
Deep Headline Generation for Clickbait Detection
Kai Shu∗, Suhang Wang†, Thai Le†, Dongwon Lee†, and Huan Liu∗

∗Arizona State University, {kai.shu, huan.liu}@asu.edu
†Penn State University, {thai.le, dlee}@ist.psu.edu, szw494@psu.edu

Abstract—Clickbaits are catchy social posts or sensational
headlines that attempt to lure readers to click. Clickbaits are
pervasive on social media and can have significant negative
impacts on both users and media ecosystem. For example,
users may be misled to receive inaccurate information, or fall
into click-jacking attacks. Similarly, media platforms could lose
readers’ trust and revenues due to the prevalence of clickbaits.
To computationally detect such clickbaits on social media using
supervised learning framework, one of the major obstacles is the
lack of large-scale labeled training data, due to laborious and
costly labeling. With the recent advancements in deep generative
models, to address this challenge, we propose to generate synthetic
headlines with specific styles and explore their utilities to help
improve clickbait detection. In particular, we propose to generate
stylized headlines from original documents with style transfer.
Furthermore, as it is non-trivial to generate stylized headlines
due to several challenges such as the discrete nature of texts
and the requirements of preserving semantic meaning of the
document while achieving style transfer, we propose a novel
solution, named as Stylized Headline Generation (SHG), that can
not only generate readable and realistic headlines to enlarge
original training data, but also helps improve the classification
capacity of supervised learning. The experimental results on
real-world datasets demonstrate the effectiveness of SHG on
generating high-quality and high-utility headlines for clickbait
detection.

Index Terms—Data augmentation, deep generative model,
clickbait detection

I. INTRODUCTION

People nowadays often seek out and consume information
from social media due to its accessibility, low cost and fast
dissemination. However, the prosperity of online journalism
also produces large amounts of clickbaits, which refer to
catchy social posts or sensational headlines that attempt to
lure readers to click by creating an information gap in their
minds and arousing their curiosities. A recent study reported
that clickbaits are prevalent in both mainstream and alternative
media venues, with clickbaits are seen as much as 33.54%
on mainstream media and 39.26% on alternative media sites1.
Clickbait is growing fast in volume and it can have many
negative societal impacts. Firstly, clickbaits may contain sen-
sational and inaccurate information to mislead readers and
spread fake news [1]. Secondly, news media may confront
with losing readers’ trust and depleting the brand value [2];
and thirdly, clickbaits may be used to perform click-jacking
attacks by redirecting users to phishing websites to steal their
personal information [3]. Thus, it is critical to detect clickbaits
on social media.

1http://newslab.org/clickbait-headlines-grow-mainstream-media/

Existing approaches to detect clickbaits mainly focus on
extracting discriminative features such as hand-crafted lin-
guistic features [4], or constructing effective models such as
deep neural networks [5], [2]. However, these methods may
face following limitations: (i) the datasets are often limited
in their scale and (ii) the imbalanced distribution of labeled
instances, due to the expensive cost to obtain adequate training
examples with manual labels. One way to build an effective
clickbait detection system is to generate synthetic headlines
with specific style labels and exploit its utility to improve
clickbait detection.

Recently, deep generative models such as Generative Ad-
versarial Nets (GANs) and Variational Auto-Encoder (VAE)
with Recurrent Neural Networks (RNNs) as the generator have
shown promising results in labeled text generation [6], [7].
For example, Shen et al. propose a cross-aligned auto-encoder
which can transfer the style of sentences and preserve the con-
tent of original sentences. In [6], a VAE is utilized to encode
sentences into disentangled content representation, which is
further combined with a target style to generate headlines.
Despite the success of existing deep learning based labeled text
generation methods, the majority of existing methods mainly
takes a label and/or a headline as input to generate labeled
or stylized headline, which may not be applicable to headline
generation because such process is nontrivial. In addition to
generating labeled headlines so as to augment the dataset
for training better classifiers, the generated headlines should
also preserve certain information of the documents. Such
preservation is important because: i) it provides necessary
information to guide the generation of headlines; and ii)
generating content preserved headlines makes it possible to
suggest a non-clickbait headline to readers after we detect
a clickbait. Thus, it is important to propose a generative
model that can generate labeled headlines that also preserve
document contents, which has the potential to augment data
for clickbait detection and also suggest non-clickbait headlines
if clickbaits are detected.

Therefore, in this paper, we study a novel problem of
stylized headline generation from original documents for click-
bait detection. To this end, we build our headline generation
framework through a coherent process which consists of a
generator learning component and a discriminator learning
component. The goal of the generator learning is twofold: i) a
document auto-encoder for extracting latent representations of
the original document’s content; and ii) a headline generator
for generating headlines with specific styles guided by the
latent content representations and style vectors indicating the

style labels. The discriminators are utilized to regularize the
generating process by incorporating necessary constraints.
First, we incorporate a pair discriminator to ensure the rela-
tionships of documents and their correspondent headlines are
preserved. Second, we introduce a style discriminator to max-
imize the differentiability of styles for original headlines and
generated headlines. Third, we use a transfer discriminator for
adversarial training to ensure that the generated headlines and
transferred headlines that have the same styles are similar in
a distribution, where the headline generator is trained to fool
the transfer discriminator, so that it cannot easily differentiate
original headlines and generated headlines in a distribution.

In essence, we investigate the following challenges: 1)
How to generate realistic and readable headlines from original
document to improve clickbait detection; 2) How to generate
headlines that can preserve the content of documents and
transfer the style of headlines? Our solutions to these chal-
lenges results in a novel framework called SHG for generating
synthetic stylized headlines to improve clickbait detection. Our
main contributions are summarized as follows:

• We study a novel problem of generating stylized head-
lines for clickbait detection problem;

• We provide a principled way to generate headlines from
original articles that can transfer headline styles accu-
rately while preserving article content; and

• We conduct extensive experiments on real-world datasets
to demonstrate the effectiveness in generating readable,
discriminative, consistent and useful headlines using the
proposed framework.

The rest of the paper is organized as follows. In Section II,
we formally define the problem of headline generation with
style transfer for clickbait detection. In Section III, we intro-
duce the proposed SHG framework and as well as its training
strategy in details. We present empirical evaluations to justify
the effectiveness of SHG with the discussion in Section IV.
In Section V, we briefly review the related work. Finally, we
conclude with future work in Section VI.

