow path between the two gauges (dh; ;). If they
have no hydraulic connections, the dh; j is oo. The hydraulic
distance of a certain gauge to itself is considered as 0. As an
example, the dhy p between A and B is shown in Figure 2.
The matrix for the hydraulic distance is Dg:

dhy dhy dhi k dhy
dhyy  dhyp dho i dhy
DH = dhm,l dhm,z dhm,k dhm,n (1)
dhn, 1 dhn‘Z dhn,k dhn,n
The adjacency matrix of hydraulic distance graph is Ay:
o1 1 1 1 7
dhiy  dhipy 0 digx T dhig
1 1 1 1
dhy, dhy» dhy dhy
Ay = | | 1 |
dhmy  dhmo 0 dhwx T dhpn
| | e . 1 '
L dhy 1 dh,o, 7 dhyy 0 dhyy
(2

b: EUCLIDEAN DISTANCE GRAPH
The matrix for Euclidean distance (D,) is similar but the
hydraulic distance is replaced.

dejj = 2R * atan2(v/a, N1 — a) 3)
where atan2 is a function,2 R is the earth radius, where
a= sin2(A9/2) + cosa; - cosaj - sinz(Aa/Z) @

where A0 is the difference of latitude in two geographic
points, «; and «; are longitudes of the two geographic points.

2https://en.Wikipe:dia.org/wiki/AtanZ
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Auw is the difference in longitude. Note that the angles need to
be in radians rather than in numerical latitudes or longitudes.
For example, the dey p between A and B is shown in the
Figure 2. The matrix for the Euclidean distance is Dg:

dei 1 de1n dey k dein
des 1 dez o dey i des
D — .. 5
E dem,l dem,Z dem,k dem,n )
dep. 1 depn dey k dey
The adjacency matrix of Euclidean distance graph is Ag:
-1 1 1 1
deiy dein 0 deyx T deyy
1 1 1 1
dey 1 dery 1 dexx T dexn
Ap = | . 1 |
dem,l dem,Z o dem,k o dem,n
| | . 1 |
| de,y  deyn 0 deny 0 deyy
(6)

c: CORRELATION GRAPH

The correlation between stream flow is used as a means
to understand spatial patterns of stream flow dynamics
[31, [8]-[10], [45]. In addition to distance, we also calculate
correlations based on the daily steam flow of the stations for
the last five years. We use Pearson ’s correlation to calculate
the correlation. ¢;, x is the correlation result between station
m and station k. The adjacency matrix of correlation graph
isAc:

1 C1,2 Cl,k CI,N
€21 1 ... CQk ... CN
Ac = - - %)
Cm,1 Cm2 - Cmk ... CmN
Cn,1 Cn,2 Cn,k . 1

2) GRAPH FUSION
Then we need to merge different graphs into one graph.
We combine different graphs by the weighted summing their
adjacency matrices at the element level. We use the chan-
nel distance between the upstream and downstream rivers,
the Euclidean distance between the common stations and
correlation values between stations to build the adjacency
matrix.
1, i=j
ajj = 1 1 R ¢}
' 0k — +px — + Yy *cij, 1
dhi,j B dei,j YV ij £
where ¢; ; is the elementary of the ith row and jth column
in the adjacency matrix A. Because the hydraulic distance
is more important than the Euclidean distance [34], we take
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0.4 for o and 0.2 for B and 0.4 for y. Then we can obtain the
adjacency edges and nodes of the graph, and construct the
hydrological topology graph.

3) GRAPH CONVOLUTION

In this section, we need to do graph convolution. The essence
of discrete convolution is weighted sum. Convolution in CNN
essentially uses a filter with shared parameters to extract
spatial features by calculating the weighted sum of central
pixels and neighboring pixels. However, CNN cannot pro-
cess the non-structure data. Different from CNN, GCN can
extract the spatial features of topological graphs. Here we use
the GCN to capture the spatial features from the hydrolog-
ical information(shown in Figure 3). In the graph structure
data, we should consider the characteristic information and
structure information of the nodes at the same time, that is,
the adjacency matrix A and the characteristic matrix X. For
example, when predicting runoff, X is daily runoff data and
rainfall data. The model can be defined as:

XD =7 (x, ) ©)

where [ is the number of layers, X Vis the feature of the node
of the first layer, A is adjacency matrix.

