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ABSTRACT
The recent advanced deep learning techniques have shown the

promising results in various domains such as computer vision and

natural language processing. The success of deep neural networks

in supervised learning heavily relies on a large amount of labeled

data. However, obtaining labeled data with target labels is often

challenging due to various reasons such as cost of labeling and

privacy issues, which challenges existing deep models. In spite of

that, it is relatively easy to obtain data with inexact supervision, i.e.,
having labels/tags related to the target task. For example, social

media platforms are overwhelmed with billions of posts and images

with self-customized tags, which are not the exact labels for target

classification tasks but are usually related to the target labels. It

is promising to leverage these tags (inexact supervision) and their

relations with target classes to generate labeled data to facilitate

the downstream classification tasks. However, the work on this is

rather limited. Therefore, we study a novel problem of labeled data

generation with inexact supervision. We propose a novel generative

framework named as ADDES which can synthesize high-quality la-

beled data for target classification tasks by learning from data with

inexact supervision and the relations between inexact supervision

and target classes. Experimental results on image and text datasets

demonstrate the effectiveness of the proposed ADDES for generat-

ing realistic labeled data from inexact supervision to facilitate the

target classification task.
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1 INTRODUCTION
Deep learning technologies have achieved remarkable results in

various domains such as image classification [11], object detection
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Table 1: Samples of StackOverflow.
Question Tittles Tags Target Labels

Laravel 4: Input::all() returns no

data with $.ajax POST

ajax, laravel php

jquery DataTables.net plugin: how

to ignore rows when sorting

jquery, html javascript

[29] and language translation [7]. However, training the deep neu-

ral networks relies on a large amount of labeled data, which is

impractical to obtain in many domains. Taking the fake news detec-

tion for example, a news piece often requires hours of work from a

professional to evaluate the credibility which leads to unaffordable

time and labor costs. For applications in healthcare, it is difficult to

obtain large-scale labeled data (e.g. EHR data) due to privacy issues

and the scarcity of experts for labeling.

In spite of the difficulties in obtaining the accurately labeled

data for target problems, the development of the internet and social

media makes it easy to collect data with inexact supervision, i.e.,
labels/tags related to the target classification task. For example,

users often post images and texts with self-customized tags on social

media platforms such as Twitter, Facebook, and StackOverflow.

Though these tags are often not the labels of target classes, they

could provide inexact supervision through the relations between

the tags and the labels of the target classification task. Table 1

gives two real examples of inexact supervision from StackOverflow,

where questions are labeled with several tags and the target task

is to assign the programming language to the questions based on

their text. Obviously, these tags are not the target labels. However,

they have relations with the labels of the target classes, which could

provide inexact supervision for target label prediction. For instance,

in the first example, the tag laravel shows that the question is

related with php, because laravel is a framework that designed

for developing php. In the second example, the tag jquery, which
is a JavaScript library, suggests that the text is likely to be related

to the target label javascript. Thus, these tags could be used to

help infer target labels even though no exact supervision (data with

target labels) is given. There are various applications that could

benefit from inexact supervision such as image classification for

Flickr and short video classification for Instagram. Therefore, it is

important to study learning from inexact supervision.

The recent development of deep generative models such as

generative adversarial learning (GAN) [8] and variational autoen-

coder [18] have shown promising results in generating realistic

labeled data. The generated labeled data could be used to augment

the dataset or facilitate the downstream classification tasks [1, 32,

38, 39]. For example, data augmentation by GAN is shown effective

for few-shot learning [1]. Shu et al. [32] utilize the generated head-

lines for clickbait detection. Therefore, it is promising to develop

deep generative models for generating labeled data from inexact

https://doi.org/10.1145/3447548.3467306
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supervision to facilitate the training of target classifiers. However,

the work on labeled data generation with inexact supervision is

rather limited.

Therefore, we investigate a novel problem of labeled data gen-

eration with inexact supervision. In essence, we aim to tackle the

following challenges: (i) how to extract the information of the tar-

get labels from the labels of inexact supervision classes; (ii) how

to generate high-quality labeled data for classification. In an at-

tempt to solve these two challenges, we propose a novel generative

framework named asADDES (labeled data generation with inexact
supervision). To better infer the information for target label pre-

diction, ADDES adopts a graph convolutional network (GCN) to

capture the label relations. The information propagation among

the nodes which represent different classes could utilize the super-

vision from labels of the inexact supervision classes. Furthermore,

to obtain high-quality synthetic data, the framework is designed to

utilize both the data with inexact supervision and unlabeled data.

Our main contributions are:

• We study a novel problem of labeled data generation with inexact

supervision for data augmentation;

• We propose a novel generative framework which could leverage

data with inexact supervision, unlabeled data, and the relations

between classes to generate high-quality labeled data; and

• Experiments on the benchmark datasets, including the image

and text datasets, demonstrate the effectiveness of our proposed

framework for labeled data generation with inexact supervision.

The rest of the paper are organized as follows. In Section 2, we

introduce related work. In Section 3, we formally define the prob-

lem. In Section 4, we introduce the proposed method. In Section 5,

we conduct experiments to demonstrate the effectiveness of the

proposed method. In Section 6, we conclude with future work.

2 RELATEDWORK
2.1 Deep Generative Model
Generative model aims to capture the distribution of the real data.

Recently, deep generative models such as generative adversarial

networks (GANs) [8] and variational autoencoder (VAE) [18], have

attracted increasing attention as a result of their strong power in

generating realistic data samples. Based on GAN and VAE, various

efforts [3, 13, 17, 23, 25, 34] have been taken to generate realis-

tic data with desired labels. For example, conditional GAN and

conditional VAE are proposed to learn the conditional probability

distribution of real data [23, 34]. Controlled generation of text based

on VAE is also explored [3, 13]. What’s more, various applications

of the generative models are investigated. One major application

is to generate labeled data for data augmentation [1, 32, 38, 39, 41].

