

Deep Headline Generation for Clickbait Detection

Kai Shu¹, Suhang Wang², Thai Le², Dongwon Lee², and Huan Liu¹

¹Arizona State University, ²Penn State University

Clickbait

 Clickbaits are catchy social media posts or sensational headlines that attempt to lure the readers to click

- Clickbaits can have negative societal impacts
 - clickbaits may contain sensational and inaccurate information to mislead readers and spread fake news
 - clickbaits may be used to perform click-jacking attacks by redirecting users to phishing websites

It's important to detect clickbaits!

Clickbait Detection

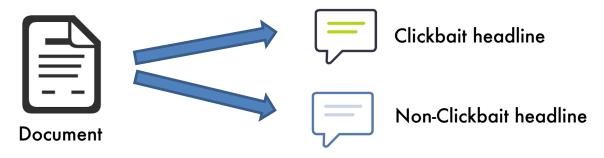
- Existing approaches mainly focus on extracting handcrafted linguistic features or building complex predictive models such as deep neural networks
- However, these methods may face following limitations
 - Scale: datasets with labels are often limited
 - Distribution: imbalanced distribution of clickbaits and non-clickbaits

We aim to generate synthetic headlines with specific styles and exploit the utility to improve clickbait detection

Deep Headline Generation for Clickbait Detection

Headline Generation from Documents

 Goal: Generate stylized headlines that also preserve document contents



- Stylized headlines can help augment training data for clickbait detection
- Content preserved headlines make it possible to suggest a nonclickbait headline to readers after we detect a clickbait

Problem Definition

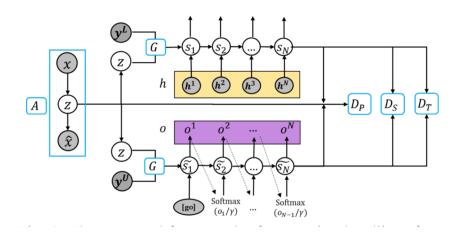
- Let $\{x_1, x_2, ..., x_m\}$, $\{h_1, h, ..., h_m\}$, and $\{y_1, y_2, ..., y_m\}$ denote the set of m documents, the corresponding headlines, and style labels
- Given $S = \{(x_i, h_i) | i = 1, ..., m\}$, learn a generator f that can generate stylized headlines given a document and a style label, i.e., $o_i = f(x_i, y_i)$

Challenges:

- How to generate realistic and readable headlines from original document to improve clickbait detection
- How to generate headlines that can preserve the content of documents and transfer the style of headlines?

Stylized Headline Generation (SHG)

- We propose a deep learning model to generate both click-bait and non-clickbait with style transfer
 - Generator Learning: a document autoencoder A, a headline generator G
 - Discriminator Learning: a transfer discriminator D_T , a style discriminator D_S , a pair discriminator D_P



Generator Learning

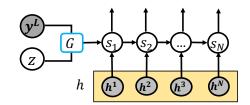
• Document autoencoder A: extract document representation by minimizing the reconstruction error

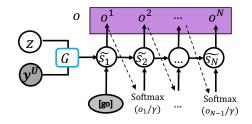
$$\mathcal{L}_{rec}(\theta_e, \theta_d) = -\sum_{i=1}^{m} \log p(\hat{x}_i | x_i; \theta_d, \theta_e)$$

- Headline generator G:
 - generate stylized headline by minimizing the reconstruction error of original headline

$$\mathcal{L}_G(\theta_G) = \mathbb{E}_{(x,h) \in \mathcal{S}}[-\log p_G(h|\mathbf{y}^L,\mathbf{z}))]$$

- generate a set of new headlines o with the styles y^U opposite with original headlines





Discriminator Learning

- Discriminators regularize the representation learning of document z, original headline s_N , and generated headline $\widetilde{s_N}$
- Transfer discriminator D_T : discriminate original data samples with generated data samples

 $\begin{array}{c|c}
\hline
Z \\
\hline
D_P \\
\hline
D_S \\
\hline
D_T
\\
\hline
\end{array}$