Nl

FIGURE 3. The idea of GCN. X; is the target station, others are the
stations in the hydrological graph.

Then, the feature transformation of nodes is carried out
first, and the adjacency matrix is normalized by the degree
matrix. After adding the self cycle, the relationship between
each node and the adjacency node is considered, and the
specific model formula is as follows:

1 1 _laa_ 1
JEN;
where x(ZH) is the feature of node i in / + 1 layer, x;[) is

the feature of all neighbor nodes of node (including itself)in
layer I/, o is a nonlinear transformation, A is the adjacency
matrix, A represents self circulation, D is the degree matrix
corresponding to A, N is all neighbors of node i (including
itself), W is the weight of layer /, b is the intercept of
layer /.
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B. LEARNING TEMPORAL FEATURES

We have demonstrated the spatial feature extraction of hydro-
logical topological structure, now we demonstrate how to
learn temporal features from time series. Gated Recurrent
Unit (GRU) [14] can improve the gate design of the Long
Short-Term Memory [19](LSTM) to overcome the gradient
disappearance problem. In GRU, the activation function is
very important. Existing commonly used activation functions
include sigmoid, tanh, softsign, and ReLu. Sigmoid activation
function [43]:

(11)

sigmoid (x) = TFo
e

The sigmoid function is soft saturated, which can be guided
everywhere in the definition domain. When x takes a large
value, the corresponding y value will not be very different.
In other words, when the input value tends to be positive
infinity or negative infinity, the gradient will approach zero.
So the gradient will disappear. In addition, the mean shift
problem is one of the shortcomings of the sigmoid function.

Tanh activation function [18]:

_ 672)6

1+e %

The activation function tanh has a value range of -1 to 1,
so its output mean is close to 0, overcoming the mean
shift problem generated by the sigmoid function. It makes
the stochastic gradient fall closer to the natural gradient,
reduces the number of iterations required to solve the network
parameters, shortens the training time of the deep network.
However, it still has soft saturation, which is easy to cause
the gradient to disappear.

Softsign activation function [17]:

tanh(x) = (12)

softsign(x) =

x|+ 1 (13)
The softsign function is also antisymmetric, and can be
differentiated. Its value range is between -1 and 1, and the
output mean is close to 0, which overcomes the mean shift
problem generated by sigmoid. Its curve is flatter than the
tanh function. This makes the derivative decrease slower and
can better solve the gradient disappearance problem.
ReLu activation function [2]:

Re Lu(x) = max(0, x) (14)

When the input value falls into the negative half axis,
the gradient of the neuron is always 0, and no activation is
activated for any data, which means that the neuron is dead.
This will cause the calculation result to not converge. When
the input value falls into the positive half axis, its derivative
value is always 1, which can keep the gradient from falling
and avoid the gradient disappearing problem. The value range
of the ReLu function is non-negative, so the output mean is
greater than 0, it has the disadvantage of the mean shift.

Although the ReLu function can effectively avoid the gra-
dient disappearance, it also has some shortcomings. Since the
result of the ReLu function is always O in the case of x < 0,
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X1

FIGURE 4. The structure of improved GRU model.

the output mean is greater than 0, resulting in a mean shift
phenomenon. The output value of the softsign function on the
negative half axis is less than 0, and the derivative decreases
slowly. Combining the softsign function with the right half of
the ReLu function not only mitigates the mean shift problem,
but also prevents the left half of the neurons from dying.
Therefore, in the case of x < 0, the softsign function is used
instead, and we obtain a new activation function SoLu, which
is defined as follows (8 is 0.25):

SoLut)= 1" xz0 (15)

B * softsign(x), otherwise

The SoLu function combines the advantages of two
commonly used activation functions, alleviating the gradi-
ent disappearance and output mean shift problems, and the
robustness is also better.

