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ABSTRACT

Friend and item recommendation on a social media site is an im-

portant task, which not only brings conveniences to users but also

benefits platform providers. However, recommendation for newly

launched social media sites is challenging because they often lack

user historical data and encounter data sparsity and cold-start prob-

lem. Thus, it is important to exploit auxiliary information to help

improve recommendation performances on these sites. Existing

approaches try to utilize the knowledge transferred from other

mature sites, which often require overlapped users or similar items

to ensure an effective knowledge transfer. However, these assump-

tions may not hold in practice because 1) Overlapped user set is

often unavailable and costly to identify due to the heterogeneous

user profile, content and network data, and 2) Different schemes to

show item attributes across sites cause the attribute values incon-

sistent, incomplete, and noisy. Thus, how to transfer knowledge

when no direct bridge is given between two social media sites re-

mains a challenge. In addition, another auxiliary information we

can exploit is the mutual benefit between social relationships and

rating preferences within the platform. User-user relationships are

widely used as side information to improve item recommendation,

whereas how to exploit user-item interactions for friend recom-

mendation is rather limited. To tackle these challenges, we propose

a Cross media joint Friend and I tem Recommendation framework

(CrossFire), which can capture both 1) cross-platform knowledge

transfer, and 2) within-platform correlations among user-user rela-

tions and user-item interactions. Empirical results on real-world

datasets demonstrate the effectiveness of the proposed framework.
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1 INTRODUCTION

Social media websites provide users with multiple services such

as online reviews, networking, social publishing, etc. To improve

personalized services, social media sites often attempt to suggest

potential information that will match the interests of users or poten-

tial friends that users will form relationships with. Recommender

systems, which aim to solve the aforementioned problems, are

attracting more and more attention in recent years [20, 21, 27].

For those mature social media sites, they have abundant histori-

cal information to help build recommender system, whereas those

newly launched sites often lack these information and encounter

the data sparsity and cold-start challenges [22]. To build effec-

tive and practical friend and item recommendation systems for the

newly launched sites, it’s natural and necessary to explore auxiliary

information from different aspects.

One popular way of exploring auxiliary information is to trans-

fer the knowledge from the mature platform to newly created plat-

form by assuming that either (i) there are anchor links between

users across two platforms and thus knowledge can be transferred

through these anchor links [3, 13]; or (ii) items attributes are con-

sistent and thus we can directly utilize similarity between items to

transfer the knowledge [11]. However, in practice, these assump-

tions may not hold. A typical scenario is shown in Figure 1(a),

where P1 is a mature platform and P2 is a newly launched one.

Users in P1 can form a social network and give ratings to items

in P1. Similarly, users in P2 can also form links and rate items in

P2. However, there are no anchor links between users in P1 and
users in P2 and thus no information can be directly transferred

between users in P1 and P2. In addition, directly measuring the

similarity between items in P1 and P2 may not be applicable as

different sites encode items in different schemes and result in incon-

sistent attribute fields and many missing values. The majority of

existing work that exploits anchor links or item similarities cannot

be directly applied. Therefore, it is important to study the novel

and challenging problem of cross-platform recommendation when

no direct bridge between users or items is given.

In addition to transferring knowledge across platforms, we can

also exploit auxiliary information within a single platform. As

shown in Figure 1(a), on a social media site, users can usually form

relationships with others as well as express their preferences to

items. For example, in GoodReads1, people can follow and be fol-

lowed by other users and also give ratings to the books they read.

According to social correlation theories, users’ preferences towards

items and friends have inseparable correlations. Homophily [18]

1https://www.goodreads.com/



(a) An example of cross social media joint recommendations (b) The flowchart of the proposed framework CrossFire

Figure 1: An illustration of the problem scenario for cross-media joint friend and item recommendation, and the basic idea of

proposed framework integrating within-platform correlations and cross-platform information for joint recommendations.

theory shows that users who have similar attributes are more likely

to become friends [18]. Likewise, social influence theory [17] sug-

gests that users are more likely to be influenced by their friends

and express similar ratings to those items visited by their friends.

However, even though much efforts have been devoted to exploit-

ing user-user relations to help item recommendations, how to ex-

ploit user-item interactions for friend recommendation remains

limited [23]. Previous works also show that a positive correlation

between users’ interests and social relationships [26], which may

indicate an added value to utilize user interests to help friend rec-

ommendations in social media. Thus, we can jointly recommend

items and friends by exploiting the correlations among them. As

shown in Figure 1(a), supposeu21 andu
2
2 are friends, useru

2
1 is likely

to be influenced by his/her friend u22 and gives a similar rating to

item v21 . Also, user u
2
2 and u

2
3 both give a rating score 3 to item v22 ,

so they are more likely to form a relationship.

