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Abstract—Current air quality visualizations predominantly
rely on map-based representations and Air Quality Index (AQI)
color coding to show outdoor air quality data. As outdoor
air quality concerns grow in importance—due to rising health
risks—the need for greater transparency in scientific communica-
tion becomes increasingly critical. Showing uncertainty improves
transparency, and allows for greater public understanding and in-
formed decision-making. This paper compares sensor uncertainty
visualizations along dimensions of context and interactivity. Map-
based, time-based, and sensor-only are each presented in static,
interactive, and animated formats. These include several novel
visualizations such as a map-based hypothetical outcome contour
plot. In a crowdsourced user study, we assess the clarity and
usability of these nine visualizations, focusing on how well they
communicate both the air quality data and associated uncertain-
ties. We find that there are trade-offs for data interaction design:
supporting accurate air quality judgments versus understanding
data uncertainty. Participants were signficiantly more accurate
AQI judgements when using static visualizations, but they had
a significantly better understanding of uncertainty when using
interactive visualizations. Our work informs visual interaction
design to support interpretability, communicate uncertainty, and
contextualize data to help with more confident judgments.

Index Terms—Scientific communication, Interactive visualiza-
tion, Sensor uncertainty, Air quality monitoring, Crowdsourcing.

I. INTRODUCTION

Environmental Scientists frequently use the Air Quality
Index (AQI) in combination with map-based visualizations to
communicate to the public the hazard levels posed by air pollu-
tants [71]. Current visualization techniques follow national and
international guidelines on what constitutes safe/acceptable
levels of air pollutants. For example, the US Environmental
Protection Agency (EPA) established an AQI that adopts a
color-coded system to classify the hazard level posed by
air pollutants such as particulate matter [71]. In addition to
encoding hazard levels of air quality with color, local area
conditions are visualized using national and global maps so
that households can assess conditions in their local area to
inform their daily activities like outdoor exercise.

Communicating uncertainty to the public is critical for
establishing scientific transparency in visualized data and to
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ensure continued public trust in science [38]. We use the term
uncertainty specifically to refer to the possibility that the data
could be a range of values rather than a single value in line
with prior work [31]. However, many common air quality
visualizations do not encode or depict uncertainty informa-
tion. One explanation may be that AQI visualization authors
believe that 1) AQI visualizations should communicate a clear
message drawn from an independent process that establishes
expert confidence that the data supports the message, and
2) concerns that uncertainty information could obfuscate that
message [31]. Researchers have previously identified sources
of uncertainty with AQI data arising from sensor placement
and the algorithms used to convert sensor readings to a
spatial representation that can be rendered with map-based
visualizations [58]. They, and others (e.g. [34], [36], [37],
[58]), advocate for representing uncertainty information to
better inform decision-making.

Air quality data has particular difficulty with uncertainty
in the sensor reading itself. Over time, sensor readings can
drift due to build up of contaminants, environmental changes,
mishandling, etc. [4]. Previous research on geospatial visual-
ization of air quality data advocates quantifying the uncertainty
of sensor measurements and placement so that it can be
communicated using visualization techniques [58].

Instead, we argue that interaction design can help with
air quality sensing challenges by using similar methods for
dealing with sensor uncertainty as part of user interaction. Like
ambiguous sensing challenges for natural user interfaces for
input and context-aware services [15], [43], air quality sensing
is error-prone which can confuse decision-makers and cause
performance problems if it is not adequately communicated.
In addition to communicating uncertainty information through
visualization design, we propose using interaction techniques
to facilitate decision-makers’ sense-making and reasoning un-
der uncertainty. These techniques can support identifying and
resolving ambiguity by involving the user or accumulating
more information about sensed events [43]. Our approach
goes beyond research on visualizing uncertainty in air quality
data to engage with related work on interaction techniques
for coping with uncertainty (see [47] for a discussion of the
distinction between visualizations and interaction techniques).
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We use these strategies to supplement research on visualizing
uncertainty to support communicating air quality data.

