
The IoT Codex: a Book of Programmable Stickers
for Authoring and Composing Embedded

Computing Applications
Kristin Williams1,3
1Computer Science

Emory University
Atlanta, USA

kristin.williams@emory.edu

Jessica Hammer2,3
2Entertainment Technology Center

Carnegie Mellon University
Pittsburgh, USA

hammerj@cs.cmu.edu

Scott Hudson3
3Human Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, USA

scott.hudson@cs.cmu.edu

Abstract—The Internet-of-Things (IoT) promises to enhance
everyday objects with computing, but rarely enables directly
authoring or composing that behavior. Lightweight IoT ap-
proaches attach identifiers (e.g., RFID tags) to objects to enable
networked services. Typically these tags are passive, and so,
depend on activity recognition and predefined context. This
limits interaction to invoking predetermined behavior. Instead,
this work presents The IoT Codex: a lightweight approach to
customizing everyday objects with IoT by enabling interactive
attachable IDs (aIDs) to compose software-supported behavior
in situ. This work contributes 1) paper engineering techniques
to construct aIDs that embody state, and 2) a tangible, end user
programming (EUP) language for customizing IoT within sym-
bolic and idiosyncratic contexts. Here, we provide preliminary
validation of our approach with an empirically informed design
space, sample applications, and a small co-design workshop. In
doing so, we offer preliminary evidence for tangible, end user
programming to enable meaningful control over IoT services.

Index Terms—paper interfaces, tangible user interface, end
user programming, RFID, customization, interactive book,
battery-free user interface, wireless backscatter

I. INTRODUCTION

The Internet of Things (IoT) promises to extend computing
to everyday objects like those in the home. Yet, these haphaz-
ard environments consist in a variety of artifacts and contexts.
To enable an IoT ecosystem in these environments, lightweight
approaches use attachable identifiers (aIDs) like quick re-
sponse (QR) codes, radio frequency identification (RFID), and
Bluetooth low energy (BLE) tags. These usually passive, aIDs
attach wireless communication to everyday objects to support
internet services, and typically depend on machine learning
models correctly recognizing intent to support higher level
interaction (see [14], [56], [57], [83]).

Yet, many home objects are part of idiosyncratic situations
that do not generalize. This makes characterizing significant
and repeatable activities suitable for recognizing interaction
intentions with an object difficult and calls for a need to
customize IoT. Often, home objects are used symbolically and
contextually situated within small group norms [101]. Family

This work was funded in part by National Science Foundation grant IIS-
1718651.

Fig. 1. The IoT Codex is a book of inexpensive, battery-free sensors and
interaction patterns to support linking everyday objects to software and web
services using stickers. To use, a sticker is selected, customized, peeled from
the page, attached to an object, and then invoked using its kinetic mechanism.

“clutter” organizes home life amid unpredictable schedules
and breakdowns in routines. This context is unlikely to yield
appropriate training data for machine learning (ML) [90],
[103]. Yet, many approaches need data close enough to new
cases for recognition. Even if this data could be collected,
the underlying representations of ML models make semantic
claims about household data that families need to be able
to recognize and manipulate to effectively engage with them.
However, activity recognizers’ internal representations persis-
tently prove difficult to understand [2], let alone customize.

We introduce a lightweight approach to customizing every-
day objects with IoT by enabling interactive aIDs to compose
software-supported behavior. Our system, The IoT Codex,
contributes 1) paper engineering techniques to construct aIDs
that embody state, and 2) a tangible, end user programming
(EUP) language for customizing IoT within symbolic and
situated contexts. As an interactive stickerbook, The IoT Codex
affords customizing, composing, and invoking IoT behavior

through interactive aIDs—called IoT Stickers—that embed
battery-free, wireless sensing in kinetic, paper mechanisms.
Below, we show how The IoT Codex enables authoring and
composing embedded computing applications for meaningful
control over IoT services.

II. RELATED WORK

We review smart home EUP, aIDs, and kinetic mechanisms
to show how paper engineering techniques could address
idiosyncratic smart home needs.

A. End User Programming for Home

Home life strains IoT’s EUP systems. Families want to
automate household drudgery beyond current toolkit support
[85]. Even common tasks, like making coffee, resist distillation
into a supportable routine [21], [99], as families improvise
schedules and negotiate breakdowns to accommodate one
another [21], [55], [85], [100]. Instead of AI-complete activity
support, home IoT should aid object-centered care, mainte-
nance, and repair to preserve possessions and creativity [19],
[22], [29], [47], [92], [93]. Family member roles and identities
are shaped through the selection, use, and placement of their
stuff, and could be eroded by centralized AI-complete systems
[42], [90], [100], [103]. Family ‘clutter’ gives the home a sense
of place and meaning, of what it means to program the home
and who should be responsible [6], [82], [90], [105].

Ignoring clutter, smart home EUP (SH-EUP) favors ab-
stractions that encapsulate control flow and simplify syntax.
For example, trigger-action programming (TAP) uses a form
for authoring conditional statements with a graphical user
interface (GUI) representing situated context (see [1], [23],
[73]). Yet, form filling techniques cannot handle complex
procedures [67]. TAP struggles with home processes and
sequencing needs such as grouping rules or adding temporal
and hierarchical dependencies [16]. While usability studies
criticize TAP’s syntactical ambiguity [27], [38], social context
may be more important. Most people borrow strangers’ TAP
recipes rather than author their own, and thereby expose
their home to security vulnerabilities and exploits [96]. TAP
inherits programming stereotypes that concentrate EUP skill
and control in one family member, even though shared access
is needed [65], [82], [100], [103], [105]. To do so, SH-EUP
should support 1) reflection on routines, 2) family emotional
connection, 3) attachable/detachable components, 4) use-based
debugging, 5) family feedback, 6) interpreting system state,
and 7) diagnosing networking problems [105]. Embodied
interaction techniques are needed to share SH-EUP control.

B. Concretizing EUP with Identifiers

Concretization shapes usability and sharing. Icons con-
cretize both visual meaning and control of executable pro-
grams [51]. When backed by a programming language, con-
cretized user interface (UI) elements coordinate parallelizing
team effort through shared components that can be reasoned
over and worked on separately [72]. Concrete UI creation in
situ can foster a climate in which more expert members assist

lower skilled members with gaining greater control over soft-
ware systems [26], [61]. Skill development can be scaffolded
by copying, reusing, and tailoring an expert’s pre-programmed
UI behavior [61], and nurtured with UI metaphors that com-
bine in ways—jigsaw puzzle pieces or magnetic poetry—that
balance abstraction with low-level exposure [39], [95]. Block
languages use a block metaphor to aid recognition over recall,
meaningfully chunk code, and constrain composition to avoid
errors [11]. They afford 1) drag and drop composition, 2)
interactive editing, 3) nesting with recursive tree structures,
and 4) geometrically preventing syntactic errors [80]. Yet, GUI
concretization for smart homes contradicts mental models of
installing home appliances and splits attention between screens
and the physical world [46]. Instead, RFID could enable a
tangible and mechanical approach [46].

EUP abstractions are not easily concretized with aIDs. As
an unpowered, passive UI without a continuous, system link
(e.g., QR codes, RFID), they are difficult to interpret due to
their weak preservation of manual interaction or isomorph
effects [35], [36]. For example, I/O Brush preserves manual
painting gestures [84] while aIDs’ commands mimic manipu-
lating a token [12], [36]. Machine learning techniques recently
expanded aIDs’ repertoire enabled gestural commands [56],
[57], [106], spatial layout [14], [35], [83], and shape deforma-
tion [43]. Physically severing aIDs enables bi-stability [37],
[45], [57], [108]. Or, a biased reed switch inserted between
RFID’s antenna and IC disables reads when 2 tags are close
[58]. These techniques support aIDs’ direct manipulation, but
introduce indirection by offsetting the system’s response both
spatially and temporally (e.g., screen-based output) [12], [35],
[36]. Indirection subverts the live feedback critical to block-
based programming’s success [81]. aIDs’ isomorph effects and
indirection undermine live feedback.