Original clickbaits and generated non-clickbaits

$$\mathcal{L}_{D_T} = \mathcal{L}_{D_T^{(1)}}(\theta_{D_T^{(1)}}) + \mathcal{L}_{D_T^{(2)}}(\theta_{D_T^{(2)}})$$

Original non-clickbaits and generated clickbaits

• Style discriminator D_s : assign a correct label of styles for both original headlines and generated headlines

Original clickbaits and original non-clickbaits

$$\mathcal{L}_{D_S}(\mathbf{W}, \mathbf{b}) = \mathcal{L}_{D_S}^{(1)} + \mathcal{L}_{D_S}^{(2)}$$

Generated clickbaits and generated non-clickbaits

Discriminator Learning cont'd

• Pair discriminator D_p : ensure that the correspondences of documents and headlines are maintained

Proximity function
$$p(h_i,x_j) = \frac{1}{1+\exp(-\mathbf{s}^{(i)}\mathbf{Q}\mathbf{z}^{(j)})}$$
 Document representation Headline representation

 Maximizing the proximity of (document, headline) pairs with negative sampling

$$\mathcal{L}_{D_P} = -\log \sigma(\mathbf{s}^{(i)}\mathbf{Q}\mathbf{z}^{(i)}) - \sum_{k=1}^K \mathbb{E}_{x_k \sim P_n(x)}[\log \sigma(-\mathbf{s}^{(i)}\mathbf{Q}\mathbf{z}^{(k)})]$$

An optimization framework

A mini-max game among generators and discriminators

$$\min_{\{\theta_G, \theta_{D_S}, \theta_{D_P}\}} \max_{\theta_{D_T}} \mathcal{L}_G + \alpha \mathcal{L}_{D_S} - \beta \mathcal{L}_{D_T} + \eta \mathcal{L}_{D_P}$$

Pre-train document autoencoder A

Obtain headline representations of the original headlines and the generated headlines

Train the transfer discriminator

Train the headline generator, style discriminator and pair discriminator

Algorithm 1 The Learning Process of SHG

Input: The two set of training tuple S_0 , S_1 , α , β , λ , η , temperature γ , batch size k.

Output: The headline generator G conditioned on $(\mathbf{z}, \mathbf{y}^{\mathbf{U}})$, generated headlines G

- 1: Pre-train the document generator A to obtain the content representations $\{\mathbf{z}_i\}_{i=1}^m = \{A(x_i)\}_{i=1}^m$
- 2: repeat
- 3: **for** l = 0, 1 **do**
- 4: Sample a mini-batch of k samples $\{(x^i, h^i)\}_{i=1}^k$ from the training tuples \mathcal{S}_l
- Unroll G from initial state $(\mathbf{z}_i, \mathbf{y}^L)$ by feeding \mathbf{s}_i , and get the last hidden state \mathbf{s}_N
- 6: Unroll G from initial state $(\mathbf{z}_i, \mathbf{y}^U)$ by feeding $\tilde{\mathbf{s}}_i$, and get the last hidden state $\tilde{\mathbf{s}}_N$
- 7: **end for**
- 8: Training the discriminator D_T by gradient descent using Eqn 17
- 9: Training the headline generator G through Eqn 9, and the style discriminator D_S through Eqn 14, and the discriminator D_P via Eqn 19.
- 10: until Convergence

Experiments Setting

Datasets

 Professional writers (P): news reporters or editors who come up with clickbaits for the news pieces they publish

- Social media users (M): clickbaits to lure people to click their posts

on social media.

TABLE I: The	statistics	and	descriptions	of	the c	latasets
--------------	------------	-----	--------------	----	-------	----------

Dataset	Source	# Clickbaits	# Non-clickbaits
P	Professional Writers	5,000	16,933
M	Social Media Users	4,883	16,150

Baselines

- SeqGAN [AAAI'17]: text generation using GAN with reinforcement learning
- SVAE [CONLL'16]: sentence generation using Variational Auto-**Encoder (VAE)**
- CrossA [NIPS'17]: generating sentences across different styles

Experiments - Evaluation questions

- 1. Consistency: are generated clickbaits/non-clickbaits consistent with the original datasets?
- 2. Readability, are generated headlines readable or not?
- 3. Similarity, are generated headlines semantically similar to original documents?
- **4. Differentiability**: are generated clickbaits/non-clickbaits differentiable?
- **5. Accuracy**: can generated clickbaits/non-clickbaits help improve the detection performance?

