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ABSTRACT
Distribution channel is a system that partners move prod-
ucts from manufacturer to end users. To increase sales, it
is quite common for manufacturers to adjust the product
prices to partners according to the product volume per deal.
However, the price adjustment is like a double-edged sword.
It also spurs some partners to form a cheating alliance, where
a cheating seller applies for a falsified big deal with a low
price and then re-sells the products to the cheating buyer-
s. Since these cheating behaviors are harmful to a healthy
ecosystem of distribution channel, we need the automatic
method to guide the tedious audit process.
Thus, in this study we propose the method to rank all

partners by the degree of cheating, either as seller or buy-
er. It is mainly motivated by the observation that the sales
volumes of a cheating seller and its corresponding cheat-
ing buyer are often negatively correlated with each other.
Specifically, the proposed framework consists of three part-
s: 1) an asymmetric correlation measure which is needed
to distinguish cheating sellers from cheating buyers; 2) a
systematic approach which is needed to remove false posi-
tive pairs, i.e., two partners whose sale correlation is purely
coincident; 3) finally, a probabilistic model to measure the
degree of cheating behaviors for each partner.
Based on the 4-year channel data of an IT company we

empirically show how the proposed method outperforms the
other baseline ones. It is worth mentioning that with the
proposed unsupervised method more than half of the part-
ners in the resultant top-30 ranking list are true cheating
partners.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
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1. INTRODUCTION
Distribution channel, as shown in Figure 1a, is a system of

partners to move products from manufacturer to end users.
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When the number of end customers is large, this indirec-
t channel is extremely helpful to improve product revenue
and market competitiveness. To maintain the smooth oper-
ation of distribution channel, manufacturers need to develop
effective channel policies, addressing the following aspects:
(i) ensure that end users can purchase products at any time
and place, (ii) control product price reasonably, (iii) increase
market promotion and market share. Among those goals,
price management may be the most important and critical
one. To spur the sales enthusiasm of channel partners, man-
ufacturer may adjust the product prices according to sales
volume per deal. If a partner has an end user who plans to
buy plenty of products, she can apply for a low price from
the manufacturer. On the contrary, for a normal-sized deal
the partner can only get a normal price. Thus, price may
differ among partners.
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Figure 1: The cheating behavior in distribution channel

Due to such price differences, cheating in the distribution
channel may happen. Hardy and Magrath [6] summarized
the types and forms of channel cheating, and then explored
the structures, factors and incentives that encourage cheat-
ing. Additionally, Narayandas and Rangan [16] showed that
to achieve relational benefits and competitive advantages,
partners have put emphasis on developing a stable dyadic re-
lationship instead of building adversarial relationships with
other partners. Thus, cheating becomes the behaviors of the
partners’ alliance nowadays.

A typical scenario of cheating alliance is shown in Fig-
ure 1b. Partner v1 pretends to have an end user with a
falsified big deal, thus applies for a low price from the manu-
facturer. Then, v1 re-sells part of products to another part-
ner v2 with the price lower than the regular price of the
normal deals. In this scenario, we call v1 and v2 cheating
seller and cheating buyer respectively. However, from the
view point of the manufacturer such behaviors, represented
by the dash arrows in Figure 1b, are totally unknown. On-
ly the sales volume from the manufacturer to the partners,
represented by the solid arrows, are known. To cultivate a
healthy ecosystem of distribution channel, these unknown
cheating behaviors among partners must be detected.

Usually, the audit staff in a company is responsible to
detect these cheating behaviors, and their work heavily relies



on the process of official examination on the business and
financial records. For some severe cheating cases the judicial
investigation is also required. It is really a tedious process.
Therefore, in this study we aim to provide an automatic
method to guide the audit process and greatly reduce the
manual efforts needed.
Motivating observation. The only data we can use are

the purchase volumes of the partners from the manufacturer.
Here, the purchase volume of each partner can be represent-
ed as a time series, in which each entry corresponds to the
monthly purchase volume. Figure 2 illustrates the time se-
ries of purchase volume of two real-world cheating partners,
where v1 and v2 are the paired cheating seller and cheat-
ing buyer, respectively. Usually, the sales volume of these
two partners may change collectively on the following two
aspects.
• When v1 applies for a falsified big deal from the manu-

facturer, its purchase volume increases at that month. Mean-
while, since v2 buys some products from v1, its purchase
volume from the manufacturer will decrease after v1’s big
deal happens. For example, in Figure 2 v1’s purchase vol-
ume increases in the 5th month while v2’s purchase volume
decreases in the 6th month.
• On the contrary, if v1 does not apply for big deals, it-

s purchase volume decreases. At this time, as v2 can only
purchase the products from the manufacturer, its purchase
volume will increase (if she has the stable product require-
ments). For example, v1’s purchase volume decreases in the
7th month while v2’s purchase volume increases on the 7th

month.
Intuitively, such phenomenon may to some degree be treat-

ed as evidence for cheating behavior. The higher the fre-
quency of the phenomenon is, the stronger the evidence
would be.
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Figure 2: The time series of purchase quantities of two
real-world partners with cheating behaviors

Motivated by the above observations, in this study we
propose the method to detect the cheating behaviors among
the partners. To the best of our knowledge, compared with
some previous qualitative works this is the first quantita-
tive study in this area. In this problem, we are given the
sequences of purchase volume for all the partners, and aim
to rank the partners based on the degree of their cheating
behaviors. This ranking list can be delivered to the audit
staff for further investigation sequentially.
In the following we will present the framework of our

method, discuss the challenges in each step of this frame-
work, and highlight the technical contributions.

2. DETECTION FRAMEWORK
The framework of the solution is shown in Figure 3. It

mainly consists of three steps:
1) Building the Partner Correlation Graph;
2) Partition partners into suspicious sellers and buyers;
3) Ranking the partners by the probabilistic model.

Database of Purchase

Volume Sequences

PCG Building

Graph Modeling

Pair-Wise DPC

Building PCG

Partner Partitioning

Partitioning

Bipartite Graph

Ranking

Cheating Ranking

Ranking of

Cheating

Partners

Figure 3: The framework of cheating detection

2.1 Building the Partner Correlation Graph
Motivated by the observation shown in Figure 2, we actu-

ally need a method to measure the correlation between two
sequences. In this study, we adapt the Pearson correlation
to depict the collective changes of the purchase volumes be-
tween a cheating seller and a cheating buyer. Intuitively,
the opposite tendencies of the two sequences yield a strong
negative correlation between them. Thus, we believe that if
two sequences have strong negative correlation, it is likely
that the abnormal deals happen between the corresponding
partners.