C. Kinetic Mechanisms for Live Composition

Kinetic paper mechanisms address indirection and isomorph
effects challenges. Their 3D moving parts provide live, inter-
active feedback without a screen [77]. Activating their kinetic
mechanisms can resolve uncertainty in aID detection and
generate enough kinetic energy to power embedded electronics
[44], [56], [87], [108]. A pop-up mechanism’s bi-stability
strengthens isomorph effects by embodying system state and
mapping to UI elements’ state machines [68]. Pattern lan-
guages for CAD modelling and mechanism design have drawn
on this feature of centuries of papercraft [5], [32], [54], [70],
[104], [109]. Recent work fabricates, assembles, and activates
kinetic mechanisms to test modelled behavior [8], [69], [97].
To date, kinetic mechanism research focuses on sensing and
shaping input, but these have not been used to enable EUP.

Interactive books introduce programming concepts with tan-
gible interaction [9], [48], [60], [88], [89]. Pop-up mechanisms
enable tangibly manipulating sensors [77]. Stickers support
tinkering and peel-and-stick construction of both circuits and
remote messaging [25], [33], [78]. Spatially arranging and
fitting together stickers scaffolds programming concepts like
sequencing and syntax [34], [79]. Their shape and page

slots limit how components fit together [34], [91]. These
familiar crafting techniques support user agency by enabling
proprioceptive control over dynamically mapping behavior and
the programming environment [52]. Interactive books leverage
paper engineering’s material constraints to expose and exclude
available actions.

III. DESIGN RATIONALE FOR THE IOT CODEX

We iteratively designed The IoT Codex to suit American
families’ idiosyncratic contexts and households. The design
rationale describes how family feedback, task context, and
home life shaped our redesign decisions for The IoT Codex.

Kinetic Mechanisms for Interaction: Kinetic mechanisms
enable aIDs to embody state. This visible state makes the
state of the system transparent and concretizes our system’s
programming abstractions in a tangible form (c.f. [24]).

Spatial Management: We enabled in situ tracking and
room-level support for interactive aIDs to accommodate how
families control the home’s rooms to nurture their interests
and manage family norms [17], [20], [101]:

• In Situ State Tracking: We created a more compact
footprint for aID’s paper-based interface to make them
easier to attach to and use with objects in situ. This gives
spatial management an implicit role: when aIDs attach
to objects and have a place, they can carry symbolic,
contextual meaning associated with their placement.

• Room Level Support: The RFID reader was moved from
a mobile platform to a stationary, room-based hub to
support interaction at the room level using the fixed,
sensing location of interaction with aIDs and a room-
level, sensing range. This aligns sensor setup with the
room level norms and control that families exert over
objects belonging to that room.

Grounded Patterns: Pre-programmed patterns and tem-
plates were grounded in common household objects instead
of employing interface metaphors. Grounding situates IoT’s
novel functionality in context and everyday object usage to
defamiliarizes domestic possessions and their related routines
(c.f. [4], [10], [13], [61], [100]).

Tangible Composition: aIDs were designed to be both
physically arrangeable and virtually composable with other
aIDs so that tangible composition supports thinking through
the process of scheduling and assigning household activities
(see editability for visual formalisms [67]).

Event-oriented Architecture: By hiding information about
triggers’ sensed data from related, reactive higher level actions,
TAP architectures hide uncertainty about what is sensed.
Instead, event-oriented architectures can 1) pass along uncer-
tainty information so that it can be resolved (see [62], [86]), 2)
enable developers to work with inputs, events, and behavior
separately (see [49]), and 3) enable an end user to directly
indicate to the system what to do (see [67]).

Summary: The IoT Codex design rationale translates find-
ings from participatory design with families to resulting prin-
ciples embodied in the sticker book.

IV. THE IOT CODEX

The IoT Codex houses a set of stickers—we call them
IoT Stickers—that enable embedding internet capabilities in
the environment by sticking them to an object. IoT Stickers
incorporate existing possessions into the IoT ecosystem (c.f.
[10]) by associating a unique identifier with both its physical
and digital counterparts. IoT Stickers employ RFID tags which
can be purchased for <$0.03 in bulk. These passive, radio tags
communicate a small amount of data—–the tag’s unique ID–
—when scanned by an RFID reader. In contrast to background
infrastructural sensing (see [41], [99]), IoT Stickers enable
explicit installation of wireless, network nodes by enlisting
user choice of what to attach them to and where. Although
minimizing time burdens, IoT Stickers do not eliminate the
choice and agency both necessary to family collaboration and
important for installation when modifying their home.

A. Sticker Fabrication and Operation

IoT Stickers are the codex’s interaction primitives. They are
the user interface building blocks for a user’s IoT application.
Like links developed for paper user interfaces (PUIs) (see [31],
[60]), IoT Stickers connect everyday objects in the home to
both other stickers and electronic programs. Below, we detail
the button sticker to illustrate the underlying architecture.

The button sticker—like all IoT Stickers—uses a layered
design so that electronics can be embedded in a fabrication
friendly manner (c.f. [74]). Each sticker type modifies a basic
set of layers: sticker paper, double-sided adhesive with a slot
for an RFID tag, and a top layer for aesthetic customization
like drawing, writing, or icons. We use RFID tags as a
proof-of-concept for cheap, battery-free, wireless electronics
capable of embedding digital data in our sticker book with-
out requiring a line of sight. However, many of The IoT
Codex’s conceptual properties—like scaffolding customization
and composition—could be adapted for other implementations
of an interactive book with aIDs (e.g., QR codes).

RFID Overview: RFID systems consist of readers and tags.
We use passive, ultra-high frequency (UHF) tags capable of
wireless communication up to a range of 11 meters with an
appropriate antenna setup. Prior work showed how a reader
and antenna could be embedded in form factors like a light
bulb equipped with a wifi RFID reader for easy home deploy-
ment [30]. Building on this, our work focuses on the tags and
interpretation of tag data. Passive RFID tags communicate with
the reader when it interrogates the environment by emitting an
RF signal in the 840-960 MHz range. When the tag receives
the signal, it communicates with the reader through modulated
backscatter—changing how the signal is absorbed or reflected
back to the reader in order to encode a unique tag ID.
Conductive material interferes with the tag’s communication,
and we use this property to represent IoT Stickers and their
parts as having a simple binary state: covered or uncovered
(for other manipulations, see [56], [87]).

Codex and Sticker Interaction Design: The codex houses
each sticker type in layered paper, fold-out sections to embed
other materials into the pages to facilitate interaction. Slots,

layered wax paper, and double-sided adhesive enable stickers
to be more easily removed and reattached. Imitation gold leaf
(ultra-thin copper foil) layers prevent a sticker from being read
by the reader when the book is opened. In contrast to aIDs,
we call this composite layered, paper device an IoT Sticker
(c.f., [40] for the kinetic mechanisms’ role in supporting
material-like v. machine-like interaction). For example, the
codex button page’s structure and text guides the user to peel
the sticker from the page and attach it to the object of their
choice to create a sticker button. Its blank face allows anything
to be written or drawn on it. The first button uses a logging
pattern to track events with user-specific meaning and function
with minimal user intervention (see [3], [59], [94], [98] on
the value and functionality of paper-based logging). When a
sticker is pealed off the page, the sticker’s introduction and
setup process launches. After setup, the sticker’s behavior can
be invoked. For the logging sticker, data is logged and an audio
chime plays whenever the user covers the sticker with their
hand. This progressive disclosure provides encouragement and
incentive to continue with the button setup process (see [102]
on the role of curiosity in EUP).

B. IoT Codex Architecture

Events and Event Handling: Implemented in C#, IoT
Codex’s architecture is event oriented by using an event
queue to separate hardware concerns from the rest of the
system. Unlike GUI event-oriented architectures that use semi-
standardized input hardware, the codex’s system has its own
hardware abstraction layer to produce events. To enable greater
interactivity, the codex supports manipulating parameters to
the actions carried out by stickers. Below, we characterize
The IoT Codex’s underlying architecture in greater detail. This
architecture could be extended or adapted to other interactive
books, tangible user interfaces, or other embedded computing
applications by researchers or programmers.