II. PROBLEM FORMULATION

Let X = {x1, x2, . . . , xm} denote the set of documents,
H = {h1, h2, . . . , hm} denote the set of corresponding head-
lines, and Y(L) = {yL1 , yL2 , . . . , yLm} are the given style labels,
indicating whether the headline hi is clickbait (yLi = 1) or
non-clickbait (yLi = 0). Each document xi and its headline hi
are composed by a sequence of words from a fixed vocabulary
V with size K, i.e., xi = (x1i , x

2
i , . . . , x

M
i) and hi =

(h1i , h
2
i , . . . , h

N
i). We use the set of tuples S = {(xi, hi)|i =

1, 2, . . . ,m} to denote the correspondent (document, headline)
pairs. We denote xi ∈ Rl×1 as the original document feature
vector, z ∈ Rd×1 as the latent content representation of the
document. yLi ∈ Rk×1 is the label representation of the
original headline hi, and yUi ∈ Rk×1 is the label representation
for the generated headline oi. Then, in this paper, we study
the following problem:

Fig. 1: The proposed framework of generating headlines from
documents with style transfer. The framework consists of five
components: a document auto-encoder A, a headline generator
G, a transfer discriminator DT , a style discriminator DS , and
a pair discriminator DP .

Problem 1. Given a set of tuples S, learn a generator f that
can generate stylized headlines given a document and a style
label, i.e., oi = f(xi, yi).

III. STYLIZED HEADLINE GENERATION FRAMEWORK

In this section, we detail the framework of stylized headline
generation. Note that the training data is inherently non-
parallel, i.e., for each document, we only have one headline
that is either clickbait or non-clickbait. In other words, for
a given pair of document and headline (xi, hi), we do not
have a parallel headline that is also associated with xi but
have opposite style label with hi. Such non-parallel data
makes it more difficult to train a stylized headline generator
because we lack the parallel headlines to guide the learning
process. To tackle such a challenge, we propose a framework
to generate both click-bait and non-clickbait with style transfer.
We illustrate the entire model as in Figure 1. It consists of
five major components: a document auto-encoder, a headline
generator, a transfer discriminator, a style discriminator and
a pair discriminator. In general, the document encoder A
aims to learn the content representation of a document by
minimizing the reconstruction errors. The headline generator
G can generate headlines from content and style representa-
tions with style transfer from the original style to the target
style. The style discriminator DS learns a style classifier to
guide the style learning process. The transfer discriminator DT

aims to ensure the original headlines and transferred headlines
with the same styles are similar as a distribution. The pair
discriminator DP ensures that the learned representations can
maintain the consistency of the pair relationship of documents
and headlines.

A. Generator Learning

1) Document Auto-encoder: To generate a headline with a
specific style for the original document, we need to ensure
that the content in the document is preserved in the gener-
ated headline. Thus, we first demonstrate how to extract the
content representation for the document. Auto-encoder has

been widely utilized for text generation and has shown to
be effective recently [8]. So we also use an auto-encoder
A to extract content representation z from document x =
{x1, x2, ..., xM}, where xi is the ith word in the document.
Let EA : X → Z be an encoder that can infer the content
representation z for a given document x, and DA : Z → X
be a decoder that reconstruct the document from the learned
latent representation of documents.

We apply recurrent neural networks (RNN) as the encoder
EA. An RNN can learn a probability distribution over a
sequence by being trained to predict the next symbol in
a sequence. A RNN consists of a hidden state S and an
optional output which operates on a word sequence x =
{x1, x2, ..., xM}. At each time step t, the hidden state st of
RNN is updated by,

st = fenc(st−1, x
t) (1)

After reading the end of the document, the last hidden state
of the RNN is used as the representation vector z of the
whole document. We employ the gated recurrent unit (GRU)
as the cell type to build the RNN, which is designed in a
manner to have a more persisted memory [9]. Let θe denote
the parameters for encoder, then we have,

z = EA(x, θE) (2)

The decoder takes z as the input to start the generation
process. We use another RNN to build the decoder DA to
generate the output word sequence x̂ = {x̂1, . . . , x̂M}. At
each time step t, the hidden state of the decoder is computed
by,

st = fdec(st−1, x̂
t) (3)

where s0 = z. The word at time step t is predicted by a
softmax classifier as follows,

ŷt = softmax(W(S)st) (4)

where softmax(·) is a softmax activation function. ŷt ∈ R|V|
is a probability distribution over the vocabulary, and W(S) ∈
R|V|×(d+k) with d+k as the dimension of the hidden state in
each layer. The probability of choosing word vj (vj ∈ V) as
the output is,

p(x̂t = vj |x̂t−1, x̂t−2, . . . , x̂1) = ŷt,j (5)

Thus, the overall probability of generating an output sequence
x̂ giving the input document x is defined as follows,

p(x̂|x; θd) =
M∏
t=1

p(x̂t|x̂t−1, x̂t−2, . . . , x̂1, z, θd) (6)

The two components of the proposed auto-encoder are
jointly trained to minimize the negative conditional log-
likelihood for all documents,

Lrec(θe, θd) = −
m∑
i=1

log p(x̂i|xi; θd, θe) (7)

where θe and θd are the set of model parameters of
the encoder and decoder, respectively. Following traditional

setting, we set the output document x̂ as the reverse sequence
of original document x.

2) Headline Generator: The headline generator G takes the
document content representation z and the style label represen-
tation as input and generate headline with the corresponding
style. For example, if we have an original headline h with style
yL = 1 (clickbait), then we want to generate a new headline o
with style yU = 0 (non-clickbait). In this case, we can generate
a non-clickbait headline giving the document with the original
headline as a clickbait.

Given the document content representations Z =
{z1, . . . , zm}, a good headline generator G should be able
to: i) reconstruct all the original headlines H; and ii) generate
a set of new headlines O with the opposite styles with original
headlines; and iii) ensure that the distributions of the generated
headlines and original headlines which have same style should
be indistinguishable. To this end, we employ an adversarial
training scheme to utilize the generator G and a discriminator
DT (more details in Section III-B2) simultaneously. Besides
the reconstruction loss which drives the generator to produce
realistic headlines, the discriminator DT provides extra learn-
ing signals which enforce the generator G to produce coherent
representations that match the style labels.