In this paper, we create a set of air quality visualizations and
investigate their effectiveness for supporting 150 users with
understanding data uncertainty in a crowdsourced study. We
employ techniques from research on sensor uncertainty to vary
our visualizations in terms of 3 levels of interactivity—static,
animated, and interactive—and context—location, time, and
sensor. In a crowdsourced study with 150 participants, we
compare our visualizations in terms of supporting accurate
interpretation of the AQI, comparison between two sensor
streams with differing uncertainty, and confidence in air
quality judgments. We find that there is a trade-off between
supporting accurate AQI judgements and supporting under-
standing of data uncertainty. Our work contributes 1) a set of
visualization techniques for communicating air quality using
the US AQI, and 2) findings on the role of air quality visualiza-
tion design in supporting accurate, informed, and trust-worthy
scientific communication for better decision-making.

II. BACKGROUND

Below, we review related work on visualizing uncertainty
in air quality data, and interaction techniques for coping with
uncertainty in interaction design.

A. Revealing Uncertainty

Uncertainty is present in most data [52]. It can enter
scientific data at many processing stages, such as through
measurement, analysis, and forecasting [52]. Data can also
be fundamentally ambiguous when more context is needed
to make sense of it [43]. One way to contextualize data
is through visualization. Yet, data visualizations usually do
not show uncertainty [31]. Drawing on [31], we use the
following working definition of uncertainty: the possibility that
the observed value could take on a possible set of values.
Thus, visualizing uncertainty should convey the probability of
a range of values instead of showing just one.

Air quality sensors themselves introduce uncertainty into
data. So, we expand our working definition of uncertainty
with [16]’s definitions of sensor-wide uncertainty. This is
comprised of (1) instrument uncertainty due to the differences
in monitor models and (2) sampling uncertainty due to the
measurement methodologies [16]. These definitions align with
the US EPA’s Air Sensor Guidance [16]. In processing this
data, its collection and cleaning impacts uncertainty: calibra-
tion, temporal averaging, and reference site correction are
important to effectively reduce sensor-wide uncertainty [16]

Handling uncertainty in user interface design is challeng-
ing. In data visualization, authors frequently do not convey
uncertainty because of 1) beliefs that it can be misleading
or incomprehensible, 2) concern that non-experts cannot fully
comprehend it, or 3) fear that it makes visualizations less
credible [31]. Visualization practitioners describe multiple
types of uncertainty associated with a single dataset, and
these consists in different levels or layers of uncertainty [65].
When visualizing uncertainty, practitioners described using

error bars, circles on a map, and colored branches for trees,
but many expressed their frustration with finding helpful
representations to communicate with [65]. Since uncertainty
can occur at multiple levels of data and may even be inherently
ambiguous, there is a need to cope with it in levels of system
design [43]. Early work seeking to resolve uncertainty in
sensor data streams found a role for interaction techniques
in supporting appropriate resolution of data ambiguity [30],
[43]. Later work supplemented interaction techniques with
context, such as location and time [15]. More recent advances
show how interaction techniques benefit from reasoning with
and managing the uncertainty of multiple possible interaction
states [5], [64], [72]. Here, we draw on these parallel bodies
of work, in visualization and interaction techniques, to support
interacting with sensor data to understand uncertainty in air
quality monitoring.

Communicating uncertainty can improve user’s confidence
levels and decision-making. It can help with predicting true
values, like bus arrival time [36]. In doing so, it helps with
planning and making informed decisions, such as deciding
when to walk to the bus station or estimating the risk of
missing the next bus [36]. Interfaces that use fluctuating data,
such as those that have a range of possible values, benefit
from an “always-on” reading that encodes the uncertainty
information in what is displayed [37]. Showing data fluctuate
improves confidence in the measurement instrument such
as showing body weight fluctuation trends on a bathroom
scale [37]. Notably, users make more informed decisions with
uncertainty information if they employ a decision aid [34].
Thus, being transparent about uncertainty information and
helping with its interpretation is crucial to that data being
integrated into day to day planning and activity.