Hardware abstraction layer: The codex’s hardware abstrac-
tion layer interprets data from input devices that identify
objects (here, RFID tags) to produce events. The layer tracks
an object’s visibility to a reader and generates events based
on the identified object. In The IoT Codex’s implementation,
this layer manages connecting to a ThingMagic M6e RFID
reader, and so, also the book’s physical, sticker devices.
This layer interprets the reader’s RF interrogations to gen-
erate events. Unlike typical input handling—like key press
events—the hardware abstraction layer also generate events
when a previously identified object is no longer visible to the
reader. Since RFID reads can be noisy, the layer interprets
incoming tag read information before emitting events to handle
the reader occasionally failing to read visible tags. Bayesian
machine learning models can decide whether a tag is present
or not within 300ms [87]. Here, we use a simpler, time-based
hysteresis mechanism to stabilize reads (as in [56]). To do
this, a state machine tracks a tag’s current state as seen by the
reader and as seen across the reader’s multiple rounds of RF
interrogation. When an event is emitted, reader metadata—like
RSS and signal phase shift—are also passed along the event

queue so that sticker types have the information to make more
sophisticated interpretations of the reads (see machine learning
use cases in [56], [57]).

Life of a sticker object: The main component of the system
1) keeps track of the life of a sticker object, 2) dispatches
events according to a look-up table mapping identified objects
to the system’s sticker objects, and 3) both updates an object’s
state and invokes its behavior.

When The IoT Codex first detects an identified object,
it uses a look-up table to determine whether the associated
sticker object needs to be created. As we will detail later,
a single physical sticker can be implemented using multiple
parts which are identified separately, and which may become
visible or invisible when the sticker is manipulated. The
object’s associated Sticker object is instantiated at the first
appearance of an identified part. All of an IoT Sticker’s
identified parts are pre-registered and linked to a data structure
describing both the type of sticker object they belong to
and how it is to be instantiated. When instantiated, a sticker
registers the identifying information associated with each of
its parts in a second, lookup table. This table is then used to
dispatch events to the appropriate sticker object whenever they
arrive. The sticker responds to incoming events by updating its
internal state based on its state-machine and internal variables,
as well as invoking actions.

Actions: Like many procedural languages, the system es-
tablishes a set of parameter values, then passes them to
the relevant method/actions. These values can be determined
by expressions over literal values, variables (taken from lo-
cal and global variable spaces), constants, and immutable
values established at sticker instantiation. The system also
supports some unusual ways of establishing parameter values.
For example, parameter values can be established, yet asyn-
chronously evaluated. For example, some values need to be
obtained externally from services or sensors, and so, require
asynchronous communication. This necessitates pausing the
process of gathering an action’s parameters while the system
awaits the value. Similarly, for parameters supplied by the user,
the system must wait while it initiates interaction with the
user to get the value. In addition to asynchronous values, the
system enables parameters with values which are established
upon their first use, and then reused. This provides for lazy
or just in time evaluation which only ask the user to supply
these when it is definitely needed to be sensitive to the cost
to the user that it imposes.

Like asynchronous parameter values, we enable actions to
pause execution without blocking the full system. To do so,
The IoT Codex system employs actions in a way that is equiv-
alent to independent threads. We implement this internally
by breaking actions into “chunks” and providing a simple
scheduling mechanism for these chunks. For example, phys-
ically manipulating stickers can dynamically compose new
capabilities using the codex’s composition operations. Yet, the
UI abstraction is in one concrete form—the sticker—and does
not separate stickers from the (less concretized) actions they
perform. So chunking provides more flexible manipulation of

Fig. 2. All five stickers are shown—button, toggle, list, dial, and wrapper—with their kinetic mechanisms in use.

actions. To illustrate, suppose a date-time picker is combined
with an action invoking audio playback to schedule playback
at the specified time. In this example, action chunks support
scheduling the initial request to the user for a date-time and
deferring the later audio playback until the user chosen time.
So, it is sometimes necessary for the underlying system to pull
apart stickers and their actions.

Summary: The IoT Codex’s architecture supports manipu-
lating parameters and actions through proprioceptive control
over exposing/blocking tag reads. It does this through a
hardware abstraction layer that 1) produces events, 2) tracks
the life of identified objects (in this case, RFID tags), and
3) facilitates interactive manipulation of parameters through
advanced parameter types and actions that enable thread-
like control. The IoT Codex extends the power of working
with abstractions by concretizing the architecture’s central
abstractions of an identifiable object, stickers, and actions
to tangible form. Tangible interaction can instantiate sticker
objects, update their state, and directly supply parameter
values. The codex’s architecture enables a range of physical
sticker complexity so that tangible designs can transition
interaction from using pre-programmed patterns to tinkering
with a programming language.

C. Sticker Types and Use Cases

The IoT Codex’s form factor progressively introduces
5 sticker types. Page-turning sequences exposure to each
sticker’s complexity from the Button Sticker to the Wrapper
Sticker. By embodying the link between user interaction and
action execution in their kinetic mechanisms, IoT stickers’
physical complexity scaffolds customization techniques from
annotating/placing fixed form and function stickers to tangibly
composing small programs using Wrapper stickers. Below, we
describe each sticker type and examples we implemented to
validate our design space (see [53], [63], [66], [71] on design
space validations).

Button Sticker: As the IoT Codex’s simplest sticker, the
Button Sticker provides push button interaction to fire an
action. Physically “pressing” or “touching” it modifies the
embedded RFID tag’s antenna properties to block backscatter
communication. Since skin is conductive, the button sticker’s
press/touch action attenuates an RFID tag’s response. Simi-
larly, the other IoT Stickers’ kinetic forms are designed using
this binary approach of enabling or disabling transmission
of identifying information (here, an RFID tag). IoT Stickers

initiate action in response to physical sticker manipulation by
leveraging event reporting in the system architecture described
above. Changes in ID status drive a state machine for each
software-side sticker object, and so, its behavior.

RecordButton We implemented a RecordButton Sticker to
enable communication between remotely distributed people
through audio messaging. When unpeeled from the codex, the
RecordButton plays an audio file prompting the user to record
a message using a first use parameter. Covering it begins
recording and uncovering it stops recording. The recorded
message is then saved as a parameter to the button’s newly
bound play action. Subsequently, this action can be invoked
by pressing the button sticker.

Toggle Sticker: The Toggle Sticker has a slider mechanism
that selectively interferes with one of two tags. This operates
the tags in mutual exclusion of one another, and so, enables
the sticker to function as a simple user controlled conditional.

CatFeeding We implemented a CatFeeding Toggle to co-
ordinate family members feeding a pet cat by enabling a
situated message on the food container to track whether morn-
ing/evening meals were dispensed. As an IoT backed sticker,
toggling can simultaneously log morning/evening feedings
to track food supplies and update a shopping list when its
threshold is reached. This coordinated logging can enable
shared awareness of household chore and shopping needs.

List Sticker: The list sticker has a row of 3 RFID tags
covered by pop-up style flaps. Each flap lifts shielding away
from the tag. Flaps enable more than one active RFID tag at a
time so that this sticker can manage situations like a partially
fulfilled To Do list or choosing from a fixed set of values.

BedtimeList We implemented a BedtimeList to scaffold
children assuming responsibility for important routines. Con-
sider when a parent needs to be away from home during a
child’s bedtime routine. The BedtimeList can scaffold routine
and facilitate expressions of care. BedtimeList invokes an
audio action for each flap: 1) play a children’s audiobook The
Carpenter and the Walrus, 2) play a 2 min. teeth brushing
song, and 3) play the parent’s recorded good night message.
BedtimeList sequences the bedtime routine to scaffold be-
havior when the parent is absent. Even when an alternative
caregiver is around, the sticker supports modelling fluent
reading, hygiene behavior, and enables saying goodnight.