However, adversarial training over the discrete samples
(words) hinders gradients propagation. To solve this challenge,
we propose to apply a deterministic continuous approxima-
tion [6]. The continuous approximation replaces the sampled
token ot (represented as a one-hot vector) at each step with
the probability vector defined as follows:

ot ∼ softmax(ot/γ) (8)

which is differentiable w.r.t the parameters of generator G.
The probability vector is used as the output at the current step
and the input to the next step along the sequence of decision
making.

Thus, for each tuple (xi, hi) ∈ S, we have one sequence
generated by G(z,yL) teach-forced by the ground-truth sam-
ple h, and the other free-running one generated by G(z,yU)
using the self-generated by previous continuous approximation
as input at each step, resulting a generated headline o. The
objective function of the generator G is to optimize the recon-
struction error of observed documents and generated headlines,
by minimizing the following negative log likelihood:

LG(θG) =E(x,h)∈S [− log pG(h|yL, z))] (9)

B. Discriminator Learning

We have the following three discriminators aiming to con-
strain the generated headlines from different perspectives:
a style discriminator, a transfer discriminator, and a pair
discriminator. The style discriminator can classify the styles
of both generated and original headlines to help the genera-
tion process. The transfer discriminator can differentiate the
original and generated headlines to ensure they have aligned
distributions. The pair discriminator describes the process of

forcing the label of pairs of documents and headlines are
correctly classified.

1) Style Discriminator: The generated headline o and the
original headline h should be different in terms of their styles.
Thus, we define a style discriminator DS that aims to assign a
correct label of styles for both original headlines and generated
headlines, which can further guide the headline generator G
through parameter back-propagation.

We aim to learn good representations of headlines with good
discriminative capacities to differentiate style labels. We have
yL ∈ {0, 1}, where yL = 0 indicates the headline is a non-
clickbait, and yL = 1 indicates the headline is a clickbait.
We use a linear classifier, i.e., softmax classifier, as the style
discriminator. Thus, we can predict the style label as follows,

ŷ = softmax(sNW + b) (10)

where ŷ = (ŷ0, ŷ1) is the predicted probability vector with
ŷ0 and ŷ1 indicate the predicted probability of label being 0
and 1, respectively. sN ∈ R1×(d+k) is the last hidden state
of the generator G for reconstructing the original headline,
and W ∈ R(k+d)×2 is the weight of the softmax function,
b ∈ R1×2 is a bias term, and k is the dimension of hidden
state of RNN. Thus, for each original headline, the goal is to
minimize the cross-entropy loss function as follows,

L(1)
DS

(W,b) = −yL log(ŷ1)− (1− yL) log(1− ŷ0) (11)

Similarly, for each generated headline, we define the fol-
lowing softmax classifier to predict the style label,

ˆ̃y = softmax(s̃NW + b) (12)

where ˆ̃y = (ˆ̃y0, ˆ̃y1) is the predicted probability vector with
ˆ̃y0 and ˆ̃y1 indicate the predicted probability of label being
0 and 1 for the generated headline, respectively. For each
generated headline, the goal is to minimize the cross-entropy
loss function as follows,

L(2)
DS

(W,b) = −yU log(ˆ̃y1)− (1− yU) log(1− ˆ̃y0) (13)

Thus, we combine Eqn: 11 and Eqn: 13 and obtain the
unified form of cross-entropy loss for both original headlines
and generated headlines,

LDS
(W,b) = L(1)

DS
+ L(2)

DS
(14)

2) Transfer Discriminator: In this section, we introduce
how to discriminate original data samples with generated data
samples using adversarial learning. Following the setting of
GANs [10], we add a transfer discriminator DT , and the
generator parameters θG are trained to fool the discriminator
DT , so that DT can not easily differentiate original headlines
and generated headlines in a distribution. Thus, the objective
of the discriminator DT is to ensure the generated headlines
are as realistic and close as possible to original headlines with
the same styles.

Since the original headlines have different styles, their data
distributions should also be different. Thus, we propose to
use two transfer discriminators D(1)

T and D(2)
T to differentiate

whether headlines are original or generated. Specifically, if
D

(1)
T is to discriminate original headlines with yL = 0 and

generated headlines with yU = 1; and D(2)
T is to discriminate

original headlines with yL = 1 and generated headlines with
yU = 0. We aim to minimize the following negative log
likelihood,

L
D

(1)
T

(θ
D

(1)
T

) =EyU=1[− log(1−D(1)
T (s̃N))]

+EyL=0[− logD
(1)
T (sN)]

(15)

L
D

(2)
T

(θ
D

(2)
T

) =EyU=0[− log(1−D(2)
T (s̃N))]

+EyL=1[− logD
(2)
T (sN)]

(16)

where θ
D

(1)
T

and θ
D

(2)
T

are the parameters to be inferred for
discriminator D1

T , and discriminator D2
T . sN and s̃N are the

learned representations of a real headline and a generated
headline. The overall loss is as follows,

LDT
= L

D
(1)
T

(θ
D

(1)
T

) + L
D

(2)
T

(θ
D

(2)
T

) (17)

3) Pair Discriminator: During the headline generation
process, one goal is to ensure that the correspondences of
documents and headlines are maintained. Thus, we need to
ensure that the representations of both original headlines
and generated headlines are correctly aligned to the original
documents. For simplicity of explanation, we only consider the
case of original headline and the document. We first define a
proximity function which can capture the similarity between
the representations of a headline hi and a document xj as
follows,

p(hi, xj) =
1

1 + exp(−s(i)Qz(j))
(18)

where s(i) ∈ R1×k and z(j) ∈ Rt×1 are the latent rep-
resentations of headline hi and xj . Q ∈ Rk×t is a linear
mapping matrix that connects s(i) and z(j). Thus, we introduce
a discriminator DP , which can handle following situations: i)
for (hi, xi) ∈ S, we should maximize the proximity value; ii)
for (hi, xk) 6∈ S , then we minimize the proximity value. It
is computationally expensive to consider all the pairs that not
in S, which requires to compute all the headlines other than
hi when fixing xj , or all the documents other than xj when
fixing hi. To address this problem, we adopt the approach of
negative sampling [11], which samples multiple negative pairs
according to the original pairs in S. Specifically, we aim to
minimizing the following log likelihood function for each pair
(hi, xi) ∈ S:

LDP
= − log σ(s(i)Qz(i))−

K∑
k=1

Exk∼Pn(x)[log σ(−s
(i)Qz(k))]

(19)
where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, and
Pn(x) denotes the set of negative samples of documents that
satisfy (hi, xk) 6∈ S . The first term models the aligned pair
of a headline and a document, the second term models the
negative pairs drawn from the original pair distributions, and
K is the number of negative pairs.