B. Visualizing Uncertainty in Air Quality Data

Visualizations present air quality data by making its inherent
complexity more accessible to the public and decision-makers.
They effectively convey a large amount of information in
a simpler form by leveraging visual perception to compre-
hend multi-dimensional information [57]. Potter et al. put
forward a taxonomy that classifies uncertainty into multiple
dimensions: 1D, 2D, 3D, and ND data visualization such as
error bars, contour maps, and time-varying data, respectively
[57]. Uncertainty visualization can have high dimensionality
and be challenging to show with large dimensional data
such as scientific visualization, geographical visualization, and
geographic information science [65]. In geographical fields,
data is often shown in 2D space when encoded on maps [57].

Maps are widely used to present air quality data. Platforms
like AirNow1 employ color-coded contours to represent es-
timated air quality levels. These geographic representations
help with quickly identifying areas with better or worse air
quality based on color. Widely used forms include heat maps,
contour maps, and chloropeth maps [28]. However, alternative
forms can be necessary depending on the context. Temporal air

1 https://www.airnow.gov
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quality data is often represented as a time series [29]. Radial
charts have been introduced to show time using the plot’s
angle, although, uncertainty is rarely studied using these [29].
Radial plots are becoming more popular due to their ability to
highlight cyclical trends like daily or seasonal patterns. Their
circular layout can make periodic variations more intuitive
and visually engaging, though they pose challenges when
making precise comparisons or understanding their labeling
[8]. Related, angular encodings techniques show data here and
now—often termed ”nowcasting”with a gauge-style widget
showing highly location- and time-specific air quality informa-
tion. This suggests that the design space of conveying context-
specific air quality information to the public needs explored.

One source of uncertainty in geospatial visualization of air
quality data is spatial sparsity. Data is collected by an air
monitor network that, due to limited resources and geograph-
ical constraints, is impractical to install densely to create a
large network. For example, California’s network has slightly
more than 250 stations [10]. While relatively dense, it doesn’t
cover the entire state [73]. San Jose, a city with >1 million
residents, has only three monitors installed for an area of
nearly 470 km2 [10]. To cope with sparsity, data is estimated
using spatial interpolation. Four common spatial interpolation
methods—spatial averaging, nearest neighbor, inverse distance
weighting, and Kriging—performed similarly across US states
and only differed in California, because of the relatively
high-density network of air monitors [73]. Using Kriging,
researchers found that users demonstrated a “higher perception
of risk” and had a tendency to make more informed decisions
when uncertainty information was given [58].

C. Encoding Uncertainty

Effectively communicating uncertainty has become more
important as real-time data enable opportunities for real-time
sensemaking and responsive coordination like that needed
during the recent global pandemic (c.f., [60]). While error bars
are widely traditionally used in scientific visualizations, studies
suggest that they can be misleading [12]. They are often
misinterpreted as hard boundaries rather than probabilistic
distributions [12]. Instead, gradient plots, violin plots, and
box plots may be more effective [12]. Moreover, error bars
are inappropriate for some visualizations and data. In these
cases, encodings like color, texture, transparency, and glyphs
offer alternatives. Colors and textures were found intuitive
encodings [51]. Studies have also found that scaling the size
of symbols at each data point is an acceptable approach for
symbolic encodings [42], [62]. For spatial data, contour maps
often use color-coded contours or thickness variations, while
heatmaps can use whitespace or noise effects [6]. Animation
techniques, mapped as speed or motion blurring, have also
been used to represent uncertainty [53].

One interesting approach uses animation to encode uncer-
tainty in hypothetical outcome plots (HOPs). Each animation
frame represents a sample from a distribution estimated from
the data [32]. This approach, displaying multiple possible
realizations of data over time, forces viewers to recognize

variability and uncertainty as part of their interpretation [32].
Instead of requiring users to exert cognitive effort to under-
stand graphically encoded statistical concepts, users can di-
rectly extract frequency information with HOPs by leveraging
their visual processing system [32]. In turn, this encourages
probabilistic reasoning by prompting the user to consider the
encoded variability of the presented data. HOPs have been
found to outperform several static representations, including
violin plots [32]. HOPs offer a promising avenue for visu-
alization of uncertainty, but past literature has predominantly
focused on simple line graphs.