For example, data augmentation based on generative adversarial

networks is explored in [1]. In clickbait detection, headlines are

generated to augment the data for better performance [32]. In con-

trast to those prior works that require large-scale accurately labeled

data to learn generative models for synthesizing labeled data, we

investigate a new problem of generating labeled data without the

ground truth of target labels. Moreover, the proposed framework

ADDES is a unified framework that could effectively synthesize

images and text.

2.2 Learning fromWeak Supervision
For many real-world applications, obtaining large-scale high quality

labels are difficult, while it is relatively easy weak supervision [28,

46] such as noisy supervision [36, 43] and distant supervision [27].

Thus, learning from weak supervision is attracting increasing at-

tention and various approaches are proposed [10, 27, 36, 43]. For

example, Xiao et al. [43] model the relationships between images,

class labels and label noises with a probabilistic graphical model

and further integrate it into an end-to-end deep learning system.

Han et al. [10] presents a novel deep self-learning framework to

train a robust network on the real noisy datasets without extra

supervision. Qin et al. [27] adopts generative adversarial training

with distant supervision for relation extraction. Despite the various

approaches for learning from weak supervision, the majority of

them focus on noisy supervision and distant supervision. The work

on learning from inexact labels is rather limited, let labeled data

generation from ineact labels.

2.3 Multi-Label Classification
Multi-label classification is to predict a set of labels for an instance.

The key challenge of multi-label learning is the overwhelming size

of the possible label combinations. One straightforward way is to

decompose the multi-label classification to a set of binary classi-

fication problems [2]. To achieve better performance, researchers

investigate a number of methods to capture the label dependencies.

For example, Wang et al. [37] use recurrent neural networks to

model the high-order label dependency. Chen et al. [4] propose

the ML-GCN to leverage the knowledge graph to explore the label

correlation dependency. In our inexact supervision problem setting,

we also assume that a data instance could have multiple labels.

However, the multi-label learning assumes that all the labels of the

instance are provided. We are dealing with a much more challeng-

ing problem that ground truth of target labels is totally missing in

the training set, and our goal is to generate data of desired target

labels for data augmentation.

2.4 Zero-Shot Learning
Zero-shot Learning (ZSL) aims to make classifications for the target

categories when no data in these categories is provided. In this

setting, only labeled data in the source categories is available for

training. To transfer the knowledge learned from the source cate-

gories to the target categories, semantic embeddings such as word

embeddings of the categories are utilized. Typical methods are to

learn a compatibility function between the data and the seman-

tic embeddings based on the source category images [6, 30, 45].

Another direction is to sample features for the target categories

from semantic embeddings through generative model [20, 24, 42].

Recently, knowledge graph is adopted in zero-shot learning, which

results in remarkable results [15, 21, 40]. For example, Wang et al.

[40] build a graph linking the related categories together and use the

GCN to predict the classifiers of the target categories from semantic

embeddings. Although ZSL deals with the lack of labeled data in

target categories, there is a distinct difference between zero-shot

learning and inexact supervision learning. In zero-shot learning,

an instance is supposed to belong to a single class. None of the

supervision to the target category classification could be obtained
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from the seen categories data. On the contrary, we are interested in

more practical scenarios in which seen labels of data could provide

inexact supervision and be leveraged for target label prediction.

3 PROBLEM DEFINITION
Let S = {𝑙1, 𝑙2, ..., 𝑙 |S |} denotes the inexact supervision class set

of size |S|, and T = {𝑙 |S |+1, 𝑙 |S |+2, ..., 𝑙 |S |+ |T |} denotes the target
class set of size |T |. Then the whole class set is W = S ∪ T . Note

that the target class set has no overlap with the inexact supervi-

sion class set, i.e., S ∩ T = ∅. The label vectors y𝑠 ∈ {0, 1} |S |
and

y𝑡 ∈ {0, 1} |T |
accordingly represent the labels of inexact supervi-

sion classes and target classes. For a data instance 𝑥𝑘 , if y𝑘𝑠 (𝑖) == 1,

it means the instance belongs to the class 𝑙𝑖 , otherwise not. A data

instance can belong to multiple classes. The whole training set D
contains an inexact supervision class labeled data set D𝑙 consist-

ing of 𝑛𝑙 instances (x𝑙 , y𝑙𝑠 ) and an unlabeled data set D𝑢 with 𝑛𝑢
unlabeled instances x𝑢 . The total training set can be written as:

D = D𝑙 ∪ D𝑢 = {(x𝑙 , y𝑙𝑠 )}
𝑛𝑙
𝑙=1

∪ {x𝑢 }𝑛𝑢
𝑢=1

, (1)

The labels from the whole class set W are correlated with each

other. With the relations, the class graph G = {W, E} is con-

structed, where E ⊂ W×W is set of edges linking the classes. We

use A ∈ R |W |×|W |
to denote the correlation matrix. The weight

A𝑖 𝑗 indicates how likely the labels of classes 𝑙𝑖 and 𝑙 𝑗 are both an-

notated to 1 in a single instance. The class embeddings matrix is

denoted as V ∈ R |W |×𝑚
, where 𝑚 is the dimension of the class

embeddings. For example, the class embedding can be word em-

bedding denoting the semantic meaning of the class or one hot

encoding if word embedding is not available. With the notations

and definitions described here, the problem of labeled data gen-

eration with inexact supervision for data augmentation could be

formulated as:

Problem 1. Given the training set D = D𝑙 ∪ D𝑢 and the graph
G with the adjacency matrix A and class embeddings V, we aim to
learn a generative model and produce a set of labeled data D𝑠 =

{(x𝑠𝑦𝑛𝑖 , y𝑠𝑦𝑛𝑖𝑠 , y𝑠𝑦𝑛𝑖𝑡 )}𝑛𝑠
𝑖=1

through the following process:

𝑓 (A,V, y𝑠𝑦𝑛𝑠 , y𝑠𝑦𝑛𝑡 ) → x𝑠𝑦𝑛, (2)

where 𝑓 is the generative model required to learn.