Dial Sticker: The dial sticker uses 6 circularly arranged
RFID and a rotating lever mechanism. This moving arm lined
with foil deactivates a tag by covering it. The dial arm selects

among a small set of values or states. This could control the
place of play in a video/audio file (c.f. audio stream access
with pixel access in [75]), manipulate 3D object rotation, or
scrolling. Dial stickers can also describe social relationships,
like identifying which person in a set is responsible for taking
some action like doing a chore.

PlaybackDial We implemented the PlaybackDial to control
audiobook playback since social reading rarely proceeds as a
linear activity from start to finish. We used 4 of the available
sticker slots to support 1. play, 2. pause, 3. unpause, and 4.
stop. The PlaybackDial enables an audiobook to supplement
a physical book’s text by providing functionality for reading
with audio on demand. With a cheap form factor, IoT Stickers
could duplicate this functionality for many books to encourage
development of visual literacy skills.

Wrapper Sticker: The Wrapper Sticker’s larger shape con-
tains a slot for another sticker to fit in it. Its software-backed
object modifies that of the slotted sticker’s action in a simple
and generic way. The Wrapper’s form enables concretely
composing and manipulating sticker behavior. For example,
a wrapper prompting the user for a date-time could support
1. Delay, waiting the specified time period before invoking
an action or, 2. OnlyOncePerDay, blocking subsequent action
invocations until the specified time passed. Wrapper stickers
modify existing sticker functionality through simple composi-
tions of sticker functions in a concrete and physical form.

SpaTimeWrapper We implemented the SpaTimeWrapper
to use IoT behavior to support temporary, leisure spaces
in their home. The wrapper has a date-time parameter for
scheduling the bathroom for a bubble bath so that the sticker’s
spa settings run on the date and time planned for. We imple-
mented the wrapper as part of a paper door hanger reading “Do
Not Disturb” that the user can punch out of The IoT Codex.
The slotted spa settings sticker plays a list of relaxing music.
The SpaTimeWrapper communicates a situated message on the
bathroom door to other family members, but also coordinates
IoT appliances at the scheduled time.

Summary: The 5 IoT Sticker types enable a tangible user
interface that can customize IoT behavior by modifying their
Parameters or Actions. Our implemented examples show how
The IoT Codex’s kinetic mechanisms gradually introduce more
complex, embedded computing capabilities by leveraging the
book’s sequential nature and encourage tangible manipulation
to tinker with the UI backed programming language. Each IoT
Sticker’s form factor associates the user’s physical manipula-
tion with computational actions to enable low-level control
without requiring mastery of low-level programming.

V. IOT CODEX DESIGN SPACE

The IoT Codex’s kinetic mechanisms introduce customiza-
tion by concretizing programming abstractions to generate
a design space (see Fig. 3). Each of 5 sticker types selec-
tively embodies customization techniques like remixing pre-
programmed behavior, first-use parameters, and composition.
A primitive movement vocabulary—annotating, peel-off to
initialize first-use parameters, and spatially arranging stickers

Fig. 3. The customization techniques supported by The IoT Codex’s architec-
ture and concretized with IoT Stickers’ tangible, kinetic mechanisms enables
a design space for tailoring IoT services to idiosyncratic needs.

to juxtapose behavior—supports customizing each sticker type
with personal meaning. Each IoT Stickers’ increasing, physical
complexity reveals the system’s support for more complex
customization through place making, kinetic manipulation, and
software composition. Below, we show how these techniques
tangibly introduce customization as the book progresses.

A. Concretizing Customization

All five IoT Sticker types use their material form factor to
embody meaning making, initialization of first-use parameters,
and juxtaposing sticker behavior. As with paper user interfaces,
personal meaning can be assigned to IoT Stickers through
drawing and annotation. Peeling an IoT Sticker away from
the page can initialize first-use parameters (c.f., lift-off design
[76]). This first-use response prompts the user to supply
parameters to customize the sticker’s behavior. For example,
we implemented a text-to-speech customization that shows a
dialogue box asking the user to supply a string to be spoken
by the speech synthesizer when the sticker is peeled off.
This parameter is stored by the system so that the sticker’s
subsequent invocations will cause the speech synthesizer to
speak that text. The RecordButton also shows similar first
use behavior, but does away with a keyboard and screen by
enabling audio-only interaction that readily supplements the
book and stickers’ tangible interaction.

Physically juxtaposing IoT Stickers begins composing IoT
behavior in more sophisticated ways. Placing two independent
stickers close together in context supports greater functionality.
For example, placing pre-programmed stickers together—like
logging and play-an-audio-file—can combine their behavior. A
set of stickers that play single notes can be combined to create
an instrument to play a song or turn everyday objects into
music-making devices. A set of logging stickers could create a
self-tracking application by logging different activities. When
set up to log time spent on work, chores, and play, a person
could track what they spend their time on. In sticker form,
this enables activities to be tracked in situ using the objects
most associated with them such as a laptop, refrigerator, and
gaming console. As needs evolve, the sticker form factor
enables removal and replacement with different IoT behavior.

B. Tangible Complexity for Introducing Composition

Each IoT Sticker’s tangible complexity increasingly em-
bodies more sophisticated programming composition. Kinetic
mechanisms, spatial grouping, and slotted construction intro-
duce tangible complexity to each sticker type. In its simplest
form, their base hexagonal design enables contextualization
through placement. Discretion over where a sticker goes and
what it attaches to leverages knowledge of social context and
ritual usages of place to embed the sticker appropriately. The
button, toggle, and list IoT Sticker types support place-making,
contextualization through their smaller footprint.

Kinetic mechanisms on the toggle, list, and dial stickers
vary the sticker’s behavior depending on which part is being
manipulated. These mechanisms selectively invoke different
sticker behavior by triggering that sticker part’s first use
parameter or the action bound to that part. Slot construction
guides composing objects together and is concretized in the
dial and the wrapper sticker embodiments. The dial leverages
turning of a slotted book page to sequence sticker placement.
A semi-transparent page with slots punched out in the shape
of simple stickers overlays a composition page—page printed
with sticker outlines—to limit where the dial’s composing
stickers should be placed (implemented with 4 instead of 6
composing stickers). Slots and page-turning constrain sticker
placement since the simple stickers can pass through the holes
of the overlaying sheet, but the dial arm cannot. So they must
be placed first. The second technique uses book interaction
to reify instantiating the dial sticker: the dial arm must be
torn along the designated page’s perforations and its related,
composing stickers are unpeeled. Similarly, holes, tearing, and
shape cue composing the wrapper sticker with another, simpler
sticker. The larger, wrapper sticker has a perforated, center
hexagon to be torn out to create a hole for the wrappee (the
simpler, smaller sticker) to go in. The wrapper is big enough
to hold another sticker—the size of three haxagonal stickers
together—to cue its ”wrapping” behavior. The wrapper also
uses a printed outline on a composition page to encourage
sticking the wrapper to the page first before sticking the
wrappee.

VI. DESIGN SPACE VALIDATION

For preliminary evaluation of The IoT Codex, we conducted
a 2 hr. design workshop to assess the generative power of its
design space (see [18]). It took place in a university setting,
and participants were compensated $15/hr. We recruited 3
participants through human-computer interaction listservs and
channels. We screened participants with a 2 minute survey to
verify whether they had taken core courses in human-computer
interaction or had comparable experience.

Procedure: Following the dialogue labs method [28], the
workshop focused on the feasibility of using the IoT Codex
to create home applications. First, participants were consented
following the IRB approved protocol. Then, they completed a
background survey on their demographics and experience with
creating interactive systems. Next, the researcher showed the
demo video of the IoT Codex, and then, introduced The IoT

Codex, each IoT Sticker type, and that type’s demo application
(7 min.). Participants were given chances to manipulate the IoT
Stickers and ask questions of the researcher (8 min.). Then, for
each of 3 design sessions, participants envisioned applications
for 1.) pre-programmed IoT Stickers, 2.) first-use parameter
IoT Stickers, and 3.) composing IoT Stickers together. Each
session was divided between 15 min. silent individual work
and 15 min. sharing of ideas with the group (total time 90
min.). Finally, participants rated their experience designing
applications for IoT Stickers.