However, Pearson correlation has the following limitations
in this application. First, Pearson correlation is a symmetric
measure, and the order of its two inputs is irrelevant to its
output. It cannot distinguish cheating sellers from cheating
buyers in this application. Thus, an asymmetric measure is
needed here. Second, Pearson correlation is computed with
the tick-to-tick correspondence on the two sequences. How-
ever, an abnormal deal does not necessarily complete during
the same month, but with a delay of several months after the
cheating seller applies for a big deal from the manufacturer.
Thus, we need to consider this time offset in computing the
correlation.

To address these challenges, we leverage the Dynamic
Time Warping (DTW) technique to compute a Directed
Pearson Correlation (DPC) coefficient. DTW is a well-
known method to find an optimal time alignment between
two sequences under certain constraints. In an abnormal
deal, the cheating seller can only sell products to the cheat-
ing buyer in or near after the time when the cheating seller
gets a falsified big deal. Thus, the warping direction must
be from now to future within a time window.

To this end, we propose an asymmetric measure rdpc for
the two sequences x⃗1, x⃗2 of the two partners v1, v2. rdpc(x⃗1, x⃗2)
measures the correlation when we view v1 as a cheating seller
and v2 as a cheating buyer. Similarly, rdpc(x⃗2, x⃗1) measures
the correlation when we view v2 as a cheating seller and v1
as a cheating buyer. Note that rdpc(x⃗1, x⃗2) ̸= rdpc(x⃗2, x⃗1).
The details on computing rdpc will be presented in Section 3.

Therefore, given the n partners with their sequences of
purchase volumes {x⃗i|i = 1, · · · , n} (x⃗i is the sequence of
the partner vi), we can generate a weighted directed graph
G = (V,E,w), where

• V = {v1, · · · , vn} contains the n nodes, where vi corre-
sponds to the partner with the sequence x⃗i;

• E = {(vi, vj)| − rdpc(x⃗i, x⃗j) > η}, where 0 < η < 1 is a
user-specified parameter;

• The weight wij on the edge of (vi, vj) is set to−rdpc(x⃗i, x⃗j).
We call this graph Partner Correlation Graph (PCG for

short). Remember that we aim to identify the negative cor-
relations among partners. Thus, the weight wij is set to the
opposite value of rdpc(x⃗i, x⃗j), and only the directed edges
with the weight values bigger than η exist in this graph.
Figure 4 gives an example of the generated PCG graph with
5 partners when η = 0.1. We use this graph as a running
example in this paper.
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Figure 4: The directed graph of partner correlation

2.2 Partition of Partners
In building the PCG graph we compute the DPC values

in both the two directions between each pair of partners.
In other words, we view each partner as both cheating sell-
er and cheating buyer. For example, when we consider the
edge from v5 to v1 in Figure 4, v1 acts as a cheating buyer.
Meanwhile, on the edge from v1 to v4, v1 acts as a cheating
seller. However, in real world only the partners with abun-
dant capital can be cheating sellers since a large amount
of investment is needed for big deals. Also, these partners
have no incentive to be cheating buyers. On the other hand,
the partners with less capital can only be cheating buyers.
Therefore, the two roles are exclusive, indicating that each
partner can have only one character, i.e. cheating seller or
cheating buyer1.
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Figure 5: The bipartite graph of candidate cheating part-
ners

To meet this requirement, we need a method to parti-
tion the nodes of the graph into two disjoint subsets, i.e. A
and B, representing the sets of suspicious cheating sellers
and buyers respectively. Also, only the edges going from
the source-side A to the sink-side B remain in the graph.
Figure 5 gives an example of the resultant bipartite.
To this end, we actually need a cutting method for a

weighted directed graph G = (V,E,w), aiming to maxi-
mize certain objective function of the partition (A,B) of
V . In this study, we formulate a new cut problem (called
Max-DifCut), which outputs the partition (A,B) (A ∩B =
∅, A ∪B = V ) such that

3wAB − wBA

is maximized, where wAB =
∑

i∈A,j∈B wij is the weight sum
of the edges from A to B, and wBA is defined similarly.
Section 4 will detail why we formulate this new problem

based on the application background. As it is a NP-hard
problem, we give the greedy algorithm for it. The experi-
mental results will empirically show that the ranking perfor-
mance will be significantly improved if the ranking is based
on the resultant bipartite graph after removing the noisy
edges.

2.3 Ranking Partners by Generative Proba-
bilistic Model

Next, we propose the generative probabilistic model to
fit the resultant bipartite with the edge weights. In this
probabilistic model, we assume each partner has two laten-

1To simply this problem, we also assume that the character
of a partner does not change along the time.

t variables α and β, representing the cheating degree as a
cheating seller and a cheating buyer respectively. Specifical-
ly, bigger α indicates higher motivation of being a cheating
seller and smaller β suggests higher motivation of being a
cheating buyer. We suppose that the cheating probability
that partner v1 sells products to v2 can be modeled as a Be-
ta function with the parameters of the α value of the source
node and the β value of the sink node. The modeling process
is to fit the model to the graph so that the cheating probabil-
ity that any partner sells products to another approximates
as much as possible to the weight on the corresponding edge.

With the model parameters we develop the ranking score
for each partner, measuring the degree of cheating either
as seller or buyer. All these details will be presented in
Section 5.

3. DIRECTED PEARSON CORRELATION
In this section, we detail the computing of DPC to build

the PCG graph. First, we introduce the preliminaries on
Pearson correlation and dynamic time warping. Then, we
show how to compute DPC with the DTW technique. Here,
let x⃗ = (x⃗(1), x⃗(2), ..., x⃗(m)) and y⃗ = (y⃗(1), y⃗(2), ..., y⃗(m))
be the two sequences of purchase volumes from the two part-
ners in the past m months, respectively.

3.1 Pearson Correlation
In statistics, a measure of correlation is a numerical value

which describes the strength of a relationship among vari-
ables. Pearson correlation is widely used for analyzing nu-
merical variables such as time series. Giving two sequences x⃗
and y⃗, Pearson correlation can be computed in Equation (1),

r(x⃗, y⃗) :=
1

m − 1

m∑
t=1

(
x⃗(t) − x

δx⃗
)(

y⃗(t) − y

δy⃗
) (1)

where x (y) denotes the average value of the entries in x⃗
(y⃗) and δx⃗ (δy⃗) denotes the standard deviation of x⃗ (y⃗).

Note that the correlation is computed via the tick-to-tick

correspondence by multiplying x⃗(t)−x
δx⃗

and y⃗(t)−y
δy⃗

at the same

time stamp t. Moreover, it is symmetric since r(x⃗,y⃗) = r(y⃗,x⃗)
holds. Pearson correlation ranges from −1 to 1. r = 1
implies that a linear equation describes the relationship be-
tween x⃗ and y⃗ perfectly, with all data points lying on a line
for which y⃗ increases as x⃗ increases. r = −1 implies that
all data points lying on a line for which y⃗ decreases as x⃗
increases. r = 0 implies that there is no linear correlation
between them.