III. COMMUNICATING AIR QUALITY

We created visualizations that depict air quality data uncer-
tainty by 1) varying the level of interactivity support, and 2)
varying the visual context used to show the data. Specifically,
visualizations supported three levels of interactivity—static,
animated, and interactive—and three visual contexts—spatial,
temporal, and sensor-only—to yield nine distinct visualiza-
tions. This allowed us to explore how uncertainty in air
quality data might be visually depicted using alternative spatio-
temporal assumptions and revealed through user interaction.
Table I summarizes how features of each visualization vary to
show uncertainty for each interactivity level and context.

A. Encoding Air Quality with Color Gradients
For each visualization, the main encoding of air quality is

color. We convert PM2.5 concentrations to the AQI and its
associated color using the EPA’s formula [71]. In all visual-
izations, this mapping is shown using a legend and a scale
(see Figure 1). Depicting air quality data with color is more
effective for clearly communicating the health risks posed
by measured concentrations of pollutants instead of simply
displaying their numerical values [2], [75]. While the US AQI
employs a discrete color encoding scheme, we use a gradient
of colors to show how a value may lie on a fuzzy boundary
as part of our investigation into depicting uncertainty. Value-
Suppressing Uncertainty Palettes—which intuitively encodes
both the data and uncertainty within a single visual channel,
i.e. color [13]—were considered but ultimately not used. This
approach could obscure the air quality values due to its
five-color range, making interpretation more difficult. Instead,
uncertainty was represented using other encodings while color
was reserved for air quality.

B. Revealing Uncertainty with Interactivity
Visualizations varied in their support for user interaction by

ranging from static, through animated, to fully interactive. We
consider static visualizations as the most passive form as using
them largely consists in perceiving their visual features. Next,
we consider animated visualizations to offer an additional level
of user engagement. They add an additional dimension of time
to allow the user to passively explore the data. Finally, we
created a set of user-controllable interactive visualizations that
supported using input devices such as a mouse to control a
slider, hover-based pop-ups, and menus. This gives the user
agency over how the data is explored over time.
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Uncertainty Representation
Interactivity Level
Static Animated Interactive

Spatial Size and transparency
of circle glyph

Animated HOP of map contours and color interpo-
lation; Play and pause; Mouseover for interpolated
value at that location

Slider changes displayed contour line and color
interpolation; Mouseover for interpolated value at
that location

C
on

te
xt Temporal Polar bar height and

threshold
Animated HOP of colors for seasonal bin; Play and
pause; Mouseover for averaged value for the seasonal
bin; Dropdown menu changes seasonal bins

Slider changes displayed color for seasonal bin;
Mouseover for averaged value for the seasonal bin;
Dropdown menu changes seasonal bins

Sensor-only Width of needle Animated HOP with two previous needle positions
shown with reduced opacity; Play and pause

Slider changes the needle’s angular position

TABLE I
SUMMARY OF FEATURES USED TO ENCODE AND ENABLE EXPLORATION OF UNCERTAINTY (NOTE: COLOR IS BASED ON THE AQI COLOR ENCODING)

1) Static Representations: Static visualizations incorporate
visual elements, such as color and glyphs, to show air quality
uncertainty depending on the plot type, but they do not support
user interaction with the visualization of air quality data.

2) Animated Representations: Animated visualizations au-
tomatically cycle through a range of AQI scenarios over time.
In this approach, we follow [32] and generate visualization
frames by repeatedly sampling from a normal distribution of
AQI values. We randomly sample from a normal distribution
to present the full range of possible AQI values given the mea-
sured value. This approach effectively creates the frames for
an animated HOP. Each frame shows a possible AQI scenario
drawn from the underlying distribution. We animate these
frames to show the range of possible scenarios the empirical
data could indicate to ensure users actively consider these (see
[35] for example). While past literature focuses on simple line
HOPs [32], [35], we develop novel visualizations for HOPs
using contour lines and AQI color-changing HOPs to support
>1 dimensional encoding. Integrating uncertainty directly into
the plot in this way encourages users to actively consider it
[35]. To guard against users mistakenly thinking the animation
shows a time series (c.f., [54]), the sensor-based visualization’s
past two frames remain in a lower opacity on the plot (see
Figure 1C). Following [32], all animations have a frame speed
of 400ms and present 100 different sampled frames [32]. Each
frame in the animation is displayed independently, without
smooth transitions between frames. This is commonly done
in HOPs, as by [32], to emphasize the idea that every frame

represents an independent possible AQI scenario (see Figures
1A and 1B).