4 METHODOLOGY
The proposed generative framework consists of three modules: an

encoder 𝑞𝐸 (z|x), a decoder 𝑝𝐷 (x|z, y𝑠 , y𝑡 ) and a GCN-based classi-

fier 𝑞𝐶 (y𝑠 , y𝑡 |x,G), which are presented in Figure 2. The encoder

is to learn a latent variable z disentangled with the inexact supervi-

sion label vector y𝑠 and target label vector y𝑡 . The classifier utilizes
the graph convolutional network to better infer y𝑡 and y𝑠 with the

inexact supervision and unlabeled data. With the latent variable

sampled from the prior 𝑝 (z) or posterior 𝑝𝐸 (z|x), the model could

synthesize a new data point x𝑠𝑦𝑛 corresponding to the assigned

labels (y𝑠𝑦𝑛𝑡 , y𝑠𝑦𝑛𝑠 ). Next, we will first introduce the probabilistic
generative model for estimating data distribution followed by the

deep learning framework to realize the generative model.

ys yt

𝒢

z

x
𝑁

Figure 1: The Probabilistic Graphical Model of ADDES.

4.1 A Probabilistic Generative Model
Our goal is to synthesize labeled data for the learning of target label

predictor when only the labels of inexact supervision classes are

available. To achieve this, we assume that the data is sampled from

the generative process presented in Figure 1. As shown in the figure,

the data lies in a low dimension space and the latent presentation

is divided into three parts: (i) z, the latent features irrelevant with
the labels; (ii) y𝑠 , the label vector of inexact supervision classes; (iii)

y𝑡 , the label vector of target classes. The y𝑠 and y𝑡 are related with

the dependency encoded by the graph G. To generate labeled data,

latent feature vector z is assumed to be independent with y𝑠 and
y𝑡 . With the disentangled representation, novel labeled data could

be produced through varying z, y𝑠 and y𝑡 . Next, we give the details
of the generative framework.

4.1.1 Modeling Data Distribution. As shown in Figure 1, the joint

distribution 𝑝 (x, z, y𝑠 , y𝑡 |G) could be written as:

𝑝 (x, z, y𝑠 , y𝑡 |G) = 𝑝 (x|y𝑠 , y𝑡 , z)𝑝 (y𝑠 , y𝑡 |G)𝑝 (z), (3)

where 𝑝 (z) is the prior distribution of the latent variable z. Usually,
𝑝 (z) is chosen as normal distribution, i.e. 𝑝 (z) ∼ 𝑁 (0, I), where I
is the identity matrix. For data with labels of inexact supervision

classes, i.e., (x, y𝑠 ) ∈ D𝑙 , we aim to optimize the variational lower

bound (ELBO) of log𝑝 (x, y𝑠 |G) as:

log 𝑝 (𝑥, y𝑠 |G) ≥ E𝑞 [log
𝑝 (x, z, y𝑠 , y𝑡 |G)
𝑞(y𝑡 , z|y𝑠 , x,G)

], (4)

where 𝑞(y𝑡 , z|y𝑠 , x,G) is an auxiliary distribution to approximate

𝑝 (y𝑡 , z|y𝑠 , x). To simplify the approximation process, we assume a

factorized form of the auxiliary distribution:

𝑞(y𝑡 , z|y𝑠 , x,G) = 𝑞𝐶 (y𝑡 |x,G)𝑞𝐸 (z|x). (5)

Then the ELBO of log 𝑝 (x, y𝑠 |𝐺) could be re-formulated as:

log𝑝 (x, y𝑠 |G) ≥ E𝑞 [log𝑝𝐷 (x|y𝑠 , y𝑡 , z)] − 𝐾𝐿[𝑞𝐸 (z|x) | |𝑝 (z)]
− 𝐾𝐿[𝑞𝐶 (y𝑡 |x,G)||𝑝 (y𝑡 |y𝑠 ,G)]

= L𝑙
𝐺 (x, y𝑠 ),

(6)

Similarly, for unlabeled instance x ∈ D𝑢 , we aim to optimize the

variational lower bound of log𝑝 (x|G):

log𝑝 (𝑥 |G) ≥ E𝑞 [log
𝑝 (x, z, y𝑠 , y𝑡 |G)
𝑞(y𝑠 , y𝑡 , z|x,G)

]

= E𝑞 [log𝑝𝐷 (x|y𝑠 , y𝑡 , z)] − 𝐾𝐿[𝑞𝐸 (z|x) | |𝑝 (z)]
− 𝐾𝐿[𝑞𝐶 (y𝑡 , y𝑠 |𝑥,G)||𝑝 (y𝑡 , y𝑠 |G)]
= L𝑢

𝐺 (x),

(7)

With Eq.(6) and Eq.(7), the loss function on the whole training set

D could be written as:

L𝐺 = E𝑝𝑙 (x,y𝑠 )L
𝑙
𝐺 (x, y𝑠 ) + E𝑝𝑢 (x)L

𝑢
𝐺 (x), (8)
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Figure 2: Overall model architecture of ADDES. It shows how to process data with labels of inexact supervision classes.

where 𝑝𝑙 (x, y𝑠 ) denotes the distribution of D𝑙 , and 𝑝𝑢 (x) denotes
the distribution of unlabeled dataset D𝑢 .

4.1.2 Enforcing Disentangled Representation Learning. The repre-
sentation z should not contain any label information so that we

can vary y𝑠 and y𝑡 to generate labeled data by sampling from

𝑝 (x|z, y𝑠 , y𝑡 ). However, since x covers the information of the labels,

the latent variable z obtained from the encoder 𝑞𝐸 (z|x) might corre-

late with y𝑠 and y𝑡 . Thus, y𝑠 , y𝑡 actually may not contribute to the

generation of x as z already contains the label information. There-

fore, we need to ensure z is independent with the class-attribute.