Cross-platform knowledge transfer and within-platform joint

learning have complementary information, which both provide new

perspectives to help improve the recommendation performances

for the newly launched platform. In this paper, we investigate: (1)

how to transfer the information from source platform to target

platform when there is no straightforward way to bridge two plat-

forms, and (2) how to mathematically formulate joint friend and

item recommendation so as to improve recommendation perfor-

mance. To tackle these challenges, we propose a novel Cross-media

joint Friend and I tem Recommendation framework (CrossFire). The

framework can i) build the implicit bridge to transfer knowledge

by utilizing the observation that the user behaviors share similar

patterns across different networks, and the assumption that item

features on two platforms share the same dictionary; ii) learn user

and item latent features by exploiting the correlation between user-

user relations and user-item interactions to perform joint friend

and item recommendations. The main contributions are as below:

• We study a novel problem of cross-media joint friend and

item recommendations when no anchor links are available;

• We propose a new framework CrossFire which integrates

within-platform correlations and cross-media information

into a coherent model for joint friend and item recommen-

dations, and an optimization algorithm to solve it;

• We conduct experiments on real-world social media sites to

demonstrate the effectiveness of the proposed framework

CrossFire for friend and item recommendations.

2 PROBLEM FORMULATION

We first introduce the notations of this paper, and then give the

formal problem definition. Let U1 = {u11,u
1
2, . . . ,u

1
n1
} and V1 =

{v11 ,v
1
2 , . . . ,v

1
m1
} be the sets of users and items in the source social

media site, where n1 andm1 are the numbers of users and items,

respectively. U2 = {u21,u
2
2, . . . ,u

2
n2
} and V2 = {v21 ,v

2
2 , . . . ,v

2
m2
}

denote the sets of users and items in the target social media site

where n2 and m2 denote the number of users and items, respec-

tively. We also use X1 ∈ Rd×m1 and X2 ∈ Rd×m2 to denote the

item features in source and target domains, separately; where d is

the dimension of item feature vectors. On each social media site,

users can rate the items and we use R1 ∈ Rn1×m1 and R2 ∈ Rn2×m2

to denote the user-item rating matrices for the source domain and

target domain, respectively. Users can become friend with other

users and we use A1 ∈ {1, 0}n1×n1 and A2 ∈ {1, 0}n2×n2 to denote

the user-user adjacency matrices on the source and target social

media site, respectively. A very common situation is that the source

domain is a mature source media site while the target site is newly

launched. Thus, the rating matrix R1 and user-user adjacency ma-

trix A1 in the source domain are relatively dense while R2 and A2

in the target domain are very sparse. Much work has demonstrated

that we can learn better user and item latent features with dense

rating and user-user matrices for friend and item recommendations

while it is very difficult to make reasonable recommendations with

very sparse rating matrices. Thus, we want to use R1 and A1 in

the source domain to help friend and item recommendations in the

target domain. We assume that there is no explicit correspondence

information among users and items. With the notations given

above, the problem is formally given as,

Given the rating matrix R1, user-user link matrixA1 and item-feature

matrix X1 in the source social media site, rating matrix R2, user-user

link matrix A2 and item-feature matrix X2 in the target social media

site, we aim to make friend and item recommendations on the target

social media site.



3 CROSS MEDIA JOINT RECOMMENDATIONS

In this section, we present the details of proposed framework for

cross-media joint friend and item recommendations. As shown in

Figure 1(b), our framework includes three major parts. We first

introduce how to exploit sparse transfer learning method to model

cross-media item information. Then we propose how to perform

cross site rating transfer learning. Finally, we present cross site

friend transfer learning followed by the proposed framework.

3.1 Sparse Transfer Learning for Items

Different online social network sites have different structures and

schemes to present item detail attributes, which causes the incon-

sistent attribute fields and many missing values. Thus, it becomes

ineffective to bridge items across sites directly using similarity

metrics, such as distance-based and frequency-based [24] on these

attributes. To make the bridge between items on two social network

sites, we propose to utilize sparse learning based transfer learning

approach. Specifically, the source feature matrix X1 can be recon-

structed as X1 ≈ DV1 and the target matrix X2 is reconstructed

as X2 ≈ DV2, where D ∈ Rd×p is the dictionary shared by source

and target platforms, V1 ∈ Rp×m1 and V2 ∈ Rp×m2 are the sparse

representations for X1 and X2, respectively. The essential idea is

that X1 and X2 share a dictionary D, which behaviors as a bridge

to transfer knowledge from X1 to X2. With this assumption, the

sparse learning objective is given as:

min
D,V1,V2

‖X1 − DV1‖2F + ‖X2 − DV2‖2F + γ (‖V1‖1 + ‖V2‖1)

s .t . ‖dj ‖22 ≤ 1, j = 1, . . . ,p
(1)

where dj is the jth column of D.

To make the dictionary matrix D satisfy the intrinsic geometric

structure of the item features, we incorporate a Graph Regularized

Sparse Coding (GraphSC) method [38]. The basic assumption of

GraphSC is that if two data points xi and xj are close in the intrinsic

geometry of data distributions, their codings vi and vj are also close.