However, Pearson correlation has the following limitations
in this application. First, Pearson correlation is a symmetric
measure, and the order of its two inputs is irrelevant to its
output. It cannot distinguish cheating sellers from cheating
buyers in this application. Thus, an asymmetric measure is
needed in this application. Second, Pearson correlation is
computed with the tick-to-tick correspondence on the two
sequences. However, an abnormal deal does not necessarily
complete during the same month, but with a delay of several
months after the cheating seller applies a big deal from the
manufacturer. Thus, we need to consider this time offset in
computing the correlation.

3.2 Dynamic Time Warping
Next, we briefly introduce the technique of dynamic time

warping, which can be used to transform Pearson correlation
into an asymmetric measure. Dynamic time warping [20] is
a transformation that allows sequences to be stretched a-
long the time axis to minimize the distance between them.
Giving two sequences x⃗ = (x⃗(1), x⃗(2), ..., x⃗(m)) and y⃗ =
(y⃗(1), y⃗(2), ..., y⃗(m)), a local cost measure c(x⃗(i), y⃗(j)) is de-
noted to represent the distance between (x⃗(i), y⃗(j)). Thus,
we can obtain a cost matrix C ∈ Rm×m defined by C(i, j) =
c(x⃗(i), y⃗(j)). Here, an alignment is a warping path p =



(p1, ..., pL) with pl = (il, jl) ∈ [1, ...,m] × [1, ...,m] for l ∈
[1, ..., L] satisfying the following three conditions,

• Boundary condition: p1 = (1, 1) and pL = (m,m).

• Monotonicity condition: i1 ≤ i2 ≤ ... ≤ iL and j1 ≤
j2 ≤ ... ≤ jL.

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}
for l ∈ [1 : L− 1].

The total cost of a warping path p is defined in Equation (2),

cp(x⃗, y⃗) :=

L∑
l=1

c(x⃗(il), y⃗(jl)) (2)

Here, L is the length of the warping path.
An optimal warping path between x⃗ and y⃗ is a warping

path that have minimal total cost. The DTW distance
D(x⃗, y⃗) of two sequences x⃗ and y⃗ is the sum of tick-to-
tick distances after the two sequences have been optimal-
ly warped to match each other, which is denoted in Equa-
tion (3),

d(x⃗, y⃗) := min{cp(x⃗, y⃗) | p is a warping path} (3)

To determine the optimal warping path, a dynamic pro-
gramming algorithm was proposed to solve it. Let d(i, j)
denotes the accumulate distance of (i, j), then the iterative
condition holds as in Equation (4),

d(i, j) := c(x⃗(i), y⃗(j)) + min{d(i − 1, j − 1),

d(i, j − 1), d(i − 1, j)}
(4)

3.3 Directed Pearson Correlation
As discussed in Sections 2.1 and 3.1 we need an asymmet-

ric correlation measure which also considers the time offset
from the source sequence to the sink sequence. Thus, we
adapt the original Pearson correlation by using the DTW
technique. First, we define the following local cost measure
as in Equation (5),

c
′
(x⃗(i), y⃗(j)) :=

x⃗(i) − x

δx⃗
·
y⃗(j) − y

δy⃗
(5)

Similarly, we can define the total cost as Equation 6,

c
′
p(x⃗, y⃗) :=

L∑
l=1

c
′
(x⃗(il), y⃗(jl)) =

L∑
l=1

(
x⃗(il) − x

δx⃗
)(

y⃗(jl) − y

δy⃗
), (6)

where (il, jl) = pl denotes an element of a warping path p.
Then, we can find an optimal alignment p∗ = (p∗1, ..., p

∗
L),

which has the minimal total cost c′p∗(x⃗, y⃗).
To avoid degenerated matching, by which we mean a rel-

atively small section of one sequence maps onto a relatively
large section of another, the warping path is often limit-
ed by global constraints. The warping scope s is the area
that the warping path is allowed to visit in warping matrix.
The Sakoe-Chiba band [18] is a well-known constraint that
restricts the warping path to the range of |il− jl| ≤ s. How-
ever, in our application a cheating seller can only sell the
products to a cheating buyer in or near after the month. To
address this issue, we propose a more restricted constraint,
namely 0 ≤ jl − il ≤ s. As illustrated in Figure 6, when
s = 2 the black and grey areas denote all probable warp-
ing elements between x⃗ and y⃗ under this constraint, and the
black areas denote the optimal warping path.
Thus, the DPC value of two sequences x⃗ and y⃗, denoted

by rdpc(x⃗, y⃗), is given in Equation (7),

rdpc(x⃗, y⃗) :=min{
1

L − 1
c
′
p(x⃗, y⃗) | p is a warping path

satisfying the constraint, L = |p|}
(7)

Note that it is easy to prove that rdpc(x⃗, y⃗) ≤ r(x⃗, y⃗) always
holds for any two sequences x⃗ and y⃗ since Pearson correlation
is a special case of DPC when s = 0. Also, it is clear that
rdpc(x⃗, y⃗) ̸= rdpc(y⃗, x⃗), indicating rdpc(x⃗, y⃗) is an asymmetric
measure.

Algorithm 1 gives the process of computing rdpc. After
the initialization in Lines 1 through 8, Lines 9 through 14
compute the optimal warping value. Line 15 gets the size of
optimal warping path. Line 16 computes the value of rdpc.

~y(1)

~x(m)~x(1)

~y(m)
s

s

Figure 6: DTW with a warping scope constraint s (s = 2)

Algorithm 1 Computing DPC

Input:
two sequences: x⃗ and y⃗
the user-specified warping scope s

Output:
rdpc(x⃗, y⃗)

1: m := |x|
2: dtw[] := new[m × m]
3: for i := 0; i < m; i + + do
4: for j := 0; j < m; j + + do
5: d(i, j) := ∞
6: end for
7: end for
8: d(0, 0) := 0
9: for i := 1; i < m; i + + do
10: for j := i; j < m and j ≤ i + s; j + + do

11: c :=
x⃗(i)−x

δx⃗
· y⃗(j)−y

δy⃗

12: dtw(i, j) := c + min{d(i − 1, j),
d(i, j − 1), d(i − 1, j − 1)}

13: end for
14: end for
15: L := |p∗|

//the length of the optimal warping path p∗

16: rdpc(x⃗, y⃗) := 1
L−1 × dtw(m − 1,m − 1)

17: return rdpc(x⃗, y⃗)

With the proposed DPC measure we can exhaustively
compute this value on the two directions of each pair of
partners, and then build the PCG graph as discussed in
Section 2.1. Figure 4 shows an example of this graph. Note
that only the edges with strong negative correlations remain
in the resultant PCG graph.