To learn the disentangled representations, we add a constraint to

enforce the data produced from the decoder to match the assigned

labels. The objective function could be formulated as:

L𝑐𝑜𝑛𝑠 = E𝑝 (y𝑠 ,y𝑡 )𝑝𝐷 (x̂ |y𝑠 ,y𝑡 ,z) [log𝑞𝐶 (y𝑠 , y𝑡 |x̂,G)], (9)

where x̂ = 𝐷 (z, y𝑠 , y𝑡 ) is the generated data from the decoder with

sampled latent variable z and class-attribute. With this constraint,

during training, we can vary y𝑠 , y𝑡 for various data of desired la-

bels. The regularizer will then check if the generated x̂ has the

desired labels to enforce the involvement of y𝑠 , y𝑡 in data gener-

ation. The distribution 𝑝 (y𝑠 , y𝑡 ) has multiple choices. When it is

the prior distribution 𝑝 (y𝑠 , y𝑡 |G). This would enable the sampled

data x𝑠𝑦𝑛 have the desired labels. When 𝑝 (y𝑠 , y𝑡 ) is the posterior
𝑞𝐷 (y𝑙𝑡 |x𝑙 ,G) of data labeled as y𝑙𝑠 in inexact supervision classes or

posterior 𝑞𝐷 (y𝑢𝑠 , y𝑢𝑡 |x𝑢 ,G) of unlabeled data, this constraint will

assist the reconstruction of input data by providing extra semantic

level supervision.

To obtain disentangled representation, 𝑞𝐶 (y𝑠 , y𝑡 |𝑥,G) is used
as a classifier to constrain the encoder and decoder in Eq.(9). This

implies the predictions of the classifier are accurate. However, the

presented loss functions may be not sufficient to model the classifier

well, because the predictive distribution of the classifier on D𝑙 is

only optimized to follow the prior distribution 𝑝 (y𝑡 |y𝑠 ,G) in Eq.(6).

And the provided labels of inexact supervision classes from the

D𝑙 do not contribute to model 𝑞𝐶 (y𝑠 , y𝑡 |x,G). This is undesirable
because the distribution is used to get the label vectors of the input

to generate or reconstruct the data. Thus, to better model the label

predictive distribution and provide more reliable supervision for

encoder and decoder, we add the loss function that explicitly utilizes

the data with labels in inexact supervision classes:

L𝑠
𝐶 = E𝑝𝑙 (x,y𝑠 ) [− log𝑞𝐶 (y𝑠 |x,G)] . (10)

4.1.3 Final Objective Function. Combining the variational lower

bound of the generative model, the constraint to enforce the dis-

entangled representation learning and the additional classification

loss to better model the classifier, the final objective function is:

min

𝜙𝐸 ,𝜙𝐶 ,𝜙𝐷

L𝐺 + 𝛼L𝑐𝑜𝑛𝑠 + 𝛽L𝑠
𝐶 , (11)

where 𝛼 and 𝛽 are hyperparameters. And 𝜙𝐸 , 𝜙𝐶 , and 𝜙𝐷 denote

the learnable parameters of the encoder, classifier, and decoder.

4.2 Deep Learning Framework of ADDES
With the generative framework given above, we introduce the

details of modeling the encoder𝑞𝐸 (z|x), the decoder 𝑝𝐷 (x|y𝑠 , y𝑡 , z),
and the classifier 𝑞𝐶 (y𝑡 , y𝑠 |𝑥,G) now.

4.2.1 Encoder and Decoder. For many applications such as images

and text, both 𝑞𝐸 (z|x) and 𝑝𝐷 (x|y𝑠 , y𝑡 , z) could be very complex

distributions. Following VAE [18], we use neural network and repa-

rameterization trick to model𝑞𝐸 (z|x) and 𝑝𝐷 (x|y𝑠 , y𝑡 , z), which are
shown to be able to approximate complex distributions under mild

conditions. Specifically, we assume the encoder 𝑞𝐸 (z|x) follows
Gaussian distribution with the mean and variance as the output of

a neural network:

𝑞𝐸 (z|x) = 𝑁 (z; 𝝁𝑧 ,𝝈2

𝑧 I), 𝝁𝑧 ,𝝈𝑧 = 𝐸 (x) (12)

where 𝐸 (·) is the neural network which takes x as input and output

the mean 𝝁𝑧 and standard deviation 𝝈𝑧 . Then z can be sampled as

z = 𝝁𝑧 + 𝝈𝑧 ⊙ 𝝐 , where 𝝐 is sampled from a normal distribution.

Similarly, we assume the decoder 𝑝𝐷 (x|y𝑠 , y𝑡 , z) follows Gaussian
distribution with the mean and variance as the output of a deep

neural network:

𝑝𝐷 (𝑥 |y𝑠 , y𝑡 , 𝑧) = 𝑁 (𝑥 ; 𝝁𝑥 ,𝝈2

𝑥 I), 𝝁𝑥 ,𝝈𝑥 = 𝐷 (y𝑠 , y𝑡 , z) (13)

where 𝐷 (·) is the neural network which takes (y𝑠 , y𝑡 , z) as input
and output the mean 𝝁𝑥 and standard deviation 𝝈𝑥 . The structure

of the 𝐸 (·) and 𝐷 (·) can be chosen based on the domain we are

working on. For example, for image datasets, deep convolutional

neutral networks could be applied. For text datasets, sequence to

sequence models are good candidates.
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4.2.2 GCN-based Classifier. Since only the inexact supervision is

available, we rely on the dependency between the labels of inex-

act supervision classes and target classes to infer the target labels,

and the dependency is encoded in the graph G. Graph neural net-

works have been demonstrated to be very effective in capturing

the relationship between nodes in a graph. Therefore, to model

𝑞𝐶 (y𝑡 , y𝑠 |x,G), we adopt Graph Convolutional Networks (GCN)

for G and propose a GCN-based classifier. Figure 2 gives an illus-

tration of the GCN-based classifier, which consists of two parts, i.e.,

a feature extractor and a GCN module. The basic idea is to learn

representations of classes from G using GCN and the features of x
using the feature extractor, then conduct label prediction based on

these representations.