Thus, given X = [X1,X2] ∈ Rd×(m1+m2), GraphSC constructs a K-
nearest neighbor graph G with (m1 +m2) nodes representing all

data points. Let H be the weight matrix of G; if xi is among the

K-nearest neighbors with xj , then Hi j = exp
−‖xi −xj ‖22

σ , where σ is

the scalar to control the bandwidth; otherwise, Hi j = 0. Then the

graph regularization term tries to minimize

1

2

m1+m2∑
i, j=1

‖vi − vj ‖2Hi j = Tr (VLVT ) (2)

where V = [V1,V2]. L = S − H is the Laplacian matrix and S is

a diagonal matrix with the diagonal element Sii =
∑m1+m2

j=1 Hi j .

Moreover, to enforce unified codings for both domains, we also

regularize the model with an additional term called maximummean

discrepancy regularization [12] as follows,

MMD = ‖
1

m1
V11 −

1

m2
V21‖22 = Tr (VMVT ) (3)

which is the �2-norm of the difference between mean samples of

the source and target domains in the sparse coding space. M is

the MMD matrix and is computed as Mi j = 1/m2
1 if vi ,vj ∈ V1,

Mi j = 1/m2
2 if vi ,vj ∈ V2 and

−1
m1m2

otherwise.

The graph regularization term in Eq.(2) and the MMD regular-

ization term in Eq.(3) together guide the learning process of D and

V so that the probability distribution of both domains are drawn

close under the new representation V. Thus, we can formulate the

sparse transfer learning for items as,

min
V1,V2,D

‖ X1 − DV1‖2F + ‖X2 − DV2‖2F + γ (‖V1‖1 + ‖V2‖1)

+ Tr (V(μL + νM)VT ), s .t .‖di ‖22 ≤ 1, i = 1, . . . ,p
(4)

where μ and ν are used as a trade-off for the contributions of graph

regularization term and MMD, γ is to control the level of sparsity.

3.2 Cross Site Rating Transfer Learning

Following existing work that assumes users’ rating behaviors share

common patterns across sites [9], we propose a transfer learning

model to better learn user and item latent representations. With

the sparse representations of items for both the source and target

domains, we introduce another projection matrix Qp×K , which
projects the sparse representations to the latent item feature rep-

resentations, i.e., QTV1 and QTV2. Thus, we can formulate the

objective function of cross-media rating transfer learning as below,

min
U1,V1U2,V2,Q

‖W1 � (R1 − U1
TQTV1)‖2F + ‖W2 � (R2 − U2

TQTV2)‖2F

s .t . QTQ = I

(5)

where � denotes the Hadamard product and W1 (W2) controls the

contribution of R1 (R2). U1 ∈ RK×n1 (U2 ∈ RK×n2 ) is the user

latent feature representation matrix in source (target) platform. The

orthogonal constraint on Q is to ensure that each column of Q are

independent.

3.3 Cross Site Friend Transfer Learning

Existing research on cross social network analysis has demonstrated

that different social network platforms may have similar network

structures and characteristics, e.g., the number of user relations

falls into power-law distributions [2]. Following traditional setting,

we decompose the user-user link matrices A1 and A2 to map them

to a shared latent space and obtain user latent features U1 and U2.

In order to model the latent features shared across different social

media sites, we also exploit a shared interaction matrix P. Then the

modeling formulation is,

min
U1,U2,P

‖Y1 � (A1 − U1
T PU1)‖2F + ‖Y2 � (A2 − U2

T PU2‖2F (6)

where � denotes the Hadamard product and Y1 (Y2) controls the

contribution of A1 (A2). The essential idea of using shared P is that:

P is the interaction matrix which captures the interaction property

of users, i.e., the connection status of uis and u
i
t is represented via

the interactionmatrix P asUi (s, :)T PUj (:, t). Since users connection
behaviors are consistent in different sites, e.g., the structure of social

networks are similar, P should also be similar across sites.

3.4 Proposed Framework

In this section, we combine the aforementioned three components

together, and present the framework of cross-media joint friend and

item recommendations named CrossFire. The proposed framework



CrossFire aims to solve the following optimization problem,

min
θ

2∑
i=1

‖Xi − DVi ‖2F + γ ‖Vi ‖1 +Tr (V(μL + νM)V
T )

︸������������������������������������������������������������︷︷������������������������������������������������������������︸
Item Sparse Transfer Learning

+α
2∑
i=1

‖Wi � (Ri − UTi Q
TVi )‖2F

︸���������������������������������︷︷���������������������������������︸
Cross-Media Item Recommendation

+λ(‖P‖2F + ‖Q‖
2
F )

+β
2∑
i=1

‖Yi � (Ai − UTi PUi )‖
2
F

︸�����������������������������︷︷�����������������������������︸
Cross-Media Friend Recommendation

+λ
2∑
i=1

‖Ui ‖2F

s .t . ‖dj ‖22 ≤ 1, j = 1, . . . ,p, QTQ = I

(7)

where the first part is to perform item sparse transfer learning;

the second part captures the cross-media rating transfer learning;

the third term models the user relations transfer learning. By in-

corporating these components together, we are able to make joint

recommendations for items and friends simultaneously with the

resultant latent features.