3) Interactive Representations: Interactive visualizations
support mouse based interaction to change the displayed
features. This was primarily accomplished using mouse hover
and a slider. When the mouse was hovered over a colored
area of the visualization, a tool-tip showed the numerical value
PM2.5 concentration that was used to determine the location’s
AQI value, and so, its color encoding. Figure 1B shows
an example of this mouse hover interaction. A slider offers
the user additional agency over the displayed information
and supports interacting with the range of hypothetical plots
possible for the measured data value. The slider’s control of
scenarios—ranging from best to worst case—supports inter-
acting with the range of possible AQI values underpinning
the single air quality value typically presented. Our work
differs from approaches using side-by-side optimistic and
pessimistic forecasts [63], by using a slider to show every
5th percentile (from the 5th to 95th percentiles) of a normal
distribution centered around the value used in the static plots.
Our assumption of a normal distribution was important from
an interaction design perspective, as the jump between extreme
changes—in contour lines on the spatial plot, in color on
the temporal plots, or needle movement in the sensor-only
plot—proved confusing. We assume averages come from a
normal distribution since evaluating the most effective dis-
tribution for representing the empirical data would take us
far from our research questions. Specifically, transitioning

Fig. 1. Examples of non-static uncertainty visualization interfaces created for user study, including the animated map-based (A), interactive time-based (B),
and animated sensor-only (C) representations. The text over screenshots A and B show the hover functionality. All visualizations show the PM2.5 concentration
color mapping scale and the air quality color legend
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Fig. 2. Map-based static uncertainty visualization interface containing the
PM2.5 concentration color mapping scale and the air quality color legend.
Note that text has been enlarged for improved clarity.

between larger steps in the uncertainty distribution would
likely require more time to make sense of and would merit
its own study. Instead, showing every 5th percentile created a
smoother transition between frames.

C. Showing Context to Inform Interpretation of Uncertainty

We use visualization to show data in context to support
making sense of sensor-data uncertainty. We vary context ac-
cording to spatial, temporal, and sensor assumptions. To make
these assumptions apparent, we use geo-spatial maps, radial
plots, and gauge-style visualizations to show this context.

1) Map-based Visualizations: We use geospatial maps to
depict the spatial assumptions of AQI values to contextualize
the sensor data. Currently, the EPA’s air quality map, such as
those provided by AirNow2, uses colored contours to represent
estimated air quality levels (see [21] for research examples).
We build on this common technique by incorporating labeled
contour lines to show the PM2.5 spatial average for an area
(see Figure 2). For the static visualization, uncertainty is
shown using circle glyphs at the location of the sensor. We
encoded uncertainty values using the boldness of the glyph’s
outline and the circle’s radius. We further multiply radii using
a scaling factor to ensure their clear visibility. Specifically,
the larger and more transparent the circle glyph, the more
uncertain the air quality data at that sensor location. This
is in line with prior work comparing symbolic uncertainty
encodings: the larger the glyph size, the higher the perceived
uncertainty [42], [62]. Since this relation would need to be
understood by any user using the visualization, a secondary
encoding is used to avoid misinterpretation from solely relying
on size. We follow [42] by using fuzziness as a secondary
encoding of uncertainty. A darker circumference shows more
certainty, consistent with [42]. We combine glyph fuzziness
and circle size to encode uncertainty while enabling access to
the visualization’s color encoding: each circle’s interior could
be transparent enough to view the AQI-based color coding in
a sensor’s location.