Feature extraction: To facilitate the classification by the GCN

module, a low dimension representation of x is required. One way

is to use the latent feature z from the encoder 𝐸 (x). However, since
the encoder is expected to learn z that has no semantic informa-

tion about the labels, directly using z cannot help predict labels.

Thus, another feature extractor is required. The model architec-

ture is quite flexible. For images, a CNN model such as AlexNet

[19], VGG [33] and ResNet [11] can be feature extractor. For text,

LSTM [12], GRU [5], CNN [16] and transformer [35] are all poten-

tial models. With the feature extractor model 𝑓𝑚 , we could attain

the representation of input x as

h𝑓 = 𝑓𝑚 (x) ∈ R𝐹 , (14)

where 𝐹 denotes the dimension of the extracted feature.

Synthesize classifiers with GCN: The GCN is to generate the

parameters of classifiers for both inexact supervision classes and

target classes. Each node of the graph corresponds to a class in

the whole class set W. Thus, the number of nodes is 𝑛 = |W|.
The adjacency matrix of the graph is A ∈ R𝑛×𝑛 . And A𝑖 𝑗 indicates

the how strong the correlation between the labels of classes 𝑙𝑖

and 𝑙 𝑗 is. The GCN-layer updates the node features H ∈ R𝑛×𝑑 by

aggregating the information from the neighbors, where𝑑 represents

the dimension of the node features. The process can be written as:

H𝑙+1 = 𝑓 (D̃−1ÃH𝑙W𝑙 ), (15)

where Ã = A + I and D̃ is the degree matrix of Ã. 𝑓 denotes the

nonlinear active function. W𝑙 ∈ R𝑑𝑙×𝑑𝑙+1 is the weights of the 𝑙-th
layer, where 𝑑𝑙 is the dimension of the latent feature in the 𝑙-th

layer. The input of the first layer V could be word embeddings or

one-hot embeddings of the classes. The output of the last GCN layer

isW ∈ R𝑛×𝐹 , which corresponds to classifier weights of the classes.

The predicted scores of all the classes including inexact supervision

classes and target classes could be obtained by:[
ŷ𝑠
ŷ𝑡

]
= 𝜎 (

[
W𝑠

W𝑡

]
h𝑓 ), (16)

whereW𝑠 andW𝑡 indicate the synthesized classifier weights of the

inexact supervision classes and target classes. ŷ𝑠 ∈ R |S |
with the

𝑖-th element denoting the probability that the label of 𝑖-th inexact

supervision class being 1. Similarly, ŷ𝑡 ∈ R |T |
with the 𝑗-th element

denoting the probability that the 𝑗-th target label being 1. With

the parameter sharing and explicit utilization of graph structure,

the inexact supervision could be propagated to the target classes to

obtain reasonable classifiers.

Algorithm 1 Training Algorithm of ADDES.

Input: D𝑙 = {(x𝑙 , y𝑙𝑠 )}, D𝑢 = {x𝑢 }, A, V, 𝛼 and 𝛽 .

Output: 𝑞𝐸 (z|x), 𝑝𝐷 (x|y𝑠 , y𝑡 , z), and 𝑞𝐶 (y𝑡 , y𝑠 |x,G)
1: Initialize the GCN-based classifier by minimizing Eq.(10) and

the third term of Eq.(6).

2: Initialize the encoder and decoder by minimizing Eq.(11) with

the parameters of the classifier frozen.

3: repeat
4: Randomly sample {x𝑙

𝑖
}𝑁
𝑖=1

from D𝑙 and {x𝑢
𝑖
}𝑁
𝑖=1

from D𝑢 ;

5: Optimized the encoder parameters 𝜙𝐸 , decoder parameters

𝜙𝐷 and classifier parameters 𝜙𝐶 by Eq.(11).

6: until convergence
7: return 𝑞𝐸 (z|x), 𝑝𝐷 (x|y𝑠 , y𝑡 , 𝑧), and 𝑞𝐶 (y𝑡 , y𝑠 |x,G)

4.3 Training Algorithm
The overall training algorithm of ADDES is given in Algorithm 1.

Firstly, before jointly training the encoder, decoder, and classifier,

these modules are separatly pretrained to have good initialization

parameters. More specifically, the GCN classifier is prioritize to be

optimized. Then with the classifier’s parameters fixed, the encoder

and decoder are pretrained with Eq.(11). Secondly, to make the

gradients able to backpropagate from the decoder to the classifier,

we directly input the soft labels to the decoder.

5 EXPERIMENTS
In this section, we conduct a series of experiments to validate the

effectiveness of our proposed framework. They are designed to

answer the following research questions:

• RQ1 Could the proposed generative model synthesize useful

labeled data as data augmentation for target label prediction?

• RQ2 Could our proposed method bring benefits to different sce-

narios whose training data varies in types and sizes?

• RQ3 Does the utilization of graph structure of labels promote

the generative model learning? If it works, is it sensitive to the

graph construction method?

5.1 Datasets
We conduct experiments on two publicly available datasets, includ-

ing a text dataset StackOverflow and an image dataset MJSynth.

StackOverflow1
: It contains texts of 10% of questions and an-

swers from the Stack Overflow programming Q&A website. The

majority of the questions have multiple tags. After filtering out

rare tags, we obtain a tag set of size 25. Each question is labeled

with 1.9 tags on average. To demonstrate ADDES could synthesize

useful labeled data to facilitate the classification for various target

classess, two sets from the 25 tags are set as target classes and

sequently educe two datasets. Specifically, the target class sets are

T1 = {javascript} and T2 = {javascript, C#, php, java}, which refer

to as StackOverflow-1 and StackOverflow-2, respectively. For
both datasets, the size of D𝑙 is 2k. The unlabeled set D𝑢 contains

30k questions. For the test set, we randomly sample 30k questions.

MJSynth [14]: It is used for natural scene text recognition. Each

image in MJSynth contains a word extracted from the text corpus.