4. PARTITION OF PARTNERS
In the PCG graph it is possible that a node has both

out-edges and in-edges. The nodes with both out-edges and
in-edges are considered as both cheating sellers and cheating
buyers simultaneously. However, in reality each partner can
act as only one character, namely cheating seller or cheating
buyer. With this requirement we need a method to partition
the nodes of the graph into two disjoint subsets, i.e. A and
B, representing the sets of suspicious cheating sellers and
buyers respectively. Only the edges going from the source-
side A to the sink-side B remain in the graph. In other
words, this method is to remove some edges, ensuring that
each partner can only have either in-edges or out-edges.

Specifically, the task is to find a cut set in a directed
weighted graph such that certain objective function of the
partition (A,B) of V is maximized. It can be used to re-
move the noisy edges in the PCG graph. The empirical
experiments will show that the ranking performance based
on the resultant bipartite is significantly better than that on
the PCG graph. All the notations used here are summarized
in Table 1.



Table 1: List of Symbols
Symbol Meaning

A the node set for cheating sellers
B the node set for cheating buyers

wAB the weight sum of all the edges from A to B

wiB
the weight sum of all the edges from node vi
to all the nodes in B

wAj
the weight sum of all the edges from all the
nodes in A to node vj

wi∗
the weight sum of all the edges from node vi
to all the other nodes

w∗j
the weight sum of all the edges from all the
other nodes to node vj

wG the total weight of edges in G

4.1 Problem Formulation of Max-DifCut

A

B

vi

(a) ∆wA
i

A

B vi

(b) ∆wB
i

Figure 7: The illustration of cheating degree for node vi
in the bipartite

Most of the previous studies in this area focus on the prob-
lem of Max-DiCut [14], which outputs the partition (A,B)
of V (A ∩ B = ∅, A ∪ B = V ) such that wAB is maximized,
where wAB =

∑
i∈A,j∈B wij is the weight sum of the edges

from A to B.
In this work, we formulate a new graph cut problem,

called Max-Difference CUT (Max-DifCut for short), on the
directed weighted graph. In the following we detail how this
new problem is motivated by the application background of
cheating detection.
Assume we have a partition (A,B) of V , where A and B

are the sets of cheating sellers and buyers respectively. Based
on this partition, we can propose the following measure ∆wi

to check the degree that node vi is a cheating partner, either
as seller or buyer,

∆wi =

{
∆wA

i = wiB − w∗i, if vi ∈ A

∆wB
i = wAi − wi∗, if vi ∈ B

(8)

In the above equation we consider the two situations,
namely vi ∈ A (when vi is a cheating seller) and vi ∈ B
(when vi is a cheating buyer). First, as shown in Figure 7(a),
when vi ∈ A this measure is defined as wiB−w∗i. Here, wiB

is the weight sum of the edges from node vi to any node in B
(the weight sum of all the solid-arrow lines), actually mea-
suring the amount of all the possible cheating behaviors if
node vi is a cheating seller; w∗i is the weight sum of the
edges from any other node to node vi (the weight sum of
all the dash-arrow lines), measuring the amount of noises
if node vi is a cheating seller. Thus, the bigger this differ-
ence of wiB −w∗i, the more likely that node vi is a cheating
seller. Second, as shown in Figure 7(b), when vi ∈ B this
measure is defined as wAi − wi∗. Similarly, the weight sum
of solid-arrow lines represents wAk and that of dash-arrow
lines represent wi∗. The bigger this difference of wAi −wi∗,
the more likely that node vi is a cheating buyer.
Therefore, we aim to find the partition in which this mea-

sure on each node is as big as possible. By adding these
measures on all the nodes we get the objective function as
in Formula 9 and can transform it into Formula 10,∑

vi∈A

(wiB − w∗i) +
∑

vj∈B

(wAj − wj∗) (9)

= (wAB − w∗A) + (wAB − wB∗)

= 3wAB − wBA − wG (10)

Note that wG in Formula 10 is a constant for any graph G.
Therefore, we aim to find a partition (A,B) of E such that
3wAB − wBA is maximized.

4.2 Solution to Max-DifCut

A' v1 v3

B' v2 v4

v5

(a) ∆wA′
3

A' v1

B' v2 v4

v5

v3

(b) ∆wB′
3

Figure 8: The illustration for ∆w′
3 in Max-DifCut. Only

the edges on v3 are shown

Similar to the classical Max-DiCut problem, the hardness
of Max-DifCut is also NP-hard [2]. Thus, we need the ap-
proximate algorithm to solve it. In this study we develop a
greedy algorithm for this problem 2.

As shown in Algorithm 2, it performs iteratively. Let
A′, B′ be the sets of cheating sellers and cheating buyers
respectively in the current round. At the beginning, A′, B′

are both empty sets. Then, in each round we select one node
which maximizes certain greedy function, and put it into A
or B. Based on the problem formulation, Equation (8) can
be naturally adapted as the greedy function. Specifically,
this greedy function ∆w′

i is defined as

∆w
′
i =

{
∆wA′

i = (wi∗ − wiA′ ) − w∗i, if vi ∈ A′

∆wB′
i = (w∗i − wB′i) − wi∗, if vi ∈ B′ (11)

Here, wiB and wAi in Equation (8) are substituted with
(wi∗ − wiA′) and (w∗i − wB′i) respectively. It is based on
the fact that for the current sets of A′, B′, (wi∗ −wiA′) and
(w∗i − wB′i) are actually the upper bounds of wiB and wAi

respectively. Take the upper bound of wiB as an example.
For vi, the nodes on the out-edges of vi is denoted by V out

i =
{vj |(i, j) ∈ E}. It can be divided into two parts with the
current A′, namely V out

i ∩A′ and V out
i −A′. If we put all the

nodes in V out
i −A′ into B, then wiB is equal to (wi∗−wiA′).

Thus, for the current A′, (wi∗ −wiA′) is the upper bound of
wiB .

Then, with the definition of ∆w′
i, Lines 3 through 7 in Al-

gorithm 2 compute ∆w′
i of all the nodes, and Line 8 chooses

the node that maximizes ∆w′
i. We use the example in Fig-

ure 4 to describe the running process.
• Round 1. At the beginning with A′ = {}, B′ = {},

∆wA′
1 reaches the maximal value. Thus, we put node v1 into

A′. Meanwhile, in order to make ∆w1 in the final partition

equal to ∆wA′
1 , we also put all the nodes on the out-edges

of v1, namely nodes v2 and v4, into B′. This is conducted
by Lines 9 through 16 in Algorithm 2. After this round,
A′ = {v1}, B′ = {v2, v4}.

• Round 2. Next, for the second round we compute the

values of ∆wA′
3 ,∆wB′

3 ,∆wA′
5 ,∆wB′

5 . The sub-figures in Fig-

ure 8 illustrate the process for computing ∆wA′
3 ,∆wB′

3 re-
spectively.