4 AN OPTIMIZATION FRAMEWORK

In this section, we present the details of the optimization process

for the proposed framework CrossFire. If we update the variables

jointly, the objective function in Eq. 7 is not convex. Thus, we

use alternating least square method to iteratively optimize each

variable separately. Next, we will introduce the updating rules. For

simplicity, we use L to denote the objective function in Eq. 7.

4.1 Update Rules

In this section, wewill introduce the updating rules for each variable

in details.

4.1.1 Update D. The objective function related to D can be

rewritten as,

min
D

‖X − DV‖2F s .t . ‖dj ‖22 ≤ 1, j = 1, . . . ,p (8)

where X = [X1, X2] and V = [V1, V2]. Eq.(8) is a standard dic-

tionary learning problem and can be solved using the algorithm

proposed in [8].

4.1.2 Update V. Since updating V involves the l1 norm, we pro-

pose to use Alternating Direction Method of Multiplier (ADMM) [1,

36] to update V. By introducing an auxiliary variable Z = V and

L̃ = μL + νM, we can rewrite the objective function as follows,

min
V

‖X − DV‖2F +Tr (VL̃V
T ) + α

2∑
i=1

‖Wi � (Ri − UTi Q
TVi )‖2F

︸�������������������������������������������������������������������������︷︷�������������������������������������������������������������������������︸
д(V)

+γ ‖Z‖1︸︷︷︸
h(Z)

s .t .V − Z = 0

(9)

This is a standard l1 regularized ADMM problem [1]. The updat-

ing function from step t to step t + 1 is,

Vt+1 := argmin(д(V) + ρ/2‖V − Zt + Et ‖2F ) (10)

Zt+1 := Tγ /ρ (Vt+1 + Et ) (11)

Et+1 := Et + Vt+1 − Zt+1 (12)

where ρ is the trade-off parameter and Tγ /ρ (V) is a the proximal

function for l1 norm (i.e., soft-thresholding operator) [19] defined

as follows, [
Tγ /ρ (V)

]
i j
= sign(Vi j )(|Vi j | − γ/ρ)+ (13)

To solve Eq. 10, we use gradient descent method to update V as

in Algorithm 1. The partial derivative of updating V is,

∂L
∂V
= 2DT (DV − X) + VL̃ + ρ(V − Z + E)

+2α
[
QU1[W1 � (UT1 Q

TV1 − R1)],QU2[W2 � (UT2 Q
TV2 − R2)]

]

Algorithm 1 Update V

Require: Initial feasible V, Z, E, ρ = 0.5, γ , maxsteps

Ensure: Updated V

1: for t = 1 to maxsteps do

2: Update Vt+1 using Vt+1 = Vt − ϵ ∂L
∂V via Eq. 14

3: Update Zt+1 via Eq. 11

4: Update Et+1 via Eq. 12

5: end for

6: Return V

4.1.3 Update Ui and P. The partial derivative of the objective

function w.r.t Ui is given as

1

2

∂L
∂Ui

= αQTVi [Wi � (UTi QVi − Ri )]T + λUi

+ βPTUi [Yi � (UTi PUi − Ai )] + βPUi [Yi � (UTi PUi − Ai )]T
(14)

and the partial derivative of the objective function w.r.t P is

1

2

∂L
∂P
= β

2∑
i=1

[Ui (Yi � UTi PUi )U
T
i − Ui (Yi � Ai )UTi ] + λP (15)

4.1.4 Update Q. The objective with respect to Q is as follows,

min
Q

α
2∑
i=1

‖Wi � (Ri − UTi Q
TVi )‖2F + λ‖Q‖

2
F , s .t . Q

TQ = I

(16)

We use a gradient descent optimization procedure with curvilinear

search [35] to solve it. The gradient can be calculated as,

G =
∂L
∂Q
= 2α

2∑
i=1

Vi [Wi � (UTi Q
TVi − Ri )]TUTi + 2λQ (17)

We then defined F ∈ RK×K as F = GQT −QGT . Note that FT = −F
and thus F is skew-symmetric. The next new point can be searched

as a curvilinear function of a step size variable τ such that,

S(τ ) = (I +
τ

2
F)−1(I −

τ

2
F)Q (18)



Algorithm 2 Update Q

Require: Initial feasible Q, 0 < μ < 1, 0 < ρ1 < ρ2 < 1

Ensure: Updated Q

1: Compute F, G, L′
τ (S(0)) respectively; set τ = 1

2: for s = 1 to maxsteps do

3: Compute S(τ ) via Eq.(18), L′
τ (S(τ )) via Eq.(20)

4: if Armijio-Wolfe conditions are satisfied then break-out

5: end if

6: τ = μτ
7: end for

8: Update Q as Q = S

9: Return Q

Algorithm 3 The optimization process of CrossFire framework

Require: {Xi ,Ri ,Ai }i=1,2, α , β,γ , λ, μ,ν
Ensure: {Ui ,Vi }i=1,2, P,Q,D
1: Initialize {Ui ,Vi }i=1,2, P,Q,D
2: Precompute L,M and L̃ = μL + νM
3: repeat