1
https://www.kaggle.com/stackoverflow/StackOverflow
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The images are produced in a sophisticatedly designed pipeline

to emulate the text in the natural scene. In the MJSynth dataset,

the character label indicates if a certain letter is in the image or

not. We filter out the images that contain characters other than the

lower case alphabet, which makes the number of classes to 26. The

number of character labels per image is 6 on average. Similar to

StackOverflow, two target class sets, T1 = {e} and T2 = {a, c, e} are
selected to build new datasets named asMJSynth-1 andMJSynth-
2. For both datasets, we sample 6k and 24k images as D𝑙 and D𝑢 .

Another 10k images are sampled as test sets.

5.2 Baselines
We compare our method with the following state-of-the-art base-

lines from the supervised classification, semi-supervised learning,

multi-label learning and zero-shot learning:

• text-CNN [16]: Convolutional filters with different kernel sizes

are applied to get the features for text classification.

• GRU [5]: It utilizes GRU cell to extract the text features.

• SDANN [14]: This is a network with five convolutional layers

to process MJSynth for natural text recognition.

• Semi-CNN [9]: Semi-CNN utilizes unlabeled data D𝑢 by adding

an entropy regularization term to train the classifier.

• ML-GCN [4]: A state-of-the-art method applies the GCN to

model the label relations for multi-label classification.

• Zero-Shot [40]: This is a state-of-the-art method for zero-shot

learning. It transfers the knowledge learned from seen labels

prediction by employing the GCN to predict the weights of clas-

sifiers for target label prediction. Thus, only the instance and

labels of inexact supervision classes are required.

Aside from ML-GCN and Zero-Shot, these baselines assume labels

of different classes are independent with each other. Moreover, all

these methods require labels of target classes except Zero-Shot.

Therefore, we develop ways to attain estimated target labels ŷ𝑡
through inexact supervision labels y𝑠 in the following subsections.

5.3 Experiments on the Text Datasets
5.3.1 Graph Construction. The edges between the inexact super-

vision classes 𝑙𝑠 ∈ S are built based on the conditional probability

𝑃 (𝑙𝑖 |𝑙 𝑗 ), which is the probability of an instance belonging to class 𝑙𝑖
when it is known to be in class 𝑙 𝑗 . According to [4], we count the oc-

currence of label pairs fromD𝑙 and obtain the matrixM ∈ R |S |×|S |
,

where M𝑖 𝑗 represents the count of instances labeled as 1 in both 𝑙𝑖
and 𝑙 𝑗 . Then, the conditional probability is:

A𝑖 𝑗 = 𝑃 (𝑙𝑖 |𝑙 𝑗 ) =
M𝑖 𝑗

𝑁 𝑗
, 𝑙𝑖 , 𝑙 𝑗 ∈ S (17)

where 𝑁 𝑗 denotes the count of instances which belong to 𝑙 𝑗 in the

dataset. With Eq. 17, the weights of the edges linking the inexact

supervision classes could be obtained. However, due to the lacking

of annotations of target labels in the training set, we are unable to

build the edges between the target classes and inexact supervision

classes by Eq.(17). Introducing the prior knowledge to the graph

construction could solve this problem. For instance, based on the

primary programming knowledge, we could add undirected edges

between the target class javascript and inexact supervision class

ajax. With the 𝑡-th target class denoted as 𝑙𝑡 and its manually

(a) StackOverflow-1 (b) StackOverflow-2

Figure 3: The performance of the text-CNN w.r.t the num-
bers of synthetic data fromADDES added to the training set.

assigned related class set denoted as R𝑡 , the process of linking the

target and inexact supervision classes can be formulated as:

A𝑡𝑠 = A𝑠𝑡 =

{
1 , if 𝑙𝑠 ∈ R𝑡

0 , else
, (18)

where 𝑙𝑠 ∈ S is the 𝑠-th inexact supervision class. The constructed

graph could also be used to estimate the conditional probability

𝑝 (y𝑡 |y𝑠 ,G) which is required in Eq.(6). The estimation formula is:

𝑃 (y𝑡 (𝑖) = 1|y𝑠 ,G) =
{
1 , if ∃𝑙 𝑗 ∈ S, y𝑠 ( 𝑗) = 1 ∩ A𝑖 𝑗 = 1

0 , else
, (19)

where y𝑡 (𝑖) denotes the label of the target class 𝑙𝑖 ∈ T , and y𝑠 ( 𝑗)
means the label of inexact supervision class 𝑙 𝑗 ∈ S.

5.3.2 Implementation Details. The encoder of the ADDES for text
generation is based on the bi-directional GRU with the hidden

dimension set as 150. The mean and variance of the latent vari-

able could be obtained from the hidden states of the GRU cell.

For decoder, we adopt a global attention mechanism [22] to fa-

cilitate focusing on critical parts of the input sequence. Similarly,

bi-directional GRU is applied to extract features for the GCN-based

classifier. The GCN module of the classifier has two layers. One-hot

embeddings are used as node attributes. The hyperparameters of

ADDES are: 𝛼 = 0.1, 𝛽 = 0.1.

5.3.3 Experimental Results. To answer RQ1, we synthesize a set of
labeled dataD𝑠 = {(𝑥𝑠𝑦𝑛𝑖 , y𝑠𝑦𝑛𝑖𝑠 , y𝑠𝑦𝑛𝑖𝑡 )}𝑛𝑠

𝑖=1
for data augmentation,

where 𝑛𝑠 is the size of synthetic dataset. We also supplement the

instance containing inexact supervision, i.e., (𝑥, y𝑠 ) ∈ D𝑙 with esti-

mated target label ŷ𝑡 ∈ {0, 1} |T |
through Eq.(19) to build estimated

labeled dataset D𝑒 . Then the performance of the classifiers trained

with D𝑠 ∪ D𝑒 could show whether the synthetic data could bring

benefit to the classifiers for target label prediction. The performance

of the models is evaluated by two metrics: mean average precision

(mAP) and the average area under ROC curve (AUC).

Impacts of the size ofD𝑠 : It has been reported that the number

of synthetic data added into the training set could strongly affect the

performance of supervised learning [31]. Therefore, we investigate

the performance of the classifier whose training set is enlarged with

the synthetic dataset D𝑠 in different sizes. Here, different numbers

of synthetic data mixed with 2k estimated labeled data are applied

to train the text-CNN model. The results are shown in Figure 3.