C. The proposed Framework: SHG

The parameters of all components (A, G, DS , DT and DP)
of this model are learned jointly in an end-to-end fashion.
Therefore, the objective function is a minimax game among
the headline generator and discriminators, shown as follows:

min
{θG,θDS

,θDP
}
max
θDT

LG + αLDS
− βLDT

+ ηLDP (20)

where α, β, and η are positive hyper-parameters balancing the
importance among different losses.

D. Optimization

The optimizing process is illustrated in Algorithm 1. We
denote S0 = {(xi, hi)|yLi = 0} and S1 = {(xi, hi)|yLi =
1} for easy explanation. First, we compute the latent content
representations of all documents {z}mi=1 in Line 1. We then
sample a mini-batch of k samples from training data. Next,
we train the Professor-Forcing network from Line 5 to Line 6
and obtain the hidden states vectors sN and s̃N . Then we train
the discriminator DT and update parameters θDT

in Line 8.
At last, we train the generator G, and discriminator DS and
DP in Line 9.

Algorithm 1 The Learning Process of SHG
Input: The two set of training tuple S0,S1, α, β, λ, η,

temperature γ, batch size k.
Output: The headline generator G conditioned on (z,yU),

generated headlines O
1: Pre-train the document generator A to obtain the content

representations {zi}mi=1 = {A(xi)}mi=1

2: repeat
3: for l = 0, 1 do
4: Sample a mini-batch of k samples {(xi, hi)}ki=1 from

the training tuples Sl
5: Unroll G from initial state (zi,y

L) by feeding si,
and get the last hidden state sN

6: Unroll G from initial state (zi,y
U) by feeding s̃i,

and get the last hidden state s̃N
7: end for
8: Training the discriminator DT by gradient descent using

Eqn 17
9: Training the headline generator G through Eqn 9, and

the style discriminator DS through Eqn 14, and the
discriminator DP via Eqn 19.

10: until Convergence

IV. EXPERIMENTS

In this section, we conduct experiments on real-world
datasets to demonstrate the effectiveness of the proposed
framework for headline generation. Specifically, we aim to
answer the following evaluation questions:

EQ1 Consistency: are generated clickbaits/non-clickbaits con-
sistent with the original datasets?

EQ2 Readability: are generated headlines readable or not?
EQ3 Similarity: are generated headlines semantically similar

to original documents?

EQ4 Differentiability: are generated clickbaits/non-clickbaits
differentiable?

EQ5 Accuracy: can generated clickbaits/non-clickbaits help
improve the detection performance?

We aim to assess the quality of generated headlines by
answering EQ1, EQ2 and EQ3, and evaluate the utility of
them by answering EQ4 and EQ5.

A. Datasets

TABLE I: The statistics and descriptions of the datasets
Dataset Source # Clickbaits # Non-clickbaits

P Professional Writers 5,000 16,933

M Social Media Users 4,883 16,150

Existing clickbait datasets are mainly collected from two
types of sources: (1) Professional writers (P for short) such as
news reporters or editors who come up with clickbaits for the
news pieces they publish. In [4], the authors curated clickbaits
from several news websites such as BuzzFeed2, Upworthy3,
etc. The labels are annotated by human annotators and decided
through majority voting. The non-clickbaits are collected from
Wikinews articles 4. In Wikinews, articles are produced by a
community of contributors and each news article needs to be
verified by the community before publication. The headlines
need to follow a list of guidelines5 which ensures the reliability
of labeling them as non-clickbaits. We enrich the datasets
in [4] by crawling the original article contents. (2) Social
media users (M for short), who make clickbaits to lure people
to click their posts. The dataset M is collected from the
clickbait challenge6. The ground truth labels are obtained by
majority voting scores voted by crowd-sourcing platforms.
For each headline, the corresponding news document is also
provided. In other words, each training instance is a tuple
with the article document, headline, and label provided. The
statistics of the two datasets are shown in Table I.

It is worth mentioning that detecting clickbaits in M is
more challenging than P , because headlines in M were
written by users on social media which are diverse and
noisy; while headlines in P are collected from a few specific
professional websites and thus the headlines with clickbaity
or non-clickbaity style are more consistent and less noisy.

B. Experimental Setting

Parameter Setting. The document auto-encoder A is set as
single-layer RNN with GRU cell of input/hidden dimension
with d = 64, and the dimension of style representation is set as
l = 16, and thus the generator G is set as a single-layer RNN
with the dimension of the hidden state as 80, and the maximum
length of output headline is 25. The discriminator DT , DP ,
and DS are feed-forward networks with single hidden layer

2https://www.buzzfeed.com/?utm term=.hm52wwl8E#.kv7m99nO7
3https://www.upworthy.com/
4https://en.wikinews.org/wiki/Main Page
5en.wikinews.org/wiki/Wikinews:Styleguide#Headlines
6http://www.clickbait-challenge.org/

and a sigmoid output layer. For the document auto-encoder A,
we only consider the first 100 words to as a summarization of
the entire document as the input, for reducing the noise and
easy training for A. The parameters α, β and η are determined
through cross-validation, and are set as 1, 1, and 5.

Experimental Design. We denote the set of original head-
lines asH and the generated headlines asO. BothH andO are
divided into training sets (Htrain, Otrain) and testing (Htest,
Otest) sets with a ratio of 3:1. To evaluate EQ1, we train the
model on H and test it on O. To evaluate EQ2, we utilize
the widely used metric, Flesch-Kincaid readability score [12],
to measure how readable of the generated headlines. For
EQ3, we utilize Bilingual Evaluation Understudy (BLEU) [13]
scores and propose a new metric uni sim to measure the
semantic similarities of the generated headlines with original
documents. To assess EQ4, we train the predict model on
Otrain and test it on Otest. To evaluate EQ5, we train on
both Htrain and instances from O and test it on Htest.