The new activation function SoLu proposed in this paper
is applied to the GRU instead of fanh. We propose the
SoLu-GRU model to capture the temporal dependence. The
model uses the SoLu to improve the output activation function
of the GRU model in the hidden layer(shown in Figure 4).

In Figure 4, x; is the input of the current time neuron, 4 is
the output value of the current time neuron, 4;_1 is the output
of neurons in the previous moment, o is the sigmoid function.

The construction steps are as follows:

Step 1: Build an update gate.

=85 Wy [h-1,%]) (16)

Wi is the weight of the update gate,h;_ is the output of
neurons in the previous moment. When the value of Z; is
larger, the less information neurons can leave in the previous
time, and the more information neurons can leave in the
current time.

Step 2: Build a reset gate.

re=s Wy [hi—1,x) a7

W, is the weight matrix of reset gate. When the value of
ry is 0, it means that the useless information transmitted by
the neuron at the previous moment is discarded, and only the
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input of the neuron at the current moment is reserved as the
input.

Step 3: Build pending output section.We use Solu instead
of Tanh, that is:

By = SoLu (W5 - [ry % hy—1, x:]) (18)

W3 is the weight vector of update door.
Step 4: Build the output section.

he =20 % By 4+ (1 — 2¢) % by (19)

C. HYDROLOGIC PREDICTION

The ST-Hydro model proposed in this paper adds spatial
features to time series prediction. GCN is used to capture
spatial dependence, while GRU, which is improved by SoLu
activation function, captures temporal features.

1) SPATIAL FEATURE EXTRACTION
We take a 2-layer GCN as an example:

F XL, A) =o (13—%2115—%0 (i)—%AD—%X,WO) Wl) (20)

where X; is the feature matrix, A is the adjacency matrix,
o 18 a nonlinear transformation, we can use ReLu or other
functions, A represents self circulation, Dis the degree matrix
corresponding to A, Wy is the weight of first layer, Wy is the
weight of the second layer.

2) LEARNING TEMPORAL FEATURES

Based on the spatial feature, we use the improved GRU to
extract the temporal feature:

o =Wy - [h—1,f(Xr, A)]) 2D
re =Wy - [h-1,f (X, A)]) (22)
hy = SoLu (W; - [ry * hy—1, f(X;, A)]) (23)
he = (1 —z)shiy 42 %k (24)

where W,, and W, are the weights of the update gate and
reset gate.
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FIGURE 5. The representative 139 stations in Jiangxi Province.

3) LOSS FUNCTION
We use Y; and Y/ to donate the observation value and pre-
dicted value of runoff. The loss function is shown as follows:

1Y )
Loss = + ; (v, —v))? (25)

Then we get the predicted value through the fully connected
layer:

Y/ = O (Wchy +b) (26)
O(-) is a linear function, and W, is the weight.

IV. EXPERIMENTS AND RESULTS

In this section, we present the experiments to evaluate
the effectiveness and timeliness of the proposed ST-Hydro
framework. Specifically, we aim to answer the following
evaluation questions:

« EQ1: Can ST-Hydro improve the prediction perfor-
mance of hydrological prediction by modeling the spa-
tial and temporal features simutaneously?