From Figure 3a, it is observable that the performance improves up

to saturation as we add more synthetic data to the training set in

StackOverflow-1. As results of StackOverflow-2 shown in Figure

3b, we could find the gain brought by synthetic labeled data D𝑠
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Table 2: The comparisons with the baselines and models trained with text dataset augmented with synthetic data.
Datasets Metric text-CNN GRU ML-GCN Semi-CNN Zero-shot AugCNN AugGCN

StackOverflow-1

mAP 0.528 ±0.004 0.516 ±0.007 0.565 ±0.008 0.549 ±0.004 0.541 ±0.003 0.609 ±0.003 0.629 ±0.003
AUC 0.773 ±0.004 0.763 ±0.004 0.788 ±0.003 0.782 ±0.002 0.781 ±0.002 0.830 ±0.001 0.832 ±0.003

StackOverflow-2

mAP 0.350 ±0.003 0.342 ±0.008 0.379 ±0.005 0.376 ±0.003 0.369 ±0.002 0.400 ±0.003 0.412 ±0.004
AUC 0.666 ±0.003 0.646 ±0.006 0.685 ±0.003 0.663 ±0.002 0.659 ±0.005 0.686 ±0.003 0.703 ±0.003

Table 3: The synthetic labeled data for StackOveflow-1.
Input Labels Generated Text

javascript Angular 2 Routing in plain Javascript

javascript Different CSS depending on month and year

javascript, jquery JQuery replace on Click in h

C++ C++ : find in set of pointers

java, json query elasticsearch with java with JSON

C++, Android Display image created by OpenCV on Android

will firstly increase and then decrease as the size of D𝑠 increases.

This is because there are more target classes in StackOverflow-2,

which makes it more challenging to generate high-quality labeled

data. For both datasets, compared with the models trained without

synthetic data, i.e., |D𝑠 | = 0, the models trained with augmented

data consistently perform better. Therefore, the generated labeled

text is useful as data augmentation for target label prediction.

Comparisonswith baselines:We evaluate the benefits brought

by synthetic data to different models , i.e., text-CNN and ML-GCN,

and compare them with the baselines. More specifically, models

with the same structure as text-CNN and ML-GCN are trained

by adding an optimal size of D𝑠 to the original estimated labeled

dataset D𝑒 , which refer to as AugCNN and AugGCN. According
to Figure 3, the size of D𝑠 is set as 30k and 2k in StackOverflow-1

and StackOverflow-2, respectively. The average results and stan-

dard deviation of five runs are presented in Table 2. We could

have the following observations: (i) AugCNN is better than the

state-of-the-art multi-label classification method ML-GCN and the

semi-supervised learning approach Semi-CNN; (ii) AugCNN and

AugGCN outperform text-CNN and ML-GCN and other baselines

with a large margin, which indicates the synthetic data could be

helpful for various models. These observations confirm that the

proposed model could generate high-quality labeled data when

only inexact supervision is available in text datasets.

Visualization of the synthetic text: Some samples of gener-

ated labeled data for StackOverflow-1 whose target class set is

{javascript} are reported in Table 3. It shows that we could produce

realistic text which contains the target label javascript. Further-
more, the model could also generate the text with multiple labels.

5.4 Experiments on the Image Datasets
5.4.1 Graph Construction. We aim to assign links between the

labels that often occur together. As each image in the datasets

contains a word, the co-occurrence probability of labels should be

the same as the probability that two letters appear together in a

word. Therefore, we use a commonword corpus YAWL
2
to calculate

the correlation matrix by Eq.(17) Moreover, the estimation of the

conditional probability 𝑝 (y𝑡 |y𝑠 ,G) could be attained through the

YAML corpus. Specially, We train a random forest model on YAML

2
http://freshmeat.sourceforge.net/projects/yawl/

(a) MJSynth-1 (b) MJSynth-2

Figure 4: The performance of the SDANN w.r.t the numbers
of synthetic data from ADDES added to the training set.

e=1

e=0

Figure 5: The synthetic images of ADDES on MJSynth-1

to build the estimated labeled datasetD𝑒 . It predicts the target label

vector y𝑡 based on the inexact supervision label vector ŷ𝑠 of D𝑙 .

5.4.2 Implementation Details. The encoder is composed of 5 con-

volutional layers which contain 64, 128, 256, 512, and 512 filters

with the kernel size and stride set as 4 and 2. The mean and variance

of the latent variable are obtained from the output of the global

max pooling layer of the encoder. The structure of the decoder is

symmetrical to the encoder. Transpose convolution with stride 2

is used to upsample the feature map in the decoder. For the GCN-

based classifier, the feature extractor has the same structure as the

encoder. And there is one hidden layer with the filer size set as 128

in the classifier. The hyperparameters are set as: 𝛼 = 100, 𝛽 = 0.1.

5.4.3 Experimental Results. The proposed framework could also

generate useful labeled data for data augmentation in image classi-

fication. Similar to the text datasets, we investigate impacts of size

of the synthetic labeled data D𝑠 to the models utilizing synthetic

data. Then, we compare the performance of the baselines and the

models training with augmented data to demonstrate the generated

labeled data could facilitate the learning of image classifier.

Impacts of size of D𝑠 : The Figure 4 shows the trend of the

performance of the SDANN with the increase of augmented im-

ages. We could observe that the synthetic data could improve the

performance of the model for both image datasets. The trend of

the curves is in line with the results of text datasets. The evident

improvements after introducing a reasonable number of synthetic

images demonstrate the validity of the generated labeled data.

Comparisons with baselines: We train SDANN and ML-GCN

with the augmented datasetD𝑒∪D𝑠 to getAugCNN andAugGCN
and find significant improvements compared with the baselines.