As shown in Figure 8(a), we compute ∆wA′
3 if v3 is put

into A′. Here, v3 has 4 outedges. However, since currently
v1 ∈ A′ the weight on the edge of (v3, v1) cannot be consid-
ered. Thus, we have

∆w
A′
3 = (w3∗ − w31) − w∗3 = (w35 + w32 + w34) − w∗3 = −0.65

2The technique of Semi-Definite Programming (SDP) can
also be used here, and will be discussed in Section 7 for the
related work.



Similarly, as shown in Figure 8(b), we compute ∆wB′
3 if v3

is put into B′. Here, v3 has 3 inedges. However, since cur-
rently v2 ∈ B′, v4 ∈ B′ the weights on the edges of (v2, v3)
and (v4, v3) cannot be considered. Thus, we have

∆w
B′
3 = (w∗3 − (w23 + w43)) − w3∗ = w53 − w3∗ = −0.6

Again, we can get ∆wA′
5 = −0.75, ∆wB′

5 = −0.7. Clearly,

∆wB′
3 is the maximal value among ∆wA′

3 ,∆wB′
3 ,∆wA′

5 ,∆wB′
5 .

Thus, we put node v3 into B′. Then, we consider all the n-
odes on the in-edges of node v3, namely v2,v4,v5. Since v2
and v4 are already in B′, we can only put v5 into A′. Finally,
the partition result is as follows,

A = {v1, v5}, B = {v2, v3, v4}

Algorithm 2 The Greedy Algorithm (Max-DifCut)

Input:
a directed graph G = (V,E,w)

Output:
a bipartite graph with E′ := {(vi, vj) ∈ E
| vi ∈ A and vj ∈ B}

1: n := |V |, A′, B′ := {}
/∗ A′ and B′ denote current set of A and B ∗/

2: while A′ ∪ B′ ̸= V do
3: for all i /∈ A′ and i /∈ B′ do

4: ∆wA′
i := (wi∗ − wiA′ ) − w∗i

5: ∆wB′
i := (w∗i − wB′i) − wi∗

6: ∆w′
i := max(∆wA′

i ,∆wB′
i )

7: end for
8: k := argmaxi ∆w′

i

9: if ∆w′
k = ∆wA′

k then

10: add vk to A′

11: add all vj to B′ if (vk, vj) ∈ Ek∗ and vj /∈ A′

/∗ Ek∗ denotes all out-edges of node vk ∗/
12: end if

13: if ∆w′
k = ∆wB′

k then

14: add vk to B′

15: add all vj to A′ if (vj , vk) ∈ E∗k and vj /∈ B′

/∗ E∗k denotes all in-edges of node vk ∗/
16: end if
17: end while
18: return A′, B′

5. RANKING PARTNERS
In this section, we will detail the method of ranking part-

ners. We first introduce the basic ranking method which
is motivated by partition process. Then we demonstrate a
probabilistic ranking model, and give the ranking function
based on it.

5.1 Ranking based on Edge Weights of the Bi-
partite

Here, we discuss the ranking methods using only the edge
weights on the resultant bipartite.
Given the partition (A,B) of V generated by the proposed

graph cut method, ∆wi in Equation (8) can be naturally
adopted as the ranking score, namely

score(i) = ∆wi (12)

we call this ranking method Cut Rank, since the graph cut
method is performed to generate the bipartite firstly.

5.2 Probabilistic Model to Generate Partner
Correlation Graph

Next, we propose a probabilistic model to generate the
weighted graph G = (V,E,w), and use the resultant model
parameters to rank partners. Note that this probabilistic
model can be applied to any weighted graph G, e.g. the
original PCG graph and the bipartite graph after partition-
ing.
The modeling process is to fit the model to the graph

data so that certain objective function is minimized. Here,

the objective function consists of two parts, i.e., data fitting
and model complexity. The former one guarantees that the
trained model represents the observed data while the second
one avoids the over-fitting situation.

Formally, let θ denotes the set of model parameters, p(wij |θ)
denotes the probability that wij is sampled given θ, and C(θ)
denotes the model complexity function. Then, the objective
function L(G,θ) is defined as

L(G, θ) = −
∑

(vi,vj)∈E

log p(wij |θ) + λ · C(θ) (13)

where λ ∈ [0,+∞] is a trade-off parameter to adjust the
relative importance between the two terms. In the following
we give the design of p(wij |θ) and C(θ).

The design of p(wij |θ). In this model we consider the
motivation of being a cheating seller and a cheating buyer,
separately. Specifically, we assume that each node vi has
two latent variables, αi and βi. The former indicates how
much likely the partner will cheat as cheating seller while
the latter as cheating buyer. Specifically, bigger α indicates
higher motivation of being a cheating seller and smaller β
suggests higher motivation of being a cheating buyer.

Given two nodes vi and vj , the probability of vi selling
products to vj , denoted by pij , is modeled as a Beta distri-
bution in Equation (14).

Beta(pij ;αi, βj) =
Γ(αi + βj)

Γ(αi)Γ(βj)
p
αi−1

ij (1 − pij)
βj−1

(14)

where Γ(x) = (x − 1)! is the Gamma function. In other
words, pij , modeling the probability of vi selling products to
vj , obeys the Beta distribution with the parameter (αi, βj).

Figure 9 shows the probability density function of pij for
different combinations of (αi, βj) when αi > 1,βj > 1. We
can see that for large αi and small βj , pij is more probable
to be close to 1, indicating a high probability of cheating
behavior from vi to vj . On the other hand, if αi is small and
βj is large, pij tends to be small, leading to a low probability
of cheating from vi to vj . It is intuitively reasonable since
cheating is more likely to happen in pairs if one has high
probability of being a cheating seller and the other has high
probability to be a cheating buyer.
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Figure 9: The probability density function of pij for dif-
ferent combinations of (αi,βj)

To fit the graph data, we would like to choose the proper
latent variables (i.e. α and β) for each node so that it is
the most probable that wij can be generated by θ. In other
words, p(wij |θ) in Equation (13) can be defined as follows,

p(wij |θ) = Beta(wij ;αi, βj) =
Γ(αi + βj)

Γ(αi)Γ(βj)
w

αi−1

ij (1 − wij)
βj−1

(15)

The design of C(θ). To avoid the over fitting, we con-
strain the update of the model parameters from the original
ones. Formally, let α′ and β′ denote the initial values for all
the nodes before training. This term is thus designed as

C(θ) =
∑

vi∈V

DKL(αi, βi;α
′
, β

′
) (16)



It actually limits the KL Divergence between the two Beta
functions of final parameter values and the initial ones. It
controls the modification on the parameters cannot go far.
We can further compute DKL(αi, βi;α