Data and Analysis: We video recorded the study using two
cameras angled to record all participants. We hired a profes-
sional transcription company to transcribe the audio recordings
and then used thematic analysis to code the transcripts [15].

Findings

Participants: We recruited 2 female and 1 male identifying
participants ranging from 21 to 26 years of age. Two attained
a college level education and 1 a master’s. Two reported 1-2
years and 1 3-5 years experience designing interactive systems.

Customizing IoT Stickers to Participants Homes: The 3
envisioned controlling IoT context by assigning indefinite con-
cepts to IoT Stickers. A liminal space could be given context
by assigning IoT Stickers its place. P2 explained, “to be
contextual...I’d probably just stick it to the door or somewhere
in the entrance.” IoT Stickers could delegate responsibility by
assigning tasks to roommates (2 participants). For example, P3
employed toggle stickers to track whether roommates did their
chores. An IoT Sticker was assigned to the fuzzy category,
laundry, to track the task’s last stopping point (1 participant).
Assigning IoT Stickers to places associated with indefinite
concepts enabled tracking and contextualizing idiosyncratic
norms like arriving home, responsibility, or cleanliness.

All 3 participants thought IoT Stickers could en-
hance interpersonal communication and coordination. P1
remarked, “It fosters good communication. It can help
maybe avoid...passive-aggressiveness”. Reminding could be
offloaded to the system to coordinate shared contribution. P1
elaborated, “You can have the automated...‘bing,’ like, ‘system
has notified you that it’s your turn to do the dishes’”. In-
stead of automating reminders, participants wanted to leverage
system anonymity. For example, P3 added names to a few
button stickers and linked each to a toggle sticker tracking
whether a chore was assigned or done. P3 described using the
arrangement to visibly reveal who had not done their chores,
then pressing the linked button sticker to send a reminder
to the person who hadn’t when a discrepancy was noticed.
Besides chores, participants listed aspirational ideas like col-
laboratively planning a movie night or adopting a new skin-
care routine. In general, the IoT Stickers were envisioned as
a way to manage household communication and coordination
without creating a personal task to nag or manage roommates.

Concretizing Applications: Tangible manipulation con-
cretized IoT ideas and customized its behavior to context. P3
suggested, “attach[ing the sticker] to the washer or dryer.
It would need to be parameterized with what the object

is.” Kinetic initialization of first-use parameters scaffolded
envisioning program sequences and timing: “there’s someone’s
birthday coming up, and I think when you added this complex-
ity, it helped me concretize with that idea.” Though struggling
with first use parameters, P2 thought the codex’s page-turning
structure gradually introduced more complex programming
concepts. P2 compared the codex to “teaching a programming
language or something like that. We start with the simplest
feature that this offers you and give a very concrete example.
And then after introducing all of those through the booklet,
people can get more creative.” The IoT Codex’s tangible and
kinetic features made assigning IoT variables, behavior, and
objects to context a process of deictic reference.

Collaborative Tangible Composition: IoT Stickers’ embod-
iment enabled collaborative composition. P2 praised their
visibility: “the advantage of this digital, kinetic device, is
that you see what’s done there already.” The 3 participants
thought this could coordinate family members. P3 explained
how “the people closest to the control do the thing and make it
transparent across everyone else.” Shared visibility facilitated
collaboratively learning to translate ideas into applications. P2
exclaimed, “I think P3’s idea was really brilliant, on using
this to indicate two people.” Illustrating an idea was supported
by tangibly referencing an IoT Sticker. For example, P1 took
the stickers P2 had been using and arranged them on the
table to illustrate an extension of P2’s initial idea and ask
a clarifying question. Similarly, to describe composing two
stickers together, P2 picked up the dial sticker and rotated
the arm to show when to invoke behavior. IoT Stickers’
embodiment supported sharing a programming idea. IoT Stick-
ers’ embodied context enabled shared visibility and tangible
reference to support collaborating on IoT programming ideas.

Summary: The study uncovered preliminary evidence that
IoT Codex and Stickers’ embodied form facilitated assigning
indefinite context through customization and deictic reference
to physical user interface elements in a way that facilitated
collaboratively creating IoT applications. This provides pre-
liminary validation for The IoT Codex’s design space by
showing how the codex’s primitive movement vocabulary
and composition techniques facilitated generating ideas for
embedded computing applications for the home.

VII. DISCUSSION & CONCLUSION

The IoT Codex introduces a lightweight approach to pro-
gramming embedded computing applications. By embodying
programming abstractions, The IoT Codex concretizes indefi-
nite forms of context and composing applications to scaffold
programming concepts and collaboration as needed to tailor
IoT to idiosyncratic norms. Below, we discuss future work
enabled by The IoT Codex as well as some of its limitations.

Identifiable tags: The IoT Codex’s system architecture
could support other kinds of input devices that can supply
a unique ID. Barcodes and computer vision techniques are
obvious extensions of this work (see [49]). However, recent
work on cheap, battery-free, wireless sensors opens up wider
opportunities for looking at other kinds of input devices for

the architecture: tags that are radio-based [107], triboelectric-
nanogenerator-powered [7], or textile-embedded [50]. If these
tags could be integrated with kinetic mechanisms that support
bistable states (like the triboelectric-nanogenerator of [44]),
this would open up a wider range for kinetic mechanisms to
support embedded computing applications.

Abstraction: The IoT Codex uses kinetic mechanisms to
balance abstracting low level details with supporting high
level composition. These map to a basic set of interactive
objects that serve as the architecture’s primary abstraction
so that it is quick and easy to compose a tangible interface.
These abstractions serve as an important contribution of toolkit
research. Yet, by hiding low level details, these very same
abstractions can create barriers for learners because they hide
the information needed to develop competence and expertise
[64]. This work’s focus on employing kinetic mechanisms for
shared visibility and tangible reference suggests opportunities
for new tangible kits to scaffold collaborative programming.

Limitations: This work proposed the IoT Codex for smart
home and ubiquitous computing applications, but our eval-
uation provide only preliminary evidence. Further work is
needed. For example, we assessed the Codex’s architecture
with a small set of tags at a time (<10) with supported
interactions concentrated in and around the book in a lab-
oratory setting. If the stickers were ubiquitously placed on
many household items, the system would need to handle
different materials, their potential interference (reducing the
read range), form factors, and challenges posed by old housing
stock. Future work should evaluate the system in an ecolog-
ically valid setting to uncover tag behavior in the presence
of differing materials, any related interference, and whether
multiple readers are needed for a room level read range.
Further, each section of the book was tested in isolation from
one another. A technical evaluation should be conducted to
understand the challenges that may arise when the book is
collated. Along these lines, this work has not yet tested the
IoT Codex’s deployment. Although the stickers’ affordances
have been well tested by the pop-up book industry, tangible
manipulation in an ecologically valid setting or large scale
user testing may introduce uncertain read data or false classi-
fications. Further study would uncover these.

CONCLUSION

Above, we presented The IoT Codex and provided a pre-
liminary demonstration of how it could support authoring and
composing embedded computing applications. The Codex em-
ploys paper engineering techniques to create EUP abstractions
and interaction techniques through a book of programmable,
kinetic stickers to convey an EUP language’s affordances.
The IoT Codex uses both shape and kinematics to constrain
authoring expressions. It thus contributes physical computing
techniques to aid in situ creation of UIs using wireless, battery-
free sensors for customizing IoT services. By supporting direct
specification of indefinite context, The IoT Codex shows a
way to associate IoT services with a dramatically wider set of
objects and tasks than previously supported.

ACKNOWLEDGMENTS

We thank John Zimmerman, Rajitha Pulivarthy, Megan Hof-
mann, and Jasmine Shen for their early stage brainstorming,
prototyping, and help on this project.