From Table 4, we could have similar observations in image datasets:

(i) AugCNN outperforms SDANN and Semi-CNN with a large mar-

gin and even performs better than the sophisticatedly designed
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Table 4: The results of the baselines and the classifiers trained with augmented data on the image datasets.
Dataset Metric SDANN ML-GCN Semi-CNN Zero-shot AugCNN AugGCN

MJSynth-1

mAP 0.767 ±0.004 0.788 ±0.005 0.776 ±0.003 0.700 ±0.001 0.810 ±0.004 0.816 ±0.002
AUC 0.640 ±0.005 0.665 ±0.006 0.650 ±0.002 0.556 ±0.003 0.696 ±0.005 0.701 ±0.003

MJSynth-2

mAP 0.555 ±0.005 0.572 ±0.005 0.562 ±0.001 0.539 ±0.006 0.584 ±0.005 0.606 ±0.004
AUC 0.584 ±0.004 0.606 ±0.007 0.593 ±0.002 0.567 ±0.005 0.620 ±0.004 0.640 ±0.005

(a) mAP on StackOverflow-1 (b) mAP on MJSynth-1

Figure 6: Impacts of the size of D𝑙 to our proposed model.

model ML-GCN, which shows our generative model utilizes un-

labeled data and label relations well; (ii) AugGCN achieves the

best results among all the classifiers. It indicates benefits of the

synthetic labeled images are beyond the simple SDANN. These

observations demonstrate the effectiveness of ADDES in labeled

images generation with inexact supervision.

Visualization: Samples of synthetic data on MJSynth-1 are pre-

sented in Figure 5. The target label set is {𝑒}. The first row are

samples generated with {𝑒} set to 1 and the second row are samples

with {𝑒} set to 0. We could observe that ADDES generate realistic

data to facilitate the training of classifiers for target label prediction.

5.5 Impacts of the Size of D𝑙

Prior studies have shown that some semi-supervised learning meth-

ods and data augmentation methods are sensitive to the size of

labeled data [26, 44]. To demonstrate our proposed model could

synthesize useful labeled data to facilitate the targets label pre-

diction regardless of the size of D𝑙 , we conduct experiments on

StackOverflow-1 and MJSynth-1 to answerRQ2. We select the sizes

of D𝑙 ranging from 2k to 20k. The results are shown in Figure 6. To

make fair comparisons, we compare text-CNN/SDANN, Semi-CNN,

and AugCNN, which have the same network structure. From Figure

6, we could observe that in both text and image datasets, Semi-CNN

makes negligible improvements compared with text-CNN. On the

contrary, with the synthetic labeled data included in the training

set, AugCNN consistently outperforms the other baselines with a

clear margin regardless of the size ofD𝑙 . It shows that our proposed

method could benefit the scenarios varying in data types and sizes.

(a) mAP (b) AUC
Figure 7: Comparisons with ADDES and its variants.

5.6 Ablation Study
To answer RQ3, we conduct ablation studies on StackOverflow-

1 to investigate the importance of the GCN-based classifier and

its sensitivity to the graph construction methods. Specifically, we

compare our model with the following variants of ADDES:

• ADDES-CNN: It replaces the GCN-based classifier in ADDES

with a multi-label classifier to obtain 𝑞𝐶 (y𝑡 , y𝑠 |x). It treats the
prediction of multiple labels as isolation tasks.

• ADDES-W: ADDES-Wbuildsweighted graph thorough the ground

truth of training data in whole class set through Eq.(17) for the

GCN-based classifier. The weights of edges between classes indi-

cate their co-occurrence rates.

The performance of the AugCNN and AugGCN which utilize 30k

synthetic data from ADDES and its variants is presented in Figure

7. As we can see, if we eliminate the GCN module, the gain brought

by the synthetic data will significantly decrease (𝑝 < 0.005, t-test).

However, we could find that the synthetic data of ADDES and

ADDES-W shows no significant difference for data augmentation.

From these observations, we could conclude that (1) the informa-

tion aggregation from the inexact supervision to target labels con-

tributes to better generative model for inexact supervision; (2) The

graph utilizing prior knowledge to obtain binary weights between

target classes and inexpensive supervision classes shows no differ-

ence with the graph completely built by the labels co-occurrence

probability in modeling the data with inexact supervision.

(a) mAP of AugCNN (b) AUC of AugCNN

Figure 8: Parameter sensitivity analysis.

5.7 Parameter Sensitivity
The proposed framework includes two important hyperparameters,

i.e., 𝛼 controlling the contribution of the constraint for disentan-

gled representation learning, 𝛽 controlling the contribution of the

inexact supervision labels to model the classifier in ADDES. We

investigate the impacts of these two parameters on target label

prediction on MJSynth-1 with the number of synthetic data set

as 30k. We vary 𝛼 as {0.01, 0.1, 1, 10} and 𝛽 as {0.01, 0.1, 1, 10, 100}.
Then, We obtain AugCNN models with the synthetic data from the

generative models. The results are presented in Fig. 8. With the in-

crease of 𝛼 , the performance first increase then decrease. The same

trend also exhibits in 𝛽 . And when both 𝛼 and 𝛽 ranges from 0.01

to 1, the generative model shows consistently good performance.
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6 CONCLUSION AND FUTUREWORK
In this paper, we investigate a novel problem of labeled data genera-

tion with inexact supervision. It is a potential direction to cope with

the deficiency of labeled data for deep learning. To deal with this

problem, we propose a novel generative framework ADDES to gen-

erate data labeled in both target and inexact supervision class set.

Extensive experimental results on image and text datasets demon-

strated the effectiveness of the ADDES in synthesizing high-quality

labeled data for the target label prediction. Further experiments are

conducted to understand the contributions of each component of

ADDES and its parameter sensitivity. There are several interesting

directions which need further investigation. First, in this paper, we

assume the inexact supervision labels are clean. However, the labels

could be noisy as they are crawled from social media. Thus, one

direction is to investigate labeled data generation with inexact and

inaccurate supervision. Second, there are many different ways in

constructing the graph. We would like to study automatic methods

to construct the graph linking the related labels.
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