′, β′) as follows,
DKL(αi, βi;α

′
, β

′
)

=

∫ 1

0

f(x;α
′
, β

′
) · ln

f(x;α′, β′)

f(x;αi, βi)
dx

=

∫ 1

0

f(x;α
′
, β

′
) ln f(x;α

′
, β

′
)dx −

∫ 1

0

f(x;α
′
, β

′
) ln f(x;αi, βi)dx

= ln
B(αi, βi)

B(α′, β′)
+ (α

′ − αi)Ψ(α
′
) + (β

′ − βi)Ψ(β
′
)

+ (αi − α
′
+ βi − β

′
)Ψ(α

′
+ β

′
)

(17)

where Ψ(x) is the digamma function, B(·) is the beta func-
tion and f(x;α, β) is the probability density function of
Beta(α, β).
Model learning. To learn the parameters to minimize

the objective function in Equation (13) we use the gradient
descent method, shown in Algorithm 3. The general idea
is to first assign the initial values to the parameters and
compute the partial derivatives for them. Then, at each
iteration the parameters are updated based on the partial
derivatives until convergence. After some empirical studies
we find that the change of the initial values α′ and β′ do
not change the final ranking order of partners. Thus, we set
α′ = 10, β′ = 10 in this study.
The partial derivatives is shown as follows,

∂L
∂αi

= −
∑

(vi,vj)∈E

∂log p(wij |θ)
∂αi

+ λ ·
∂C

∂αi

(18)

∂L
∂βj

= −
∑

(vi,vj)∈E

∂log p(wij |θ)
∂βj

+ λ ·
∂C

∂βj

(19)

where

∂log p(wij |θ)
∂αi

= logwij − Ψ(αi) + Ψ(αi + βj)

∂log p(wij |θ)
∂βj

= log(1 − wij) − Ψ(βj) + Ψ(αi + βj)

∂C

∂αi

= Ψ(αi) − Ψ(α
′
) − Ψ(αi + βi) + Ψ(α

′
+ β

′
)

∂C

∂βj

= Ψ(βj) − Ψ(β
′
) − Ψ(αj + βj) + Ψ(α

′
+ β

′
)

Algorithm 3 Parameter learning of the probabilistic model

Input: a directed graph G = (V,E,w), the parameter λ
1: initialize αk := α′, βk = β′ for all nodes vk ∈ V
2: repeat
3: for all vk ∈ V do
4: initialize ∇αk = λ · ∂C

∂αk
,∇βk = λ · ∂C

∂βk

5: end for
6: for all (vi, vj) ∈ E do
7: ∇αi := ∇αi − (logwij −Ψ(αi) + Ψ(αi + βj))
8: ∇βj := ∇βj − (log(1− wij)−Ψ(βj) + Ψ(αi + βj))
9: end for
10: ∇α̂ = maxi(|∇αi|),∇β̂ = maxj(|∇βj |)
11: for all vk ∈ V do

12: αk := αk − ∇αk
∇α̂

13: βk := βk − ∇βk

∇β̂

14: end for
15: until convergence

5.3 Ranking based on the Probabilistic Model
After we learn the latent variables of all the nodes (i.e. αi

and βi for i = 1, · · · , n), for any edge (vi, vj) ∈ E we can
compute the expected value of pij as follows,

πij =
αi

αi + βj

(20)

Here, πij is the expected value of the Beta distribution with
the parameters of (αi, βj).

Ranking on the bipartite with the probabilistic
model. Then, after we perform the probabilistic model on
the bipartite the new ranking score can be defined as

score(i) =

{
πiB − π∗i, if vi ∈ A
πAi − πi∗, if vi ∈ B

(21)

where πiB =
∑

(vi,vj)∈E∧vj∈B πij , π∗i =
∑

(vj ,vi)∈E πji,

and πAi, πi∗ are defined similarly.
This ranking score is obtained by replacing wij in Equa-

tion (8) with πij . We call this ranking method Cut ProbRank
since both the graph cut method and the probabilistic model
are used. The empirical experiments will show that the new
ranking method with the support of the probabilistic model
significantly outperform the original method based on the
edge weights.

6. EXPERIMENTAL EVALUATION
In this section, we detail the experimental results on a

real-world data set from a world-wide IT company.

6.1 Data Set and Evaluation Metrics
The data set for evaluation is from the market channel of

a world-wide IT company. We have two kinds of partner-
s, namely gold membership partners and silver membership
partners. We have totally 104 gold membership partner-
s and 424 silver membership partners. For each partner
the sequence of its monthly purchase volume is provided.
The time interval of the sequence is from January 2009 to
December 2012, a total of 48 months. The following experi-
ments are conducted on the following two groups of partners,
namely gold membership partners (Gold for short), and all
the partners (All for short).

Moreover, we have a blacklist of real cheating partners as
the ground truth data. There are 17 (85) true cheating part-
ners out of the gold (silver) membership partners3. Thus,
we aim to rank the real cheating partners as high as pos-
sible by the proposed method. Thus, the proposed model
will provide some guidance for the audit work and greatly
reduce the manual efforts for the judicial examination of the
business and financial records.

With the blacklist of M true cheating partners, we de-
velop the following metrics to measure how high these real
cheating partners are ranked by the proposed method. For
a number k, we can count the number of hits on the real
cheating partners in the top-k ranking list. Then, we define
precision, recall, and F1 as follows,

precision@k =
Number of hits in the top-k list

k

recall@k =
Number of hits in the top-k list

M

F1@k = 2 ·
precision@k × recall@k

precision@k + recall@k

(22)

Clearly, the above metrics all depend on k. Thus, we
can plot the curves as shown in Figure 10, where the X-
axis represents k and the Y -axis shows the metric values.
Then, for each of the three curves we can calculate the Area
Under Curve (AUC) metric. These three values are denot-
ed as AUC p,AUC r,AUC F1 for the curves of precision,
recall and F1 respectively. Note that the higher values of
these three metrics indicate better performances of a rank-
ing method.

6.2 Experiment Summary and Methods
Here, we summarize the experimental results we plan to

empirically show and discuss the compared methods. Specif-
ically, we will show the following results.
3Note this blacklist does not distinguish true cheating sellers
from true cheating buyers.