Prediction Model. To ensure a fair comparison of the
performance of clickbait detection with respect to the change
of datasets, we fix the set of features that are used for classifi-
cation among all the settings. We curate the linguistic features
that are shown to be effective in previous research [14], [15],
[4], resulting in a 314 dimension features, including readability
score, word dictionary matching, n-grams, part-of-speech tags,
and their combinations. We also apply several popular machine
learning classifiers on the extracted features. Specifically, the
classifiers include Logistic Regression (LogReg), Decision
Tree (DTree), Random Forest (RForest), XGBoost, AdaBoost,
SVM and GradBoost. We used the open-sourced xgboost [16]
package and scikit-learn [17] machine learning framework in
Python to implement all these algorithms. To ensure a fair
comparison of features, we ran all the algorithms using default
parameter settings.

Evaluation Metrics. Since our datasets are imbalanced in
terms of the number of instances for clickbaits and non-
clickbaits, we select the evaluation metric, Area Under the
ROC Curve (AUC), to compare the prediction performance
of clickbaits. We repeat all the experiments 10 times and the
average results are reported. Note that for readability metric
Flesch-Kincaid score 7, the higher the more difficult to read
the text. For BLEU score, the higher the score is, the more
similar are the pair of texts in terms of semantic meaning. We
also adopt another metric to compute the semantic similarity
for (headline, document) pairs based on the text embedding
learned from universal sentence encoder [18]. We first obtain
the embedding vectors for all documents and headlines8,
and report the average similarity scores. For example, giving
the headlines H = {h1, h2, ..., hm} and documents X =

7We apply the open source tool at: https://github.com/wimmuskee/
readability-score

8We use the TensorFlow interface to retrieve the pre-trained embedding at:
https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder/1

{x1, x2, ..., xm}, we define the new metric,

uni sim(X ,H) = 1

m

m∑
i=1

cos(uni(xi), uni(hi)) (21)

where uni(xi) (uni(hi)) is the universal text embedding for
document xi (headline hi). Note that the higher the uni sim
value, the better performance that headlines preserve the
content of original documents.

Baseline Methods. We compare the proposed framework
with several representative text generation algorithms, Seq-
GAN, SVAE, and CrossA, detailed as follows:
• SeqGAN [19]: SeqGAN extends the GAN framework

with reinforcement learning. It uses a discriminator to
minimize the loss between real and fake generated texts,
and a generator trained by policy gradient where the final
reward signal is provided by the discriminator and the
action value is determined using Monte Carlo search.

• SVAE [8]: SVAE uses the VAE to generate sentences,
with Long Short Term Memory (LSTM) networks as both
the encoder and decoder.

• CrossA [7]: CrossA can transfer the sentences from
across different styles without parallel data. It utilizes
style-specific decoders to align the style of generated
sentences to the actual distribution of the style9.

Note that SeqGAN and SVAE take the original headlines as
input and generate new headlines with the same style; CrossA
takes original headlines as input and generate new headlines
with transferred style; while SHG takes the original headlines
and documents as input and generate new headlines that aims
to preserve the content of the document and transfer the
headline styles. When evaluating EQ3 for content preserving
ability, we only compare CrossA and SHG because SeqGAN
and SVAE are not able to transfer styles when generating
headlines and thus there is no need to compare them.

C. Experimental Result: Data Quality

For evaluating the quality of generated headlines, we an-
swer the EQ1, EQ2 and EQ3. The experimental results are
shown in Table II to Table VI, and we have the following
observations:

First, in terms of data consistency (EQ1) between original
headlines and generated headlines, we can see that the pro-
posed framework SHG can generate headlines that are more
likely to be consistent with original headlines. We observe that
both CrossA and SHG have better consistency performance
than other baselines. This is because they both utilize a
style discriminator to ensure that the distributions of original
headlines and generated headlines are close to each other
through adversarial training techniques.

Next, for answering EQ2, we compare the readability scores
in Table IV. For readability score, we can see that in general
the readability of non-clickbait headlines are lower than that

9We used the off-the-shelf model with the parameter settings through: https:
//github.com/shentianxiao/language-style-transfer

TABLE II: Samples of Generated Headlines with Different Headline Generation Methods with Style Transfer
source document: apple music will give ... it will cost 10 per month ... first three months of the service for free ...
source clickbait: how apple s new music service compares to what s out there right now
CrossA: → nonclickbait: how to a lot of the world s freest house is you have to be
SHG: → nonclickbait: the economic scorecard follow apple launch music testing

source document: a canadian politician has denounced the recent pie thrown ... calling for the government to investigate the incident...
source non-clickbait: canadian politician calls for terrorism inquiry into pie throwing
CrossA: → clickbait: this woman s adorable flute and it is actually bad
SHG: → clickbait: here s the results from a pie throw

TABLE III: EQ1:The Data Consistency between Generated
Headlines O and original headlines H. Training data is H and
test data is O.

Data Classifier SeqGAN SVAE CrossA SHG

P

LogReg 0.501 0.621 0.957 0.963
DTree 0.504 0.603 0.924 0.920

RForest 0.504 0.716 0.924 0.976
XGBoost 0.500 0.722 0.938 0.977
AdaBoost 0.500 0.714 0.957 0.977

SVM 0.503 0.712 0.937 0.963
GradBoost 0.501 0.722 0.933 0.969

M

LogReg 0.500 0.576 0.666 0.763
DTree 0.53 0.623 0.687 0.750

RForest 0.501 0.662 0.722 0.825
XGBoost 0.501 0.610 0.660 0.742
AdaBoost 0.500 0.671 0.691 0.749

SVM 0.500 0.620 0.648 0.725
GradBoost 0.501 0.674 0.692 0.742

TABLE IV: EQ2: The Readability score comparison of the
generated headlines O on different generation methods.