Data Quality

Data Utility

Experimental Results - Data Quality

- Consistency: CrossA and SHG have better consistency performance than other baselines.
- Readability: SHG can produce most readable headlines mostly

Deep Headline Generation for Clickbait Detection

TABLE III: **EQ1**:The Data Consistency between Generated Headlines \mathcal{O} and original headlines \mathcal{H} . Training data is \mathcal{H} and test data is \mathcal{O} .

Data	Classifier	SeqGAN	SVAE	CrossA	SHG
	LogReg	0.501	0.621	0.957	0.963
	DTree	0.504	0.603	0.924	0.920
P	RForest	0.504	0.716	0.924	0.976
P	XGBoost	0.500	0.722	0.938	0.977
	AdaBoost	0.500	0.714	0.957	0.977
	SVM	0.503	0.712	0.937	0.963
	GradBoost	0.501	0.722	0.933	0.969
	LogReg	0.500	0.576	0.666	0.763
	DTree	0.53	0.623	0.687	0.750
M	RForest	0.501	0.662	0.722	0.825
M	XGBoost	0.501	0.610	0.660	0.742
	AdaBoost	0.500	0.671	0.691	0.749
	SVM	0.500	0.620	0.648	0.725
	GradBoost	0.501	0.674	0.692	0.742

TABLE IV: **EQ2**: The Readability score comparison of the generated headlines \mathcal{O} on different generation methods.

Data	Methods	Clickbait	Non-Clickbait
	SeqGAN	14.45	14.54
P	SVAE	8.64	10.38
	CrossA	8.98	10.48
	SHG	8.45	10.16
M	SeqGAN	14.48	15.88
	SVAE	9.52	10.79
	CrossA	9.86	10.56
	SHG	9.36	10.04

Experimental Results - Data Quality

- Similarity: evaluate the semantic similarity of headlines and documents
 - Bilingual Evaluation Understudy (BLEU) score
 - Uni_sim: similarity of universal text embedding
- SHG can achieve better performances to preserve document content than CrossA

TABLE V: EQ3: The Average BLEU (BLEU-4) Score Comparison of Generated Headlines. H indicates original headlines, and \mathcal{O} represents the generated headlines.

Data	Headlines	Methods	Clickbait	Non-Clickbait
	\mathcal{H}		0.555	0.527
P	0	CrossA	0.407	0.432
		SHG	0.453	0.446
	H		0.541	0.534
M	0	CrossA	0.432	0.437
		SHG	0.451	0.442

TABLE VI: **EQ3**: The Average Uni_sim Value Comparison of Generated Headlines. \mathcal{H} indicates original headlines, and O represents the generated headlines.

Data	Headlines	Methods	Clickbait	Non-Clickbait
	\mathcal{H}		0.63	0.81
P	O	CrossA SHG	0.20 0.37	0.22 0.40
	H		0.64	0.81
M	O	CrossA SHG	0.26 0.34	0.34 0.38

Experimental Results - Data Utility

- Differentiability: we perform clickbait detection on generated datasets using various classifiers
- The synthetic headlines generated by SHG can consistently outperform other baselines for clickbait detection on AUC

TABLE VII: EQ4: The prediction performance of generated headlines \mathcal{O} on AUC. The training data is \mathcal{O}_{train} and test data is \mathcal{O}_{toot} .