4: Update D via algorithm proposed in [8]

5: Update V1, V2 with Algorithm 1

6: Update U1, U2 as Ui ← Ui − ϵ ∂L
∂Ui

using Eq. 14

7: Update P as P← P − ϵ ∂L
∂P using Eq. 15

8: Update Q via Algorithm 2

9: until Convergence

It can be proved that S(τ ) is orthogonal based on Cayley trans-

formation [6]. Thus we can stay in the feasible region along the

curve defined by τ . We determine a proper step size τ satisfying

the following Armijo-Wolfe conditions,

L(S(τ )) ≤ L(S(0)) + ρ1τL′
τ (S(0)), L′

τ (S(τ )) ≥ ρ2L′
τ (S(0)) (19)

Here L′
τ (S(τ )) is the derivative of L w.r.t τ ,

L
′
τ (S(τ )) = −Tr (R(τ )T (I +

τ

2
F)−1F

Q + S(τ )
2

) (20)

where R(τ ) = ∇Sτ L(S(τ )). Obviously, S(0) = Q and thus R(0) =
∇QL(Q) = G. Therefore L′

τ (S(0)) = − 1
2 ‖F‖

2
F
. Details of updating

Q is shown in Algorithm 2.

4.2 Algorithm of CrossFire

To this end, we give the detailed algorithm to learn the parameters

for CrossFire in Algorithm 3. In line 1, we initialize the parameters

{Ui ,Vi }i=1,2, P,Q and D. In line 2, we precompute graph laplacian

matrix L and MMD matrix M. Next, we update these parameters

sequentially from Line 4 to Line 8 until convergence. Note that ϵ
is the learning rate for each iteration step. Finally, based on the

resultant latent matrix representations of users and items, we can

use them to perform friend and item recommendation tasks.

The convergence of the algorithm is guaranteed. The reason is

that we use gradient descent to update the parameters iteratively,

and the objective value will monotonically reduce. Note that the ob-

jective function in Eq. 7 is non-negative, so the proposed algorithm

will converge and it will achieve a local optimal value.

Table 1: The statistics of datasets

Dataset
Book Movie

Source Target Source Target

Platform GoodReads BookLikes Epinions Ciao

# users 7, 490 3, 853 5, 588 2, 126

# items 6, 946 5, 884 8, 072 2, 426

# ratings 199, 915 134, 525 109, 804 24, 012

# user links 120, 790 96, 327 215, 916 43, 362

4.3 Time Complexity

For the time complexity of proposed algorithm, we mainly focus

on the parameter learning process. For parameter D, we adopt the

method that uses a Lagrange dual which has been shown to bemuch

efficient [8]. The computation cost is approximatelyO(d(m1+m2)p).
Considering that we use ADMM to update V in Algorithm 1, the

major cost is to update V and the cost is about O(t(K(m1 +m2)p +
K(p+1)(m1n1+m2n2)+dp2(m1+m2)+p(m1+m2)2)), where t is the
number of iteration steps for updating V. The cost of updating Ui is

O(Kpmi +K
2ni +Kn

2
i +Knimi ). Similarly, the cost of updating P is

O(K(n21+n
2
2)+K

2(n1+n2)). At last,Q is updated using Algorithm 8

and the computation cost is approximately O(Kp(n1 + n2) + (p +
K)(n1m1 + n2m2) + K2(m1 +m2)).

5 EXPERIMENTAL EVALUATION

In this section, we will conduct experiments on real-world datasets

to demonstrate the effectiveness of the proposed framework. Specif-

ically, we aim to answer the following research questions:

• Is CrossFire able to improve friend and item recommenda-

tion by exploiting within-platform correlations and cross-

platform transferring information simultaneously?

• How effective are cross-media learning and joint friend

and item prediction, respectively, in improving the recom-

mendation performance of CrossFire?

To answer the first question, we compare the performance of

friend and item recommendations of CrossFire with the state-of-

the-art friend and item recommender systems, respectively. We

then investigate the effects of cross-media recommendation and

joint prediction on the proposed framework by doing parameter

analysis to answer the second question.

5.1 Datasets

We ensure that both source and target sites have the following

information: user-item interactions, user-user relations, and item

features. As shown in Table 1, we have two pairs of cross-media

datasets to evaluate the proposed framework, i.e., Book and Movie.

The Book data is collected from two book review social media sites,

GoodReads2 and BookLikes3, using web crawlers fromApril 2017 to

May 20174. Users on GoodReads and BookLikes can rate the books

they read of score 1 to 5 and they can follow and be followed by

others. The Movie dataset includes two item review sites Epinions

2https://www.goodreads.com
3http://booklikes.com/
4The dataset will be publicly available in the first author’s homepage
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Figure 2: Precision@5, Recall@5, Precision@10 and Recall@10 on Ciao.