Data Methods Clickbait Non-Clickbait

P

SeqGAN 14.45 14.54
SVAE 8.64 10.38

CrossA 8.98 10.48
SHG 8.45 10.16

M

SeqGAN 14.48 15.88
SVAE 9.52 10.79

CrossA 9.86 10.56
SHG 9.36 10.04

of clickbait headlines on both datasets. This is because non-
clickbaits are longer than clickbaits in general and thus de-
crease the readability performance. Moreover, among all the
text generation methods, the proposed SHG can produce most
readable headlines mostly, which demonstrates the ability to
generate more easily readable headlines.

TABLE V: EQ3: The Average BLEU (BLEU-4) Score Com-
parison of Generated Headlines. H indicates original head-
lines, and O represents the generated headlines.

Data Headlines Methods Clickbait Non-Clickbait

P
H 0.555 0.527

O CrossA 0.407 0.432
SHG 0.453 0.446

M
H 0.541 0.534

O CrossA 0.432 0.437
SHG 0.451 0.442

Next, for the ability of preserving the contents of original

TABLE VI: EQ3: The Average Uni sim Value Comparison
of Generated Headlines. H indicates original headlines, and
O represents the generated headlines.

Data Headlines Methods Clickbait Non-Clickbait

P
H 0.63 0.81

O CrossA 0.20 0.22
SHG 0.37 0.40

M
H 0.64 0.81

O CrossA 0.26 0.34
SHG 0.34 0.38

documents (EQ3), we first compute the average BLEU-4
(BLEU score for 4-grams) (the results of BLEU-1) for each
pair of headline and document as in in Table V. We can see the
proposed SHG can achieve better performances than CrossA.
We further compare the average uni sim scores to illustrate the
semantic similarities in the universal latent space as shown in
Table VI. Similarly, we can see that: 1) The uni sim score for
the pair of original headlines and documents are higher than
that of generated headlines and documents; 2) SHG performs
better that CrossA for uni sim values on both datasets. The
results indicate the importance that SHG utilizes the pre-
trained paragraph auto-encoder and a pair discriminator to
ensure the representations of generated stylized headlines are
correlated with that of documents.

To illustrate the qualities of generated headlines, we show
several examples in Table II. We can see that SHG can
generate a clickbait style headline that preserves the content
“pie throw”; In addition, SHG can produce the a headline
without clickbait style and keep semantic meaning from the
original document to some degree. It shows the potential use
of SHG to suggest a non-clickbait style headline for a given
document.

D. Experimental Result: Data Utility

We further compare the utility of generated headlines. We
first perform clickbait detection on generated datasets O to
check whether they are differentiable or not. We then use the
generated headlines as auxiliary data to enrich the original
training dataset, and compare the utility of improving the
detection performance on original datasets. The experiments
are illustrated in Table VII and Table VIII and Figure 2, and
we have the following observations:

For the differentiability of the generated headlines (EQ4),
we can see that the synthetic headlines generated by SHG
can consistently outperform other baselines for the clickbait

(a) P (b) M

Fig. 2: The performance improvement w.r.t. the proportion of additional generated clickbaits from SHG on AUC score.

TABLE VII: EQ4: The prediction performance of generated
headlines O on AUC. The training data is Otrain and test data
is Otest.

Data Classifier SeqGAN SVAE CrossA SHG

P

LogReg 0.697 0.710 0.794 0.864
DTree 0.701 0.766 0.791 0.816

RForest 0.685 0.794 0.797 0.849
XGBoost 0.701 0.795 0.795 0.848
AdaBoost 0.694 0.800 0.793 0.848

SVM 0.646 0.795 0.787 0.847
GradBoost 0.702 0.797 0.792 0.848

M

LogReg 0.625 0.663 0.744 0.855
DTree 0.612 0.712 0.771 0.934

RForest 0.598 0.724 0.783 0.883
XGBoost 0.616 0.651 0.697 0.872
AdaBoost 0.642 0.667 0.708 0.872

SVM 0.510 0.590 0.693 0.890
GradBoost 0.624 0.654 0.708 0.885

detection performance in terms of AUC score w.r.t different
classifiers on both datasets. It shows that: i) our generated
headlines have more clear style differences between clickbait
and non-clickbait styles; ii) headlines with the same style
demonstrate highly consistent features. It demonstrates the
robustness of style-transferring of the proposed method.

In addition, we compare the performance improvement
by adding generated headlines as additional training data in
original datasets (EQ5). Since clickbait headlines are usually
sparse, we add different proportion of the generated clickbaits
by SHG until the training set is balanced (see Figure 2). We
can see that with the increase of newly generated clickbaits,
the AUC scores does not necessarily increase w.r.t. different
classifiers on both datasets. For example, in P dataset, the
predict performance may even decrease for DTree classifier
with more generated dataset added. In a practical setting, we
can actually add 10% or 20% of newly generated clickbaits,
which already has good performance improvement in most
cases.

Moreover, we also add different proportion of generated
clickbaits from other baseline methods, and select the best
performances for comparison (see Table VIII). We can see
that: i) the incorporation of synthetic headlines which are

generated by SeqGAN decrease the performance comparing
with original datasets, which is because the added generated
headlines add additional noise to the training datasets; and
ii) The headlines generated by SVAE, CrossA, and SHG can
increase the performance of clickbait detection to some extent;
iii) SHG can consistently outperform SVAE and CrossA on the
performance improvement, which demonstrates that SHG can
generate headlines that help enrich original sparse datasets and
build a more powerful clickbait detection algorithm.

We can see that in general the detection performance on P
is higher than M . This is because the sources of headlines in
M are more diverse and noisy than P , and the classification
boundaries are more clear in P . Thus, the styles are easier
to be transfered for P due to the consistency and less noise
within the instances of the same style.

To sum up, we conclude from the experiments that (1)
the proposed framework can generate high quality stylized
headlines from documents which have better performance w.r.t
consistency, readability, and semantic similarity; (2) The head-
lines generated from SHR are robust in distinguishing between
clickbait and non-clickbait styles, and can significantly help
improve clickbait detection by enriching training data.

V. RELATED WORK

In this section, we review the related work from following
perspectives: i) Headline generation; ii) Style transfer; iii)
Adversarial training on discrete variables; and iv) Clickbait
detection.