Table 2: Summary of the ranking methods for comparison
Name Description

PearsonRank the undirected graph used
Noncut Rank the directed graph used, without the graph cut method, without the probabilistic model, Equation (23)

Noncut ProbRank the directed graph used, without the graph cut method, with the probabilistic model, Equation (24)
Cut Rank the directed graph used, with the graph cut method, without the probabilistic model, Equation (12)

Cut ProbRank the directed graph used, with the graph cut method, with the probabilistic model, Equation (21)
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Figure 10: The example curves of precision, recall and
F1 score

1) Asymmetric correlation measure. First, we will
show the proposed asymmetric correlation measure is effec-
tive in this ranking task. In other words we will show that
the ranking methods based on the asymmetric correlation
measure are significantly better than the ones based on the
symmetric correlation measure.
For this comparison we propose a ranking method based

on the symmetric Pearson correlation. The computing pro-
cess is as follows: 1) for each pair of partners we compute
the symmetric Pearson correlation between the correspond-
ing two sequences of sales volumes; 2) generate an undirect-
ed graph of partner correlation, where each node represents
individual partner and the edge weight is set to the negative
value of the Pearson correlation value between the linked
two nodes. A user-specified parameter 0 < η < 1 can also
used here to remove the edges with the weights smaller than
η; 3) for each node the ranking score is defined as the weight
sum of its linked edges. We call this method PearsonRank.
2) Partitioning of partners for edge removing. Sec-

ond, we will show that the proposed method of Max-DifCut
helps to improve the ranking performance. In other words,
we will empirically show that ranking on the resultant bi-
partite from Max-DifCut is significantly better than ranking
on the original PCG graph.
For this comparison, we propose the following ranking s-

core for any node vi on the original directed PCG graph,
score(i) = |wi∗ − w∗i| (23)

It is actually the difference of the weight sum of its out-edges
and in-edges. We call this ranking method Noncut Rank
since there is no the graph cut method used in advance.
3) Probabilistic model to generate the graph. Third,

we will show that the ranking methods based on the learned
parameters of the proposed probabilistic model are signifi-
cantly better than the ones based on the edge weights. We
show this on both the generated bipartite and the original
PCG graph.
•On the generated bipartite we actually have two rank-

ing methods, namely Cut Rank (detailed in Section 5.1)
and Cut ProbRank (detailed in Section 5.3). We will show
that Cut ProbRank is significantly better than Cut Rank
in terms of ranking performance.
•On the original PCG graph we already have the method

ofNoncut Rank (in Equation (23)) based on the edge weight-
s. Similarly, based on the probabilistic model we propose
the following ranking score for any node vi on the original
directed PCG graph,

score(i) = |πi∗ − π∗i|, (24)

where πi∗ =
∑

(vi,vj)∈E πij , and π∗i =
∑

(vj ,vi)∈E πji. This

ranking score is obtained by replacing wij in Equation (23)
with πij . We call this ranking method Noncut ProbRank s-

ince the probabilistic model is used here, however, the graph
cut method is not used. We will show thatNoncut ProbRank
is significantly better than Noncut Rank in terms of rank-
ing performance.

For easy-reading we summarize all the ranking methods
for comparison in Table 2.

4) Different Parameter Settings. Finally, we will also
show that the above experimental results are consistent with
different parameter settings. In our methods we have the fol-
lowing three parameters, i.e. the dynamic warping scope s,
the threshold η (for removing those edges whose correlations
are not negative enough), and the parameter λ used in the
probabilistic model. The ranges for these parameters are
discussed as follows.

•DTW Scope s. Through market investigation, a partner
can only store the products at most for 3 months. Thus, we
select s from {1, 2, 3}.

•Threshold η. we set up a threshold η to remove those
edges whose correlations are not negative enough. For a big
η, the resultant graph will contain the isolated nodes which
do not have any in-edges and out-edges, and without any
linked edges the ranking function on these isolated nodes
becomes useless. Thus, we need the range of η so that the
generated graph is a connected one. Table 3 shows this range
of η for different settings of s on the two data sets. In this
study, we select the η value by the step of 0.1.

•For probability ranking methods (i.e. Noncut ProbRank
and Cut ProbRank), we set λ to 0.1 by default. We will al-
so empirically show that λ affects the ranking performance
of the probabilistic model.

Table 3: The parameter settings
Dataset s η

Gold
1 {0,0.1,0.2,0.3}
2 {0,0.1,0.2,0.3,0.4}
3 {0,0.1,0.2,0.3,0.4,0.5}

All
1 {0,0.1,0.2,0.3}
2 {0,0.1,0.2,0.3,0.4}
3 {0,0.1,0.2,0.3,0.4,0.5}

6.3 Experimental Results
Table 4: The best performance of each method

Dataset Method
AUC

AUC p AUC r AUC F1

Gold

PearsonRank 20.58 56.41 26.07
Noncut Rank 20.75 59.62 28.11
Noncut ProbRank 24.39 67.29 31.82
Cut Rank 27.40 70.91 35.22
Cut ProbRank 29.11 71.79 36.56

All

PearsonRank 101.00 308.36 139.70
Noncut Rank 82.00 259.64 111.64
Noncut ProbRank 106.09 295.71 135.36
Cut Rank 120.68 345.45 162.27
Cut ProbRank 143.79 373.55 182.59

Table 5: The average performance of each method

Dataset Method
AUC

AUC p AUC r AUC F1

Gold

PearsonRank 19.80 56.22 25.82
Noncut Rank 15.01 50.05 21.68
Noncut ProbRank 17.62 54.58 24.36
Cut Rank 23.94 64.62 31.35
Cut ProbRank 24.77 66.31 32.27

All

PearsonRank 99.48 303.86 137.50
Noncut Rank 73.47 246.79 104.26
Noncut ProbRank 79.27 255.49 109.78
Cut Rank 110.17 372.87 150.48
Cut ProbRank 120.87 339.37 160.05



Table 6: The t-test on each pair of methods

Dataset Pairs of Methods p-value

Gold

(Noncut Rank,Noncut ProbRank) 4.67× 10−4

(Cut Rank,Cut ProbRank) 1.47× 10−2

(Noncut Rank,Cut Rank) 1.57× 10−7

(Noncut ProbRank,Cut ProbRank) 1.90× 10−7

All

(Noncut Rank,Noncut ProbRank) 3.33× 10−2

(Cut Rank,Cut ProbRank) 1.52× 10−4

(Noncut Rank,Cut Rank) 3.43× 10−11

(Noncut ProbRank,Cut ProbRank) 2.46× 10−9

Recall that the ranges of s and η for the two data sets
are shown in Table 3. On each setting of s and η we can
compute the values of AUC p, AUC r, and AUC F1 for
each method. Then, for each method the best value and
the average value over all the parameter settings are shown
in Tables 4 and 5. For each pair of the ranking methods
on the directed graph we also perform the t-test to check
whether the performance difference of the corresponding two
methods is statistically significant. The p-values for each
pair of methods are shown in Table 6. With these three
tables we have the following findings:
• The ranking of the four methods on the directed graph