« EQ2: How robust is ST-Hydro for hydrological predic-
tion in one certain flood?

o EQ3: Whether the multi-graph convolutional network is
better than single graph convolutional network?

o EQ4: Whether the proposed activation function is more
effective for temporal modeling?
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A. DATA DESCRIPTION

In this section, we introduce the data sets used in the experi-
ment, the hydrological data sets of China Jiangxi Province.
The experimental data includes runoff data, longitude and
latitude data, and rainfall data of China Jiangxi Province.
To eliminate the missing data in stations, station relocation,
stoppages of stations, we finally selected 139 stations as the
research stations in Jiangxi Province(see in Figure 5). The
discharge and rainfall data of summer floods from 1998 to
2010 are selected as the experimental data. Because part of
the rainfall is incomplete, we use the linear interpolation
method commonly used in hydrology to supplement the miss-
ing rainfall. We take each hydrological station as a node,
the input adjacency matrix is the station relationship, and use
the characteristic matrix to represent the historical runoff flow
and rainfall information. We use 80 percent of the dataset as
the training dataset and 20 percent as the testing dataset.

B. EVALUATION METRICS AND BASELINES

We use the widely-adopted evaluation metrics that are based
on the flood forecasting indicators given in the ‘““Hydrological
Information Forecasting Specification (GB/T 22482-2008)”’,
including flood peak flow, flood peak occurrence time and
flood process, etc.

1) EVALUATION METRICS

a: THE DETERMINISTIC COEFFICIENT

The deterministic coefficient (DC) represents the degree of
coincidence between the predicted value and the measured
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value. The closer the value is to 1.0, the better the prediction
accuracy is.The formula is:

. 12
Yo [ — ()]
i (@) = y1?
where y, (i) is the predicted value, y(7) is the measured value,

y is the average value of the measured value, 7 is the number
of samples.

DC=1-

27)

b: THE ROOT MEAN SQUARE ERROR

The root mean square error (RMSE) represents the deviation
between the predicted value and the actual value. The calcu-
lation formula is:

n

1
RMSE = | > D) =y (28)

i=1

¢: THE FLOOD PEAK ERROR

The flood peak error(error) represents the difference between
the maximum value and the maximum value of the actual
value in the flow forecast of a flood peak.

error = y;,nax — ymax (29)
where y]rjnax is the maximum value of the predicted value,
Y™ is the maximum value of the measured value.

d: THE TIME DIFFERENCE OF THE FLOOD PEAK

The time difference of the peak (time) represents the differ-
ence between the moment when the maximum value of the
predicted flow value in the flood occurs and the moment when
the maximum value of the true value appears.

time =t — fp (30)

where #; is the time when the predicted maximum value
appears, and 7, is the time when the real maximum value
appears.

2) BASELINES
Here we introduce some baselines.

a: SUPPORT VECTOR MACHINE

Support vector machine(SVM) [39] Support Vector Machine
(SVM) is a generalized linear classifier that performs binary
classification of data in a supervised learning manner.
In recent years, SVM has been used in many fields, including
hydrology [15].

b: LONG SHORT-TERM MEMORY

Long Short-Term Memory (LSTM) [23] is a kind of
time-recurrent neural network, which is specially designed to
solve the long-term dependency problem of general Recur-
rent Neural Network. Many researches [27], [35], [47]
find the potential of the LSTM for hydrological modelling
applications.
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¢: GATED RECURRENT UNIT

Gated recurrent unit (GRU) was proposed by Chung et al. [14]
to make each recurrent unit to adaptively capture dependen-
cies of different time scales. Because of its simplicity and
low computational overhead, it was quickly applied to many
fields and also achieved good results in the hydrological
field [20], [29].

C. EVALUATING OVERALL EFFECTIVENESS

To answer EQ1, we conduct the prediction performance
comparison of different models. The Poyang Lake Basin in
Jiangxi Province is the region with the most frequent floods
and floods in the middle and lower reaches of the Yangtze
River. The analysis of the hydrological data in this basin
can provide strong support for the prevention and control
of flood disasters. We choose the waizhou station in the
Poyang Lake Basin as the display of hydrologic prediction
results.