REFERENCES

[1] If This Then That, 2019.
[2] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y Lim, and Mohan

Kankanhalli. Trends and trajectories for explainable, accountable and
intelligible systems: An HCI research agenda. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, pages
1–18, 2018.

[3] Parastoo Abtahi, Victoria Ding, Anna C Yang, Tommy Bruzzese,
Alyssa B Romanos, Elizabeth L Murnane, Sean Follmer, and James A
Landay. Understanding physical practices and the role of technology in
manual self-tracking. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(4):1–24, 2020.

[4] Robert E Adamson. Functional fixedness as related to problem solving:
A repetition of three experiments. Journal of Experimental Psychology,
44(4):288, 1952.

[5] Michelle Annett, Tovi Grossman, Daniel Wigdor, and George Fitzmau-
rice. Moveablemaker: Facilitating the design, generation, and assembly
of moveable papercraft. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology, pages 565–574,
2015.

[6] Ian Arawjo. To write code: The cultural fabrication of programming
notation and practice. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–15, 2020.

[7] Nivedita Arora, Steven L Zhang, Fereshteh Shahmiri, Diego Osorio, Yi-
Cheng Wang, Mohit Gupta, Zhengjun Wang, Thad Starner, Zhong Lin
Wang, and Gregory D Abowd. SATURN: A thin and flexible self-
powered microphone leveraging triboelectric nanogenerator. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(2):60, 2018.

[8] Daniel M Aukes and Robert J Wood. PopupCAD: A tool for automated
design, fabrication, and analysis of laminate devices. In Micro- and
Nanotechnology Sensors, Systems, and Applications VII, volume 9467,
pages 169–178. SPIE, 2015.

[9] Maribeth Back, Jonathan Cohen, Rich Gold, Steve Harrison, and Scott
Minneman. Listen Reader: An electronically augmented paper-based
book. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 23–29. ACM, 2001.

[10] Ralph Barthel, Kerstin Leder Mackley, Andrew Hudson-Smith, An-
gelina Karpovich, Martin De Jode, and Chris Speed. An internet of
old things as an augmented memory system. Personal and Ubiquitous
Computing, 17(2):321–333, 2013.

[11] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn
Turbak. Learnable programming: Blocks and beyond. Communications
of the ACM, 60(6):72–80, 2017.

[12] Michel Beaudouin-Lafon. Instrumental interaction: An interaction
model for designing post-WIMP user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
446–453, 2000.

[13] Genevieve Bell, Mark Blythe, and Phoebe Sengers. Making by
making strange: Defamiliarization and the design of domestic technolo-
gies. ACM Transactions on Computer-Human Interaction (TOCHI),
12(2):149–173, 2005.

[14] Jacob T Biehl, Andreas Girgensohn, and Mitesh Patel. Achieving
accurate room-level indoor location estimation with emerging IoT
networks. In Proceedings of the 9th International Conference on the
Internet of Things, pages 1–8, 2019.

[15] Virginia Braun and Victoria Clarke. Using thematic analysis in
psychology. Qualitative Research in Psychology, 3(2):77–101, 2006.

[16] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and
Florian Schaub. Exploring end user programming needs in home
automation. ACM Transactions on Computer-Human Interaction
(TOCHI), 24(2):1–35, 2017.

[17] AJ Bernheim Brush and Kori M Inkpen. Yours, mine and ours?
Sharing and use of technology in domestic environments. In UbiComp
2007: Ubiquitous Computing. 9th International Conference, UbiComp
2007, Innsbruck, Austria, September 2007 Proceedings, pages 109–
126. Springer, 2007.

[18] Stuart K Card, Jock D Mackinlay, and George G Robertson. The design
space of input devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 117–124, 1990.

[19] EunJeong Cheon and Norman Makoto Su. ’Staged for Living’: Nego-
tiating objects and their values over a porous boundary. Proceedings
of the ACM on Human-Computer Interaction, 2(36):1–24, 2018.

[20] Marshini Chetty, Ja-Young Sung, and Rebecca Grinter. How smart
homes learn: The evolution of the networked home and household. In
Proceedings of the International Conference on Ubiquitous Computing,
pages 127–144, Berlin, Germany, 2007. Springer.

[21] Scott Davidoff, John Zimmerman, and Anind Dey. Principles of smart
home control. In Proceedings of the 8th International Conference on
Ubiquitous Computing, pages 19–34, Berlin, Germany, 2006. Springer.

[22] Audrey Desjardins, Ron Wakkary, and William Odom. Investigating
genres and perspectives in hci research on the home. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 3073–3082, 2015.

[23] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP:
Interactive prototyping of context-aware applications. In Kenneth P.
Fishkin, Bernt Schiele, Paddy Nixon, and Aaron Quigley, editors, Per-
vasive Computing, pages 254–271, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[24] Paul Dourish and Graham Button. On “Technomethodology”: Foun-
dational relationships between ethnomethodology and system design.
Human-Computer Interaction, 13(4):395–432, 1998.

[25] Natalie Freed, Jie Qi, Adam Setapen, Cynthia Breazeal, Leah Buech-
ley, and Hayes Raffle. Sticking together: Handcrafting personalized
communication interfaces. In Proceedings of the 10th International
Conference on Interaction Design and Children, pages 238–241, 2011.

[26] Michelle Gantt and Bonnie A Nardi. Gardeners and gurus: Patterns
of cooperation among cad users. In Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, pages 107–117.
ACM, 1992.

[27] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen San-
toro. Personalization of context-dependent applications through trigger-
action rules. ACM Transactions on Computer-Human Interaction
(TOCHI), 24(2):14, 2017.

[28] Alix Goguey, Cameron Steer, Andrés Lucero, Laurence Nigay,
Deepak Ranjan Sahoo, Céline Coutrix, Anne Roudaut, Sriram Sub-
ramanian, Yutaka Tokuda, Timothy Neate, Jennifer Pearson, Simon
Robinson, and Matt Jones. PickCells: A physically reconfigurable cell-
composed touchscreen. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ‘19, page 1–14, New
York, NY, USA, 2019. ACM.

[29] Elizabeth Goodman and Daniela Rosner. From garments to gardens:
Negotiating material relationships online and ‘by hand’. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ‘11, pages 2257–2266. ACM, 2011.

[30] Jeremy Gummeson, James Mccann, Chouchang (Jack) Yang, Damith
Ranasinghe, Scott Hudson, and Alanson Sample. RFID Light Bulb:
Enabling ubiquitous deployment of interactive RFID systems. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 1(2):12, 2017.

[31] Jeremy M Heiner, Scott E Hudson, and Kenichiro Tanaka. Linking
and messaging from real paper in the Paper PDA. In Proceedings
of the 12th Annual ACM Symposium on User Interface Software and
Technology, UIST ‘99, pages 179–186. ACM, 1999.

[32] Susan Lee Hendrix. Popup Workshop: Computationally Enhanced
Paper Engineering for Children. PhD thesis, USA, 2008.

[33] Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar Chugh, Jie Qi,
Diana Nowacka, and Yoshihiro Kawahara. Circuit Stickers: Peel-and-
stick construction of interactive electronic prototypes. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ‘14, pages 1743–1746. ACM, 2014.

[34] Michael S Horn, Sarah AlSulaiman, and Jaime Koh. Translating
Roberto to Omar: Computational literacy, stickerbooks, and cultural
forms. In Proceedings of the 12th International Conference on
Interaction Design and Children, IDC ‘13, pages 120–127. ACM, 2013.

[35] Michael S Horn, Erin Treacy Solovey, and Robert JK Jacob. Tangible
programming and informal science learning: Making TUIs work for
museums. In Proceedings of the 7th International Conference on
Interaction Design and Children, IDC ‘08, pages 194–201, 2008.

[36] Eva Hornecker and Jacob Buur. Getting a grip on Tangible Interaction:
A framework on physical space and social interaction. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ‘06, pages 437–446. ACM, 2006.