Size of training set
80% 60% 40%

P
re
ci
si
o
n
@
5

0

0.05

0.1

0.15

0.2

0.25

0.3

CrossF ire

CFR

Tri − NMF

CMF

MF

RAND

(a) Precision@5

Size of training set
80% 60% 40%

R
ec
a
ll
@
5

0

0.02

0.04

0.06

0.08

0.1

CrossF ire

CFR

Tri − NMF

CMF

MF

RAND

(b) Recall@5

Size of training set
80% 60% 40%

P
re
ci
si
o
n
@
1
0

0

0.05

0.1

0.15

0.2

0.25
CrossF ire

CFR

Tri − NMF

CMF

MF

RAND

(c) Precision@10

Size of training set
80% 60% 40%

R
ec
a
ll
@
1
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CrossF ire

CFR

Tri − NMF

CMF

MF

RAND

(d) Recall@10

Figure 3: Precision@5, Recall@5, Precision@10 and Recall@10 on BookLikes.

and Ciao and public available 5. We only keep items that belong to

movie category. Users’ ratings range from 1 to 5 and they can also

establish social relations (trust relations). Since different schemes

to show item attributes cause the attribute values inconsistent and

incomplete, we only assume the most common text information for

items, i.e., name and description, are available. Thus, Item features

are represented using Bag-of-words model on the text. In the sense,

it may not be applicable to directly compute similarity score on

the attribute values since most of them are not available. Note that

we select the source and target platform for each cross-media data

based on real-world popularities of those sites.

5.2 Friend Recommendation

In this subsection, we check whether the proposed framework

CrossFire can improve the performance of friend recommendation.

5.2.1 Experimental Settings. We randomly choose a fraction of

x% positive user-user pairs for training and use the remaining 1−x%
of all links for testing, where x is varied in {80, 60, 40}. We use

top-k evaluation metrics to measure the recommendation perfor-

mance. Specifically, we give the definition of Precision@k and Re-

call@k as Precision@k = 1
|Ut |

∑
ut
i
∈Ut

|TopK (ut
i
)∩user (ut

i
) |

|TopK (ut
i
) | and

Recall@k = 1
|Ut |

∑
ut
i
∈Ut

|TopK (ut
i
)∩user (ut

i
) |

|user (ut
i
) | . where TopK(uti )

is the set of friends recommended to useruti on target platform that

uti has not yet formed links in the training set. user (uti ) indicates
the set of users that have been formed links in testing set. In our

experiment, k is set to 5 and 10, respectively.

5.2.2 Performance comparison of Friend Recommendation. We

compare CrossFire with several state-of-the-art friend recommenda-

tion algorithms. MF, CMF, and Tri-NMF are the friend recommenda-

tion methods for single-platform, and CFR is a cross-platform

5http://www.cse.msu.edu/ tangjili/trust.html

friend recommendation method. Note that CMF is also the baseline

of joint friend and item recommendation method.

• RAND: This method recommends user links randomly.

• MF:Matrix factorization method factorizes the link matrix

A into two low rank latent matrices and predicts the links

by the matrix reconstructed by them.

• CMF:Collectivematrix factorization [25] is amatrix factor-

ization model that jointly utilizes user-user social relation

matrix A2 and user-item preference matrix R2. Note that

user links are predicted as UT2 O2.

min
U2,V2,O2

α ‖Y2 � (A2 − UT2 O2)‖2F + β ‖W2 � (R2 − UT2 V2)‖2F

+ λ(‖U2‖2F + ‖V2‖2F + ‖O2‖2F )
(21)

• Tri-NMF: Nonnegative Matrix Tri-Factorization decom-

poses the link matrix A into two low rank matrices, i.e.,

user latent matrix U and user interaction matrix P. The

user links are predicted as UT2 PU2.

• CFR: CFR is a variant of our proposed method without

item feature sparse learning and cross-site item recommen-

dation, which has the following optimization form.

We use cross validation to determine all the model parameters. For

CrossFire, we set latent dimension asK = 10, item sparse dimension

p = 256. We also set α = 0.001, β = 1,γ = 0.001, λ = 0.01, μ =
0.001,ν = 1. The experimental results are shown in Figure 2 and

Figure 3. We have the following observations:

• In general, with the increase of training ratio, the recommen-

dation performance of prec@5 and prec@10 decreases. The reason

is that 1) the set of new friend relations are different for different

x%; 2) the difficulty of inferring new friend relations increase as the

high sparsity of trust relations when training ratio is high, which

can be supported by the performance of RAND. This observation

is also consistent with previous work [28]. In addition, recall@5

and recall@10 increase with the increase of training ratio. The
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Figure 4: Model robustness for friend recommendation.

reason is that both truly inferred friends and remaining friends are

decreasing and the latter decrease faster.