Training parameters of SVM model are configured as
follows: penalty coefficient C interval is [0.23,0.3], kernel
function is radial basis kernel function, parameter g interval
is [0.05,0.08]. The number of hidden nodes in LSTM is 155,
the interval of learning factor LR is [0.005,0.009], the batch
size is 256, and the number of iterations is 40. The number
of hidden nodes in GRU is 50, the learning rate LR interval
is [0.005,0.007], the batch size is 16, and the number of
iterations is 50. The number of hidden nodes in ST-Hydro is
32, the learning rate LR is [0.005,0.007], the batch size is 64,
and the number of iterations epochs is 200.

The results are shown in Figure 6 and Table 1. Figure 6 is
the runoff prediction results of WaiZhou station, and Table 1
shows the evaluation metric values of different models in the
prediction.

It can be seen from the Figure 6 that the prediction result of
SVM model is more jittery, and the prediction curve obtained
is not as stable as LSTM, GRU, and ST-Hydro. The predic-
tion results of LSTM and GRU are similar,ST—Hydrois better
than GRU, and is more stable than LSTM.

From Table 1, we can see that the 1 hour runoff forecast
is relatively the most accurate, and the later the forecast
time is, the lower the accuracy is. ST-Hydro is the best
model in all different forecast periods. The performance of
LSTM and GRU is slightly better than that of GRU, but the
difference between them is not significant. SVM performed
the worst. Through the evaluation metric of the prediction
results in the table, it can be seen that the DC coefficient of
ST-Hydro is the highest, the difference between LSTM and
GRU is not significant, and SVM is slightly worse. Therefore,
the ST-Hydro model is the best in the overall prediction
results.

This may be because GCN captures the spatial character-
istics of runoff flow, adds some rainfall of several related sta-
tions in the space to the prediction, and the function proposed
in this paper avoids the problems of gradient disappearance
and mean shift.
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FIGURE 6. Take WaiZhou station as an example, the prediction results of four models are shown. Observation is the

observation value of runoff. Best viewed in colors.

TABLE 1. Prediction comparisons of WaiZhou station.

Period 1 hour 2 hour 3 hour 4 hour 5 hour
Metric DC | RMSE | DC | RMSE | DC | RMSE | DC | RMSE | DC | RMSE
SVM 0.95 | 12834 | 093 | 13549 | 092 | 162.04 | 091 | 17548 | 0.89 191.4
LSTM 0.97 91.66 0.97 | 101.23 | 0.96 | 105.76 | 0.96 119.9 0.95 | 128.82
GRU 0.98 92.73 0.96 98.54 0.96 | 10471 | 097 | 105.85 | 0.95 | 126.96
ST-Hydro | 0.99 72.34 0.98 81.67 0.98 87.79 0.97 | 10471 | 0.96 | 117.03
o~ prevent the occurrence of flood in advance and prepare for the
3500 A —— Observation . . . .
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,’;' A e GRU some difficulties and challenges to the flood control work.
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FIGURE 7. Take one flood (the next 3 hour) as an example,
the comparison of different models are shown.

D. EVALUATING EFFECTIVENESS OF ONE FLOOD
To answer EQ2, we choose one flood in Waizhou station to
show the result details of different models. The results are
compared in Figure 7 and Table 2. Figure 7 is one flood
prediction of different models, Table 2 is the results of the
same flood prediction for different future periods.

In the process of hydrological prediction, the time of flood
peak appears is very important, that is, the peak time. If the
predicted peak time is ahead of the real peak time, it can

78500

From the Figure 7 and Table 2, we can see that the effect of
SVM is the worst and the peak time lag in the data set, even
5 hours’ prediction lag in Waizhou station. LSTM, GRU and
ST-Hydro can reach the peak in time or one hour in advance,
which provides guidance for flood control operation. The
peak error of ST-Hydro is the smallest and the accuracy is
the highest, so ST-Hydro can predict more accurately in all
aspects.