A. Headline Generation

Headline generation is to construct a headline-style abstracts
from a single document, which aims to produce informative
content describing the salient theme or event in the news
article [20]. Extractive methods compress the document sen-
tences and select a subset of actual sentences from the original
documents to produce the headline [20], [21]. Most extractive
methods focus on selecting a subset of actual sentences and
may not be able to generate coherent and compact summary.
Generative methods mainly adopt a encoder-decoder frame-
work, where encoder reads the article and encodes it to a
sequence of latent representations [22]; the decoder outputs

TABLE VIII: EQ5: The performance improvement comparison of original headlines H on AUC. The training data consists of
Htrain and O, and test data is Htest. Org shows the performance in original dataset, i.e., training data is Htrain and testing
data is Htest. The numbers in brackets show the relative improvements compare with original dataset.

Data Classifier Org SeqGAN SVAE CrossA SHG

P

LogReg 0.928 0.900 (↓ 3.02%) 0.933 (↑ 0.54%) 0.932 (↑ 0.64%) 0.936 (↑ 0.86%)
DTree 0.894 0.882 (↓ 1.34%) 0.908 (↑ 1.57%) 0.900 (↑ 0.67%) 0.910 (↑ 1.79%)

RForest 0.900 0.893 (↓ 0.78%) 0.912 (↑ 1.33%) 0.916 (↑ 1.78%) 0.925 (↑ 2.78%)
XGBoost 0.919 0.914 (↓ 0.54%) 0.923 (↑ 0.43%) 0.926 (↑ 0.76%) 0.928 (↑ 0.98%)
AdaBoost 0.917 0.896 (↓ 2.29%) 0.921 (↑ 0.44%) 0.921 (↑ 0.44%) 0.931 (↑ 1.64%)

SVM 0.904 0.898 (↓ 0.66%) 0.917 (↑ 1.44%) 0.920 (↑ 1.77%) 0.923 (↑ 2.10%)
GradBoost 0.921 0.914 (↓ 0.76%) 0.924 (↑ 0.33%) 0.926 (↑ 0.54%) 0.928 (↑ 0.76%)

M

LogReg 0.667 0.614 (↓ 7.95%) 0.680 (↑ 1.95%) 0.685 (↑ 2.70%) 0.684 (↑ 2.55%)
DTree 0.618 0.612 (↓ 0.97%) 0.620 (↑ 0.32%) 0.622 (↑ 0.65%) 0.632 (↑ 2.27%)

RForest 0.623 0.610 (↓ 2.09%) 0.634 (↑ 1.77%) 0.627 (↑ 0.64%) 0.634 (↑ 3.93%)
XGBoost 0.655 0.643 (↓ 1.84%) 0.668 (↑ 1.98%) 0.671 (↑ 2.44%) 0.681 (↑ 3.97%)
AdaBoost 0.654 0.639 (↓ 2.29%) 0.664 (↑ 0.65%) 0.671 (↑ 2.60%) 0.680 (↑ 3.98%)

SVM 0.618 0.611 (↓ 1.13%) 0.651 (↑ 5.34%) 0.660 (↑ 6.80%) 0.681 (↑ 10.19%)
GradBoost 0.657 0.643 (↓ 2.13%) 0.667 (↑ 1.52%) 0.671 (↑ 2.13%) 0.682 (↑ 3.81%)

a summary word-by-word using the latent representations.
In [23], it propose an attention-based encoder-decoder frame-
work to generate headlines. In addition, [24] incorporate the
position information of words into a RNN encoder and shows
to be effective. [25] tries different mechanisms to reduce
vocabulary size and capture relevant keywords. These methods
generate sentences without incorporating styles to them.

B. Style Transfer

Style transfer has been widely studied in computer vision
in recent years [26]. Inspired by the power of CNN, [26]
first studied to mitigate the semantic content of one image
and combine different styles from other images to reproduce
images with famous painting styles. Due to the discrete
property of text data and unavailable of parallel data, previous
methods on vision domain cannot be directly applied to
text domain. Recently, several papers are proposed for style
transfer with non-parallel data [7], [6]. In [27], they propose
to guide the latent representation learning by using a classifier.
In [6], they use the VAE to encode sentence to content
representation which is disentangled from source style, and
then recombine it with target style to produce its counterpart.
Similarly, [28] use VAE to encode sentences to both content
and style representations across two domains simultaneously
using adversarial networks.

C. Adversarial training on discrete variables

Recently there are increasing works focusing on adversarial
training over discrete sequence data [19], [29], [30]. In [29],
they propose providing the discriminator with the intermediate
hidden state vectors rather than its sequence outputs, which
makes the system differentiable for back propagation training.
SeqGAN [19] applies GAN [10] to discrete sequence genera-
tion by directly optimizing the discriminator’s rewards using
policy gradient reinforcement learning. Other approaches use
continuous approximation to represent discrete tokens to facil-
itate the gradient propagation process [31], [32], [6]. Contin-
uous approximation use the Gumbel-softmax function [33] to

transform the one-hot vector represented sampled tokens into
a probabilistic vector that is differentiable for training. We use
the Professor-Forcing structure with continuous approximation
for adversarial training in this paper.

D. Clickbait Detection

Potthast et al. proposed a machine learning approach to
detect clickbait Tweets by using features extracted from teaser
messages, linked web pages and tweet meta information [34].
Blom et al. analyzed the how clickbaits use two forms of
forward referencing, namely discourse deixis and cataphora,
to lure readers to click target links [35]. Recently Chakraborty
et al. attempted to automatically detect clickbaits using various
linguistic features and deployed a Chrome extension to warn
readers about clickbaits. Lal et al. [5] introduce a model
stacking RNN, attention mechanism, and image embeddings to
detect clickbaits. Rony et al. [2] use distributed word embed-
dings, extending Skip-gram model, trained from a Facebook
corpus and learn vector representation of headlines to feed into
a RNN-LSTM architecture model.

VI. CONCLUSION AND FUTURE WORK

Building effective clickbait detection models often suffers
from the shortage of labeled training data. In this paper,
addressing this bottleneck of supervised learning workflow,
we propose a headline generation framework, named as SHG,
to generate stylized headlines from original documents, and
demonstrate its utility in improving the accuracy of clickbait
detection problem. The proposed framework highlights two
major dimensions: i) a generator learning dimension, which
extracts content representations and incorporate style repre-
sentations to generate headlines; ii) a discriminator learning
dimension, which guides the generating process through con-
straints by enforcing pair correspondences, style differences,
and transfer maintenances. Experiments on real-world datasets
demonstrate the effectiveness of the proposed SHG framework
for generating high quality and useful headlines.