[37] Meng-Ju Hsieh, Jr-Ling Guo, Chin-Yuan Lu, Han-Wei Hsieh, Rong-
Hao Liang, and Bing-Yu Chen. RFTouchPads: Batteryless and wireless
modular touch sensor pads based on RFID. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
UIST ‘19, pages 999–1011. ACM, 2019.

[38] Justin Huang and Maya Cakmak. Supporting mental model accuracy
in trigger-action programming. In Proceedings of the 2015 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous Computing,
PERVASIVE ‘15, pages 215–225. ACM, 2015.

[39] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Åkesson,
Boriana Koleva, Tom Rodden, and Pär Hansson. Playing with the
bits: User-configuration of ubiquitous domestic environments. In
International Conference on Ubiquitous Computing, pages 256–263.
Springer, 2003.

[40] Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs,
Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and
Patrick Baudisch. Metamaterial mechanisms. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology,
UIST ‘16, pages 529–539. ACM, 2016.

[41] Hiroshi Ishii and Brygg Ulmer. Tangible bits: Towards seamless
interfaces between people, bits, and atoms. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
‘97, pages 234–241, New York, New York, 1997. ACM.

[42] Rikke Hagensby Jensen, Yolande Strengers, Jesper Kjeldskov, Larissa
Nicholls, and Mikael B Skov. Designing the desirable smart home:
A study of household experiences and energy consumption impacts.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ‘18, page 4. ACM, 2018.

[43] Haojian Jin, Jingxian Wang, Zhijian Yang, Swarun Kumar, and Jason
Hong. WiSh: Towards a wireless shape-aware world using passive
RFIDs. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages 428–441, 2018.

[44] Mustafa Emre Karagozler, Ivan Poupyrev, Gary K Fedder, and Yuri
Suzuki. Paper Generators: Harvesting energy from touching, rubbing
and sliding. In Proceedings of the Annual ACM symposium on User
Interface Software and Technology, UIST ‘13, pages 23–30, 2013.

[45] Keiko Katsuragawa, Ju Wang, Ziyang Shan, Ningshan Ouyang, Omid
Abari, and Daniel Vogel. Tip-Tap: Battery-free discrete 2D fingertip
input. In Proceedings of the Annual ACM Symposium on User Interface
Software and Technology, UIST ‘19, pages 1045–1057. ACM, 2019.

[46] Fahim Kawsar, Tatsuo Nakajima, and Kaori Fujinami. Deploy sponta-
neously: Supporting end-users in building and enhancing a smart home.
In Proceedings of the 10th International Conference on Ubiquitous
Computing, Ubicomp ‘08, pages 282–291. ACM, 2008.

[47] Cayla Key, Fiona Browne, Nick Taylor, and Jon Rogers. Proceed with
care: Reimagining home IoT through a care perspective. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems,
CHI ‘21, pages 1–15. ACM, 2021.

[48] Scott R Klemmer, Jamey Graham, Gregory J Wolff, and James A
Landay. Books with voices: Paper transcripts as a physical interface
to oral histories. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, (CHI ‘03), pages 89–96. ACM, 2003.

[49] Scott R Klemmer, Jack Li, James Lin, and James A Landay. Papier-
Mâché: Toolkit support for tangible input. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
‘04, pages 399–406. ACM, 2004.

[50] Vijay Kumar, Ludovic Koehl, and Xianyi Zeng. A fully yarn integrated
tag for tracking the international textile supply chain. Journal of
Manufacturing Systems, 40:76–86, 2016.

[51] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. Watch
what I do: Programming by demonstration. MIT press, 1993.

[52] Amanda Lazar, Caroline Edasis, and Anne Marie Piper. Supporting
people with dementia in digital social sharing. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, CHI
‘17, pages 2149–2162. ACM, 2017.

[53] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora
Oehlberg, and Saul Greenberg. Evaluation strategies for HCI toolkit
research. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ‘18, pages 1–17. ACM, 2018.

[54] Johnny C Lee, Scott E Hudson, and Edward Tse. Foldable interactive
displays. In Proceedings of the 21st annual ACM Symposium on User
Interface Software and Technology, UIST ‘08, pages 287–290, 2008.

[55] Matthew L Lee and Anind K Dey. Sensor-based observations of
daily living for aging in place. Personal and Ubiquitous Computing,
19(1):27–43, 2015.

[56] Hanchuan Li, Eric Brockmeyer, Elizabeth Carter, Josh Fromm, Scott
Hudson, Shwetak Patel, and Alanson Sample. PaperID: A technique
for drawing functional battery-free wireless interfaces on paper. In
Proceeding of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ‘16, pages 5885–5896. ACM, 2016.

[57] Hanchuan Li, Can Ye, and Alanson P Sample. IDSense: A human
object interaction detection system based on passive UHF RFID. In
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ‘15, pages 2555–2564. ACM, 2015.

[58] Rong-Hao Liang, Meng-Ju Hsieh, Jheng-You Ke, Jr-Ling Guo, and
Bing-Yu Chen. RFIMatch: Distributed batteryless near-field identifica-
tion using RFID-tagged magnet-biased reed switches. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and
Technology, UIST ‘18, pages 473–483. ACM, 2018.

[59] Giorgia Lupi and Stefanie Posavec. Dear data. Chronicle books, 2016.
[60] Wendy E Mackay, Guillaume Pothier, Catherine Letondal, Kaare

Bøegh, and Hans Erik Sørensen. The missing link: Augmenting
biology laboratory notebooks. In Proceedings of the 15th annual ACM
symposium on User interface software and technology, UIST ‘02, pages
41–50. ACM, 2002.

[61] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas
Moran. User-tailorable systems: Pressing the issues with buttons.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ‘90, pages 175–182. ACM, 1990.

[62] Jennifer Mankoff, Scott E Hudson, and Gregory D Abowd. Providing
integrated toolkit-level support for ambiguity in recognition-based
interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ‘00, pages 368–375. ACM, 2000.

[63] Nicolai Marquardt, Steven Houben, Michel Beaudouin-Lafon, and An-
drew D. Wilson. HCITools: Strategies and best practices for designing,
evaluating and sharing technical HCI toolkits. In Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ‘17, page 624–627, New York, NY, USA,
2017. Association for Computing Machinery.

[64] David A Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson,
and Jie Qi. Microcontrollers as material: Crafting circuits with paper,
conductive ink, electronic components, and an “untoolkit”. In Proceed-
ings of the 7th International Conference on Tangible, Embedded and
Embodied Interaction, TEI ‘13, pages 83–90. ACM, 2013.

[65] Sarah Mennicken and Elaine M. Huang. Hacking the natural habitat:
An in-the-wild study of smart homes, their development, and the people
who live in them. In Proceedings of the 10th international conference
on Pervasive Computing, PERVASIVE ‘12, pages 143–160, Berlin,
Germany, 2012. Springer.

[66] Brad A Myers. A new model for handling input. ACM Transactions
on Information Systems (TOIS), 8(3):289–320, 1990.

[67] Bonnie A. Nardi. A small matter of programming: perspectives on end
user computing. MIT press, 1993.

[68] William M Newman. A system for interactive graphical programming.
In Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, pages 47–54, 1968.

[69] Hyunjoo Oh, Jeeeun Kim, Cory Morales, Mark Gross, Michael Eisen-
berg, and Sherry Hsi. FoldMecha: Exploratory design and engineering
of mechanical papercraft. In Proceedings of the Eleventh International
Conference on Tangible, Embedded, and Embodied Interaction, TEI
‘17, pages 131–139. ACM, 2017.

[70] Simon Olberding, Sergio Soto Ortega, Klaus Hildebrandt, and Jürgen
Steimle. Foldio: Digital fabrication of interactive and shape-changing
objects with foldable printed electronics. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology,
UIST ‘15, pages 223–232. ACM, 2015.

[71] Dan R. Olsen. Evaluating user interface systems research. In
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07, page 251–258, New York, NY,
USA, 2007. Association for Computing Machinery.