• CMF performs slightly better than MF, which shows that in-

corporating rating patterns to learn user latent features can help

improve friend recommendation performance. In addition, Tri-NMF

performsmuch better thanMF, which indicates that factorizing user

links with interaction matrix can better capture the user connection

status. Moreover, cross-media friend recommendation method CFR

performs better than other single-platform methods.

• CrossFire achieves the best performance comparing with other

baselines. For example, CrossFire gain 54.9%, 54.9%, 46.8%,46.8% rel-

ative improvement comparedwithMF, in terms of Prec@5,Recall@5,

Prec@10,Recall@10 respectively, with 40% training size. It indi-

cates that the combination of cross-media and joint prediction can

provide complementary information for friend recommendations.

• CrossFire is more robust compared with the best baseline

CFR. In Figure 4, we can see that as training ratio changes, the

performance change tendencies (represented by the dotted lines)

in terms of prec@5 and recall@5 are more flat. This indicates that

CrossFire is less sensitive to training data size and thus can better

handle data sparsity problems for friend recommendations.

5.3 Item Recommendation

In this subsection, we further check whether the proposed frame-

work CrossFire can improve the performance of rating predictions.

5.3.1 Experimental Settings. We randomly choose a fraction of

x% positive user-item pairs for training and use the remaining 1−x%
of all items for testing, where x is varied in {80, 60, 40}. We use two

popular metrics, theMean Absolute Error (MAE) and the RootMean

Square Error (RMSE), to measure the recommendation quality of

our proposed approach comparing with other collaborative filtering

and social recommendation methods. The metric MAE is defined as

MAE = 1
T

∑
i, j |Ri j − R̂i j |, where Ri j denotes the observed rating

user ui gave to item x j , and R̂i j denotes the predicted rating, andT
is the number of tested ratings. The RMSE is defined as RMSE =√

1
T

∑
i, j (Ri j − R̂i j )2. A smaller RMSE or MAE value means better

performance. Note that previous work demonstrated that small

improvement in RMSE and MAE terms can have a significant impact

on the quality of top-few recommendation [7].

5.3.2 Performance comparison of Item Recommendation. We

compare the proposed framework CrossFire with the following

state-of-the-art item recommendation methods, i.e. , four single-

platform method MF, CMF, SoRec, and SoReg, and two cross-

platform transfer learning method, RMGM [10] and CIR. CMF is

also the baseline of joint friend and item recommendation method.
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Figure 5: MAE, RMSE performances on Ciao and BookLikes.

• MF: It decomposes R into two low rank latent matrices

and predicts the ratings by the matrix reconstructed by

them. It is a variant of CrossFire without considering user

relations, item attributes, and cross-platform similarities.

• CMF:Collectivematrix factorization [25] is amatrix factor-

ization model that jointly utilizes user-user social relation

matrix A2 and user-item preference matrix R2. Note that

item rating matrix is predicted as UT2 V2 as in Eqn 21.

• SoRec: This method [14] performs a co-factorization in

user-rating matrix and user-user degree centrality rela-

tion confidence matrix by sharing same user latent factor

through a probabilistic matrix factorization model.

• SoReg: This method [15] is based on matrix factorization

model and add a social regularization term as constraints

to encode local social relation of users.

• RMGM: Rating matrix generative model [10] is the state-

of-the-art transfer learning method, which learns a shared

cluster-level user ratings patterns by jointly modeling rat-

ing matrices on multiple domains.

• CIR: CIR is a variant of our proposed method without

cross-site friend recommendation.
Note that we also use cross-validation to determine the parameters

for all baseline methods. For CrossFire, we set the latent factor

dimension as K = 10,α = 1, β = 0.001,γ = 0.001, λ = 0.01, μ =
0.001,ν = 1. The comparison results are demonstrated in Figure 5,

and we have following observations:

• Exploiting social relations as auxiliary information can help

improve item recommendations. For example, CMF, SoRec, SoReg

all performs better than MF. Note that the performance of CMF is

worse than SoRec and SoReg. The reason is that SoRec and SoReg

are both using social relation as side information to improve item

recommendation performance; while CMF can perform joint friend

and item recommendation and directly factorize user link matrix

may not provide so much useful knowledge.

• Exploiting cross-media information can significantly improve

recommendation performances. We can see that RMGM and CIR



perform significantly better than MF in terms of MAE and RMSE

in all cases. In addition, we can see that RMGM>CIR holds in all

cases, which indicates that modeling cluster-level rating pattern

help more than item-level rating patterns.

• CrossFire performs the best on both datasets in terms of MAE

and RMSE on all training settings. For example, CrossFire obtains

6.55%, 5.41% relative improvement in terms of MAE and RMSE in

Ciao with 40% as the training set. The major reason is that Cross-

Fire exploits both cross-media information and joint prediction

for recommendations, which have complementary information to

improve item recommendations.

• CrossFire is more robust compared with the best baseline

RMGM. As shown in Figure 6, we can see that as training ratio

decreases, the performance decrease tendencies (represented by

the dotted lines) are more flat. This indicates that CrossFire is

less sensitive to training data size and thus can better handle data

sparsity problems for item recommendations.