is Cut ProbRank > Cut Rank > Noncut ProbRank >
Noncut Rank in terms of the best performance and the av-
erage performance. Note that as shown in Table 6 this per-
formance ranking is statistically significant when the p-value
threshold is set to 0.05. Also, this ranking holds on the two
data sets of Gold and All. As a whole, Cut ProbRank with
the graph cut method and the probabilistic model outputs
the best performance.
• In terms of both the best performance and the average

performance the methods of Cut ProbRank and Cut Rank
are better than PearsonRank on both the two data sets of
Gold and All4. It indicates that the asymmetric correlation
measure helps to improve the ranking performance.
• We can see that: the ranking on the resultant bipartite

is always better than the one on the original PCG graph
(Cut ProbRank > Noncut ProbRank and Cut Rank >
Noncut Rank). It indicates that the proposed method of
Max-DifCut removes some noisy edges on the original PCG
graph, and then helps to improve the ranking performance.
• Additionally, we can also see that the ranking based

on the probabilistic model is always better than the one
based on the edge weights (Cut ProbRank > Cut Rank
and Noncut ProbRank > Noncut Rank). It indicates that
the proposed probabilistic model helps to further improve
the ranking performance. The new ranking method is based
on the values of πij on any edge from vi to vj . The value
of πij is actually the adjustment of the corresponding edge
weight wij . These empirical experiments show this adjust-
ment significantly improves the ranking performance.
• For each method with the parameters for the best per-

formance we also plot its curves of precision, recall, and F1
along the the increase of k. These curves are shown in Fig-
ure 11. Check the Figures 11a, 11b, 11c for the data set
All (the figures for the data set Gold show the similar re-
sults). We can clearly see that the curves for the method
Cut ProbRank are always at the topmost. As shown in Fig-
ure 11a, the precision of Cut ProbRank at k = 30 is around
60%. It means that more than half of the partners in its
top-30 ranking list are true cheating partners. This is really
a great achievement considering that our method is totally
unsupervised. For the other methods the precision values
are all below 30%.
Moreover, we check how the parameters of s and η affec-

t the ranking performance of Cut ProbRank method. As
shown in Figure 12, the increase of s brings better rank-
ing performance. Since bigger s allows larger time delay

4Since the method of PearsonRank has only one parameter
η we do not perform the t-test between this method and the
other ones.

when computing the DPC value, it indicates that cheating
behaviors may happen with three-month time delay. Also,
Figure 12 shows that the smaller η generates better rank-
ing performance. This may indicate that the edges with the
small weight values are still important for this ranking task.
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Figure 12: Evaluation on the impact of s and η for
Cut ProbRank

Finally, Figure 13 shows how parameter λ affects the rank-
ing performance of Cut ProbRank and Noncut ProbRank,
the two probabilistic methods. For Cut ProbRank, the in-
crease of λ slightly decreases its ranking performance. We
explain this observation as follows. Cut ProbRank perform-
s the probabilistic model on the bipartite after removing the
noisy edges by the graph cut method. Since the edges re-
maining in the bipartite are quite clean, completely fitting
the data with λ = 0 outputs the best performance. On the
contrary, Noncut ProbRank performs to fit all the edges in
the original PCG graph without removing the noisy edges.
At this time, the increase of λ helps to constrain the change
of the model parameters, and thus very slightly improve the
ranking performance.
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Figure 13: Evaluation on the impact of λ for
Cut ProbRank and Noncut ProbRank when s = 3 and η = 0

7. RELATED WORK
In this section, we review the related work to this study.

First, we list some previous works on applying Pearson cor-
relation and dynamic time warping to real world applica-
tions. Then, we discuss the previous works on the graph cut
methods.

Pearson correlation. Pearson correlation [12] is a well-
known measure of linear correlation of two dependent vari-
ables. This method was first developed by Karl Pearson and
is widely used to measure the similarity between pair-wise
time series. Liao [21] used this measure for clustering time
series. Papadimitriou et al. [17] proposed a local correlation
measure to track the correlation among time-evolving time
series. Xiong et al. [22] explored the upper bound of Pear-
son correlation to identify strongly correlated pair-wise time
sequences. Kawale et al. [7] used the correlation measure to
discover dipoles, which represent long distance connections
between the pressure anomalies of two distant regions that
are negatively correlated with each other. Their contribu-
tion is to propose the method to evaluate the significance
of the correlations. We also tried this significance measure
in our application. However, the experiments show that re-
moving the correlations with small significance values does
not clearly improve the ranking performance for our task.
Note that all the correlation measures used in these studies
are symmetric.
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Figure 11: The evaluation curves of the best performance of each method

Dynamic time warping. Dynamic time warping is
widely used in various fields such as bioinfomatics, chem-
ical engineering and robotics etc. [1, 11, 15, 19]. Keogh
et al. [8] applied DTW technique for exactly indexing time
series from large database by proposing a lower bound of
DTW distance. In [9] and [10], DTW is modified to ap-
proximate high level abstraction of data and track the local
accelerations and decelerations in the time axis.
By introducing DTW technique with the forward warping

direction to Pearson correlation, we develop the measure of
Directed Pearson Correlation. The forward warping direc-
tion is motivated by the fact that the cheating deals between
cheating sellers and cheating buyers cannot be completed at
the same month of the falsified deals, but with a time delay
up to 3 months. This directed measure helps to differen-
tiate cheating sellers and cheating buyers, and improve the
ranking performance as shown by the empirical experiments.
Graph cut methods. In this study, motivated by the

application background of cheating detecting we propose a
new graph cut problem, called Max-DifCut, with the objec-
tive function of 3wAB − wBA (detailed in Equation (10)).
Most of the studies in this area focus on the Max-DiCut
problem with the objective function of wAB and propose
the greedy and SDP solutions [3, 4, 5, 14]. We also tried
the SDP solution to the new problem. The SDP solution
achieves the bipartite with the bigger value of the objective
function. However, the ranking on the bipartite from the
SDP solution does not improve clearly. Thus, in this paper
we only discuss the greedy solution to this new problem.

8. CONCLUSION AND FUTURE WORK
In this paper we address the problem of detecting cheat-

ing in the distribution channels. Our solution consists of
three modules: 1) use the developed directed Pearson cor-
relation measure to build the directed Partner Correlation
Graph; 2) Partitioning the graph by the Max-DifCut task;
3) Ranking based on the probabilistic model, which fits the
bipartite graph (generated by the second step). The exper-
iments show that the method Cut ProbRank with all these
modules achieves the best performance with the statistical
significance in ranking the cheating partners.
The current work only considers the increase or decrease

tendency in computing the correlation of two sales-volume
sequences. In the future we will consider the quantities each
partner buys from the manufacturer to further improve the
performance. Also, we will further explore the situation that
the character of a partner can change with time. At last,
the proposed pairwise correlation measure may not work
well when the groups of partners collude in the distribution
channel. We will try to combine the Granger Causality [13]
with current DPC to address this problem.
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