We also can see from the Table 2 that SVM always has
the problem of delay in peak time prediction. Both LSTM
and GRU can reach the peak value exactly or one hour in
advance. The most surprising thing is that ST-Hydro is able
to reach the peak point two hour ahead of time in the Shours
prediction, which is very meaningful, and the peak error of
ST-Hydro is smaller. So the effect of ST-Hydro is better.

E. COMPARING DIFFERENT GRAPHS PERFORMANCE
In the experiments, to answer EQ3, we predict the same
data by using different graphs in capturing spatial feature.
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TABLE 2. Prediction comparison of one WaiZhou Flood for different
future periods.

Model SVM LSTM GRU ST-Hydro
DC 0.94 0.98 0.99 0.99
1 hour RMSE | 156.45 89.33 86.52 57.33
error -203 212 198 123
time 0 1 1 1
DC 0.93 0.98 0.98 0.98
2 hour RMSE | 177.38 97.25 95.23 76.96
error -358 227 232 147
time -1 1 1 1
DC 0.93 0.97 0.97 0.99
3 hour RMSE | 218.58 | 119.58 | 114.43 85.88
error -422 416 260 142
time -5 1 1 1
DC 0.92 0.98 0.98 0.98
4 hour RMSE | 236.63 | 122.85 | 119.58 114.43
error -462 307 438 260
time -6 1 1 1
DC 0.90 0.97 0.97 0.98
S hour RMSE | 26695 | 138.75 | 132.97 118.12
error -581 556 378 156
time -5 0 1 2

Here we use the data set of Jiangxi Province to compare
the hydrological prediction models established by different
maps. We use hydraulic distance, Euclidean distance, corre-
lation and fusion graphs for experiments. The discharge and
rainfall data of summer flood from 2000 to 2010 are selected
as the experimental data, and we take the average RMSE and
DC of 15 stations for comparison. The result is shown in the
Figure 8.

| B Euclidean Distance  FiHydraulic Distance  E1Correlation & Fusion

Prediction Time

FIGURE 8. The comparison of multi-graph model and different single
gragh model.

From Figure 8, we can see that the model using Euclidean
distance graph has the worst performance, it may be because
the Euclidean distance mostly shows the difference of rainfall
processes, but we have added some rainfall information as
the input in the whole prediction model. The models using
hydraulic distance and correlation have the similar effect, and
the model using correlation is slightly better. The model using
fusion graph is the best.

F. ASSESSING ACTIVATION FUNCTIONS
In the experiments, to answer EQ4, Tanh, softsign, ReLu and
SoLu are respectively used as activation functions to predict.

VOLUME 8, 2020

Because the training results do not converge when sigmoid
function is used as activation function of the network,
the experimental results are compared by Tanh, softsign,
ReLu and SoLu.

It can be seen in Figure 9 that under the condition of 50 iter-
ations, the training convergence time of SoLu activation func-
tion is the shortest and and the training error is the lowest.
The order of error values with different activation functions
is SoLu < ReLu < softsign < Tanh. Therefore, using SoLu
as the activation function can not only effectively shorten the
convergence time, but also reduce the training error.

0.0350 — Tanh
RelLu
i -~ softsign|
§ 0.0300 e Solda
i
o 0.02504
£
£
©
= 0.0200+
0.0150 4

lterations/time

FIGURE 9. Model training error comparison of different activation
functions.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel river discharge prediction
model ST-Hydro which incorporates network-driven method
Graph Convolutional Networks (GCN) with the data-driven
method improved Gated Recurrent Unit (GRU). GCN is used
to capture the spatial features and GRU is used to capture
the temporal features of the discharge samples. We also use
multi-graph to construct the GCN and use proposed activation
function SoLu to improve Gated Recurrent Unit. Experiments
show that the ST-Hydro model outperforms several state-of-
the-art baselines.

There are several interesting directions need to be explored.
For example, when building hydrological topological struc-
ture map, seasonal factors can be considered, different maps
can be built in different time periods. In addition, we will con-
sider using GCN to capture spatial features for the analysis of
ungaged basins.
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