(a) MAE (b) RMSE

Figure 6: Model robustness for item recommendation.

To sum up, we conclude from the experiments that (1) the pro-

posed framework significantly improves both friend and item rec-

ommendation performances; and (2) modeling joint prediction and

cross-media recommendation simultaneously provides complemen-

tary contributions to recommendation performance improvement.

5.4 Parameter Analysis

In this section, we perform the parameter analysis for the proposed

framework. We mainly focus on the parameter sensitivities for

α and β , as they are controlling the joint cross friend and item

recommendation components, respectively. We fix other parame-

ters when we change the α or β . Due to the space limitation and

similar observation for other settings, we only show the results

when training ratio is 40% and omit the results for prec@10 and

recall@10. For item recommendation, we vary the values of α as

{1, 0.01, 0.001} and β as {0, 0.0001, 0.001, 0.01, 0.1}. Similarly, for

friend recommendation, we vary the values of β as {1, 0.01, 0.001}
and α as {0, 0.0001, 0.001, 0.01, 0.1}. The results for friend and item

recommendations are shown in Figure 7 and Figure 8 respectively.

We have the following observations: (1) When α = 1, item rec-

ommendation has relatively good performance; however, when

α = 0.01, 0.001, the performance is much worse than MF. The rea-

son is that α = 1 means that the cross item recommendation part

dominants the feature learning process and the resultant latent

features are mainly encoded by rating information. Similarly, β = 1

ensures that latent user features are mainly encoded by user rela-

tions; (2) The performance of item recommendation is generally

better when the value of β is within [0.001, 0.01]; similarly, for

friend recommendation, α within [0.001, 0.01] gives better perfor-
mance. These observations ease the parameter selection process.
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Figure 7: Parameter sensitivity on friend recommendation

w.r.t. α and β on prec@5 and recall@5.
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w.r.t. α and β on MAE and RMSE.

6 RELATEDWORK

In this section, we introduce some related work for this paper.

It mainly falls into following categories: 1) Cross social media

recommendations; 2) Joint friend and item recommendations.

Cross social media recommendations. Cross-domain recom-

mendations are attracting lots of attention in recent years [4]. The

underly assumption of cross-domain recommendation is that there

are shared properties between user and/or item profiles across

source and target domains, either explicitly or implicitly. Explicit

correspondences are often costly to obtain and some user identity

linkagemethods are proposed to bridge the gap of user links [24, 37].

User correspondences can enrich user profiles and help improve

recommendations in various applications, such as video recom-

mendation [3], product recommendation [13], etc. Implicit corre-

spondences can be captured by modeling item similarities or even

latent rating behaviors. A third-party platform (e.g. Wikipedia)

can be used to bridge links of users/hashtags between Twitter and

Weibo via random walk [11]. In addition, transfer learning based

on collaborative filtering has recently been proposed to capture

shared rating behaviors across domains, such as codebook transfer

model (CBT) [9] and rating-matrix generative model (RMGM) [10].

In this paper, we aim to capture latent shared features for items

and further transfer knowledge based on rating behavior patterns.

Joint friend and item recommendations. Exploiting auxil-

iary information to build recommendation systems are commonly

used and helpful to boost recommendation performances [31–34].

For example, the existing work that modeling user rating and

user relation information aims to provide better recommendations

for items, i.e., social recommendations [29, 30], which have been

shown to be effective in recent years [14, 15, 28]. Social rela-

tions are modeled in different ways, such as trust ensemble [16],

trust propagation [5], social regularization [28] and matrix co-

factorization [14, 28]. However, how to exploit user-item inter-

actions for user-user link predictions has remained relatively lim-

ited [23]. Even though co-factorization methods suggest that users



share latent features in rating space and the social space, they

can not be directly applied to user link predictions due to the in-

direct modeling process of social relations (e.g. social similarity

matrix [15]). In this paper, we provide a collective matrix factor-

ization [25] to directly factorize user-user and user-item matrices,

which provides a novel solution to exploit the mutual benefit of

rating behaviors and social relations.

7 CONCLUSION AND FUTUREWORK

Newly launched social media sites often face data sparsity chal-

lenges to perform personalized friend and item recommendations.

We propose to exploit both cross-platform and within-platform

information simultaneously and build a joint item and friend recom-

mendation framework. Our framework CrossFire highlights three

components: i) sparse coding for items, ii) matrix tri-factorization

for user-user relations and user-item ratings, and iii) maintaining

the factors shared across sites. Experimental results on real-world

datasets demonstrate the effectiveness of proposed framework and

the importance of combining cross-media recommendations and

joint friend and item predictions for better recommendations.

There are several interesting future directions. First, we can con-

sider the scenario that limited explicit user/item correspondences

are given and how we can utilize this information. Second, how

to perform item and friend recommendations in a streaming way

for more practical use in real world cases. Third, it’s also worth to

explore cross-media recommendations between different domains,

such as books and movies, to understand the capacity and limita-

tions on transfer learning techniques.
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