Data	Classifier	SeqGAN	SVAE	CrossA	SHG
	LogReg	0.697	0.710	0.794	0.864
	DTree	0.701	0.766	0.791	0.816
P	RForest	0.685	0.794	0.797	0.849
F	XGBoost	0.701	0.795	0.795	0.848
	AdaBoost	0.694	0.800	0.793	0.848
	SVM	0.646	0.795	0.787	0.847
	GradBoost	0.702	0.797	0.792	0.848
	LogReg	0.625	0.663	0.744	0.855
	DTree	0.612	0.712	0.771	0.934
M	RForest	0.598	0.724	0.783	0.883
M	XGBoost	0.616	0.651	0.697	0.872
	AdaBoost	0.642	0.667	0.708	0.872
	SVM	0.510	0.590	0.693	0.890
	GradBoost	0.624	0.654	0.708	0.885

Experimental Results - Data Utility

- Accuracy: performance improvement comparison of original headlines on AUC
 - The headlines generated by SVAE, CrossA, and SHG can increase the performance of clickbait detection to some extent
 - SHG can consistently outperform SVAE and CrossA on the performance improvement

	•					
Data	Classifier	Org	SeqGAN	SVAE	CrossA	SHG
	LogReg	0.928	0.900 (\psi 3.02%)	0.933 († 0.54%)	$0.932\ (\uparrow 0.64\%)$	0.936 († 0.86%)
	DTree	0.894	$0.882~(\downarrow 1.34\%)$	$0.908 \ (\uparrow 1.57\%)$	$0.900 \ (\uparrow 0.67\%)$	$0.910 \; (\uparrow 1.79\%)$
P	RForest	0.900	$0.893~(\downarrow 0.78\%)$	0.912 († 1.33%)	$0.916 \ (\uparrow 1.78\%)$	$0.925 \; (\uparrow 2.78\%)$
Γ	XGBoost	0.919	$0.914~(\downarrow 0.54\%)$	0.923 († 0.43%)	$0.926 \ (\uparrow 0.76\%)$	0.928 († 0.98%)
	AdaBoost	0.917	$0.896~(\downarrow 2.29\%)$	0.921 († 0.44%)	$0.921 (\uparrow 0.44\%)$	$0.931 \ (\uparrow 1.64\%)$
	SVM	0.904	$0.898 (\downarrow 0.66\%)$	0.917 († 1.44%)	$0.920 \ (\uparrow 1.77\%)$	$0.923 \; (\uparrow 2.10\%)$
	GradBoost	0.921	$0.914~(\downarrow 0.76\%)$	$0.924\ (\uparrow 0.33\%)$	0.926 († 0.54%)	0.928 († 0.76%)
	LogReg	0.667	0.614 (\psi 7.95%)	0.680 († 1.95%)	0.685 († 2.70%)	0.684 († 2.55%)
	DTree	0.618	$0.612~(\downarrow 0.97\%)$	0.620 († 0.32%)	$0.622\ (\uparrow 0.65\%)$	$0.632 \ (\uparrow 2.27\%)$
M	RForest	0.623	$0.610~(\downarrow 2.09\%)$	0.634 († 1.77%)	$0.627 (\uparrow 0.64\%)$	0.634 († 3.93%)
M	XGBoost	0.655	$0.643~(\downarrow 1.84\%)$	0.668 († 1.98%)	$0.671 \ (\uparrow 2.44\%)$	0.681 († 3.97%)
	AdaBoost	0.654	$0.639~(\downarrow 2.29\%)$	$0.664 (\uparrow 0.65\%)$	$0.671 \ (\uparrow 2.60\%)$	0.680 († 3.98%)
	SVM	0.618	0.611 (\(\psi \) 1.13%)	0.651 († 5.34%)	0.660 (↑ 6.80%)	$0.681\ (\uparrow 10.19\%)$
	GradBoost	0.657	$0.643~(\downarrow 2.13\%)$	$0.667 \ (\uparrow 1.52\%)$	$0.671 \ (\uparrow 2.13\%)$	0.682 († 3.81%)

Conclusion and Future Work

- We study the problem of generating clickbaits/nonclickbaits from original documents for clickbait detection
- We propose a novel deep generative model with adversarial learning
- Future work
 - Explore the generalization capacity of SHG on other styles such as positive-negative sentiment style and academic-news reporting style

Deep Headline Generation for Clickbait Detection

 Investigate the strategy of learning the disentangled representations of content and style

Deep Headline Generation for Clickbait Detection

Kai Shu, et al.

Acknowledgements

This work is supported by the ONR grant N00014-16-1-2257, N00014-17-1-2605, #1422215, #1663343, #1742702, #1820609, and AFRL FA8750-16-C-0108.