There are several interesting directions that need further
investigations. First, in this paper, we only considered the style

from the perspective of clickbaits and/or non-clickbaits. In
addition, we can also explore the generalization capacity of
SHG on other styles such as positive-negative sentiment style
and academic-news reporting style [36]. Second, we currently
focus on generating short texts, i.e., headlines. We believe
generating longer sentences/paragraphs [37] remains an open
problem and is critical for many potential applications such as
fake news detection [1] and fraud review detection [38]. Third,
a detailed theoretical and practical analysis of SHG, such as
the ability to learn disentangled representations of content and
style, is also worth investigating.

VII. ACKOWLEDGMENTS

This material is based upon work supported by, or in part by,
the National Science Foundation (NSF) under grant #1614576
and Office of Naval Research (ONR) under grant N00014-
17-1-2605. Thai Le and Dongwon Lee are supported by NSF
awards #1422215, #1663343, #1742702, and #1820609.

REFERENCES

[1] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on
social media: A data mining perspective,” ACM SIGKDD Explorations
Newsletter, vol. 19, no. 1, pp. 22–36, 2017.

[2] M. M. U. Rony, N. Hassan, and M. Yousuf, “Diving deep into clickbaits:
Who use them to what extents in which topics with what effects?”
in Proceedings of the 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2017. ACM, 2017,
pp. 232–239.

[3] J. Avery, M. Almeshekah, and E. Spafford, “Offensive deception in
computing,” in International Conference on Cyber Warfare and Security.
Academic Conferences International Limited, 2017, p. 23.

[4] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop
clickbait: Detecting and preventing clickbaits in online news media,”
in Advances in Social Networks Analysis and Mining (ASONAM), 2016
IEEE/ACM International Conference on. IEEE, 2016, pp. 9–16.

[5] S. Gairola, Y. K. Lal, V. Kumar, and D. Khattar, “A neural clickbait
detection engine,” arXiv preprint arXiv:1710.01507, 2017.

[6] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
controlled generation of text,” in International Conference on Machine
Learning, 2017, pp. 1587–1596.

[7] T. Shen, T. Lei, R. Barzilay, and T. Jaakkola, “Style transfer from
non-parallel text by cross-alignment,” arXiv preprint arXiv:1705.09655,
2017.

[8] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz,
and S. Bengio, “Generating sentences from a continuous space,” arXiv
preprint arXiv:1511.06349, 2015.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NIPS, 2014, pp. 2672–2680.

[11] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[12] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
Naval Technical Training Command Millington TN Research Branch,
Tech. Rep., 1975.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[14] P. Biyani, K. Tsioutsiouliklis, and J. Blackmer, “” 8 amazing secrets for
getting more clicks”: Detecting clickbaits in news streams using article
informality.” in AAAI, 2016, pp. 94–100.

[15] X. Cao, T. Le et al., “Machine learning based detection of clickbait
posts in social media,” arXiv preprint arXiv:1710.01977, 2017.

[16] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[18] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar et al., “Universal
sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

[19] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[20] B. Dorr, D. Zajic, and R. Schwartz, “Hedge trimmer: A parse-and-
trim approach to headline generation,” in Proceedings of the HLT-
NAACL 03 on Text summarization workshop-Volume 5. Association
for Computational Linguistics, 2003, pp. 1–8.

[21] E. Alfonseca, D. Pighin, and G. Garrido, “Heady: News headline
abstraction through event pattern clustering.” in ACL (1), 2013, pp.
1243–1253.

[22] S. Wang and H. Liu, “Deep learning for feature representation,” Feature
Engineering for Machine Learning and Data Analytics, p. 279, 2018.

[23] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[24] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summa-
rization with attentive recurrent neural networks,” in NAACL, 2016, pp.
93–98.

[25] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[26] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.

[27] J. Mueller, D. Gifford, and T. Jaakkola, “Sequence to better sequence:
continuous revision of combinatorial structures,” in International Con-
ference on Machine Learning, 2017, pp. 2536–2544.

[28] S.-Q. Shen, Y.-K. Lin, C.-C. Tu, Y. Zhao, Z.-Y. Liu, M.-S. Sun et al.,
“Recent advances on neural headline generation,” Journal of Computer
Science and Technology, vol. 32, no. 4, pp. 768–784, 2017.

[29] A. M. Lamb, A. G. A. P. GOYAL, Y. Zhang, S. Zhang, A. C. Courville,
and Y. Bengio, “Professor forcing: A new algorithm for training recur-
rent networks,” in Advances In Neural Information Processing Systems,
2016, pp. 4601–4609.

[30] Y. Li, Q. Pan, S. Wang, T. Yang, and E. Cambria, “A generative model
for category text generation,” Information Sciences, vol. 450, pp. 301–
315, 2018.

[31] Y. Zhang, Z. Gan, and L. Carin, “Generating text via adversarial
training,” in NIPS workshop on Adversarial Training, 2016.

[32] M. J. Kusner and J. M. Hernández-Lobato, “Gans for sequences of
discrete elements with the gumbel-softmax distribution,” arXiv preprint
arXiv:1611.04051, 2016.

[33] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[34] M. Potthast, S. Köpsel, B. Stein, and M. Hagen, “Clickbait detection,”
in European Conference on Information Retrieval. Springer, 2016, pp.
810–817.

[35] J. N. Blom and K. R. Hansen, “Click bait: Forward-reference as lure
in online news headlines,” Journal of Pragmatics, vol. 76, pp. 87–100,
2015.

[36] Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan, “Style transfer in text:
Exploration and evaluation,” arXiv preprint arXiv:1711.06861, 2017.

[37] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” arXiv
preprint arXiv:1709.08624, 2017.

[38] Y. Yao, B. Viswanath, J. Cryan, H. Zheng, and B. Y. Zhao, “Auto-
mated crowdturfing attacks and defenses in online review systems,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1143–1158.