[72] Dan R Olsen Jr. MIKE: The menu interaction kontrol environment.
ACM Transactions on Graphics (TOG), 5(4):318–344, 1986.

[73] John F Pane and Brad A Myers. Tabular and textual methods for
selecting objects from a group. In Proceeding 2000 IEEE International
Symposium on Visual Languages, pages 157–164. IEEE, 2000.

[74] Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann.
A layered fabric 3D printer for soft interactive objects. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI ‘15, page 1789–1798. ACM, 2015.

[75] Richard L. Potter. Pixel data access: Interprocess communication in
the user interface for end-user programming and graphical macros.
PhD thesis, 1999. Copyright - Database copyright ProQuest LLC;
ProQuest does not claim copyright in the individual underlying works;
Last updated - 2023-02-24.

[76] Richard L Potter, Linda J Weldon, and Ben Shneiderman. Improving
the accuracy of touch screens: an experimental evaluation of three
strategies. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 27–32, 1988.

[77] Jie Qi and Leah Buechley. Electronic popables: Exploring paper-
based computing through an interactive pop-up book. In Proceedings
of the Fourth International Conference on Tangible, Embedded, and
Embodied Interaction, TEI ‘10, pages 121–128. ACM, 2010.

[78] Jie Qi and Leah Buechley. Sketching in circuits: Designing and building
electronics on paper. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ‘14, pages 1713–1722.
ACM, 2014.

[79] Jie Qi, Andrew “ Bunnie” Huang, and Joseph Paradiso. Crafting tech-
nology with circuit stickers. In Proceedings of the 14th International
Conference on Interaction Design and Children, IDC ‘15, pages 438–
441. ACM, 2015.

[80] Alexander Repenning. Moving beyond syntax: Lessons from 20 years
of blocks programing in AgentSheets. Journal of Visual Languages
and Sentient Systems, 3(1):68–91, 2017.

[81] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch:
Programming for all. Comm. of the ACM, 52(11):60–67, 2009.

[82] Jennifer A Rode, Eleanor F Toye, and Alan F Blackwell. The fuzzy felt
ethnography—Understanding the programming patterns of domestic
appliances. Personal and Ubiquit. Computing, 8(3-4):161–176, 2004.

[83] Michael Rohs. Visual code widgets for marker-based interaction. In
25th IEEE International Conference on Distributed Computing Systems
Workshops, pages 506–513. IEEE, 2005.

[84] Kimiko Ryokai, Stefan Marti, and Hiroshi Ishii. I/O Brush: Drawing
with everyday objects as ink. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 303–310, 2004.

[85] Antti Salovaara, Andrea Bellucci, Andrea Vianello, and Giulio Jacucci.
Programmable smart home toolkits should better address households’
social needs. In Proceeding of the SIGCHI Conference on Human
Factors in Computing Systems, New York, NY, 2021. ACM.

[86] Julia Schwarz. Monte Carlo Methods for Managing Uncertain User
Interfaces. PhD thesis, Carnegie Mellon University, 2014.

[87] Andrew Speilberg, Alanson Sample, Scott Hudson, Jennifer Mankoff,
and James McCann. RapID: A framework for fabricating low-latency
interactive objects with RFID tags. In Proceeding of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ‘16, pages
5897–5908, New York, NY, 2016. ACM.

[88] Lisa Stifelman, Barry Arons, and Chris Schmandt. The Audio Note-
book: Paper and pen interaction with structured speech. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ‘01, pages 182–189, 2001.

[89] Lisa J Stifelman. Augmenting real-world objects: A paper-based audio
notebook. In Conference Companion on Human Factors in Computing
Systems, pages 199–200, 1996.

[90] Laurel Swan, Alex S Taylor, and Richard Harper. Making place for
clutter and other ideas of home. ACM Transactions on Computer-
Human Interaction (TOCHI), 15(2):1–24, 2008.

[91] Cristina Sylla, Pedro Branco, Sérgio Gonçalves, Clara Coutinho, and
Paulo Brito. T-books: Merging traditional storybooks with electronics.
In Proceedings of the 11th International Conference on Interaction
Design and Children, IDC ‘12, pages 323–326. ACM, 2012.

[92] Alex S Taylor, Richard Harper, Laurel Swan, Shahram Izadi, Abigail
Sellen, and Mark Perry. Homes that make us smart. Personal and
Ubiquitous Computing, 11(5):383–393, 2007.

[93] Alex S Taylor, Susan P Wyche, and Joseph ‘ Jofish’ Kaye. Pottering
by design. In Proceedings of the 5th Nordic conference on Human-
computer interaction: building bridges, pages 363–372, 2008.

[94] Jakob Tholander and Maria Normark. Crafting personal information-
resistance, imperfection, and self-creation in bullet journaling. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ‘20, pages 1–13. ACM, 2020.

[95] Khai N Truong, Elaine M Huang, and Gregory D Abowd. CAMP:
A magnetic poetry interface for end-user programming of capture
applications for the home. In International Conference on Ubiquitous
Computing, pages 143–160. Springer, 2004.

[96] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah
Mennicken, Noah Picard, Diane Schulze, and Michael L Littman.
Trigger-Action programming in the wild: An analysis of 200,000
IFTTT recipes. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI ‘16, pages 3227–3231, 2016.

[97] Guanyun Wang, Tingyu Cheng, Youngwook Do, Humphrey Yang,
Ye Tao, Jianzhe Gu, Byoungkwon An, and Lining Yao. Printed paper
actuator: A low-cost reversible actuation and sensing method for shape
changing interfaces. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–12, 2018.

[98] Colin Watson, Reuben Kirkham, and Ahmed Kharrufa. PIP Kit: An
exploratory investigation into using lifelogging to support disability
benefit claimants. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–14, 2020.

[99] Mark Weiser. The computer of the 21st century. Mobile Computing
and Communications Review, 3(3), 1991.

[100] Kristin Williams, Rajitha Pulivarthy, Scott E Hudson, and Jessica
Hammer. Understanding family collaboration around lightweight
modification of everyday objects in the home. Proceedings of the ACM
on Human-Computer Interaction, 3(CSCW):1–24, 2019.

[101] Kristin Williams, Rajitha Pulivarthy, Scott E Hudson, and Jessica
Hammer. The upcycled home: Removing barriers to lightweight
modification of the home’s everyday objects. In Proceedings of the
CHI Conference on Human Factors in Comp. Sys., pages 1–13, 2020.

[102] Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir,
Ledah Casburn, Curtis Cook, Mike Durham, and Gregg Rothermel.
Harnessing curiosity to increase correctness in end-user programming.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 305–312, 2003.

[103] Charlie Wilson and Tom Hargreaves. Smart homes and their users:
a systematic analysis and key challenges. Personal and Ubiquitous
Computing, 19(2), 2015.

[104] Brian G Winder, Spencer P Magleby, and Larry L Howell. Kinematic
representations of pop-up paper mechanisms. Journal of mechanisms
and robotics, 1(2), 2009.

[105] JongBum Woo and Youn-kyung Lim. User experiences in do-it-
yourself-style smart homes. In Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing, pages
779–790, New York, NY, 2015. ACM.

[106] Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Phili-
pose, and James M Rehg. A scalable approach to activity recognition
based on object use. In 2007 IEEE 11th International Conference on
Computer Vision, pages 1–8. IEEE, 2007.

[107] Yang Zhang, Yasha Iravantchi, Haojian Jin, Swarun Kumar, and Chris
Harrison. Sozu: Self-powered radio tags for building-scale activity
sensing. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, pages 973–985, 2019.

[108] Clement Zheng, Peter Gyory, and Ellen Yi-Luen Do. Tangible inter-
faces with printed paper markers. In Proceedings of the 2020 ACM
Designing Interactive Systems Conference, pages 909–923, 2020.

[109] Kening Zhu and Shengdong Zhao. Autogami: a low-cost rapid
prototyping toolkit for automated movable paper craft. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 661–670, 2013.