2) Time-based Visualizations: We use radial plots to depict
AQI values over time to contextualize the sensor data at a

2 https://www.airnow.gov

Fig. 3. Time-based static uncertainty visualization interface containing the
PM2.5 concentration color mapping scale and the air quality color legend.
Note that text has been enlarged for improved clarity.

particular location. Following [29], the plot’s angle represents
time. It is structured into two concentric sections: the central
section segmented into seasons and the outer into months fol-
lowing the Gregorian calendar (see Figure 1B). This hierarchy
provides both a seasonal overview and a detailed monthly
breakdown to improve readability and support comparisons
of seasonal variations in PM2.5 concentrations and sensor
uncertainty (c.f., [67], [77]).

The static representation (see Figure 3) uses a polar bar chart
to maintain consistency with the other gauge-like visualization
while adding a visual channel to represent uncertainty: bar
height. Here, inverted height mapping is implemented to
represent uncertainty in each section of the radial plot, i.e.
taller bars indicate greater certainty in the air quality data.
This design choice aligns with research suggesting that larger
visual features attract attention and reduce cognitive load [41],
[50], [59], [78]. Since it is important for users to quickly
identify months and seasons with more reliable air qual-
ity data, emphasizing certainty through increased bar height
makes the data more salient. Unlike the static, map-based
visualization—where uncertainty encoding does not affect the
visibility of the AQI color to represent air quality—the polar
bar chart attracts visual attention to larger features [59] to
direct users’ attention to more certain data encoded with higher
bars. Thus, this mapping was deliberately chosen despite
contradicting our motivations for the map-based visualizations
uncertainty encoding [42], [62]. However, as the uncertainty
heights may be misinterpreted due to this difference, further
features were added to improve clarity. Firstly, a red dotted line
is added to represent the maximum acceptable uncertainty of
PM2.5 concentration as given by the EPA guidelines [48]. In
addition, a red border is added to the bars below this line to
imply that they have an uncertainty higher than that of the
acceptable level. Since red is often perceived as a warning
color [14], we use this color to reinforce the message that this
data is not certain enough.

3) Sensor-only Visualizations: Inspired by the EPA’s
AirNow.gov gauge-style AQI widget3, the sensor-only visu-
alizations use a similar gauge design to compare air quality

3 https://www.airnow.gov/aqi-widgets/
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Fig. 4. Sensor-only static uncertainty visualization interface containing the
PM2.5 concentration color mapping scale and the air quality color legend.
Note that text has been enlarged for improved clarity.

from two sensor locations. The plot type was chosen for its
simplicity in visualizing a single data stream with a needle and
its common use in eco-feedback systems for goal-setting and
comparisons [40], [46], [56]. Gauge charts are widely used in
contexts like energy consumption and are easy to understand,
even for non-technical users [7], [70]. In all three gauge
plots, the outer semi-ring shows all PM2.5 concentrations with
the AQI color scale, with the needle’s angle indicating the
air quality level (see Figure 1C). Prior studies have used
gauge charts for normative comparisons [40]. Rather than
comparing sensor data to an average, we directly compare
two sensor locations to allow users to determine which has
better air quality. For the static visualization, the uncertainty
is represented by the needle width, with greater uncertainty
represented by a thicker needle (see Figure 4). This follows
research on encoding uncertainty via size as in the static map-
based visualization. The needle’s width spans the range of
possible values, where the width is double the uncertainty
measures values calculated to represent error bars (see next
Section for more detail).

IV. DATA PROCESSING AND CHARACTERIZING
UNCERTAINTY

Below we outline our processing steps for generating air
quality data, which include choosing the data source, selecting
an interpolation method, and calculating the related uncertain-
ties. These steps are crucial for creating the visualizations.

A. Air Quality Data

PM2.5 concentration can pose significant health conse-
quences and is one of a set of common air pollutants that
inform air quality assessments [4]. We used data published
in the official daily summary sheets of PM2.5 concentrations
collected by the EPA [3]. We focused on California’s 2023
dataset because it provided the most recent and comprehensive
year-long coverage. Additionally, the state’s frequent summer
wildfires would likely produce air quality visualizations that
varied more than other states, as PM2.5 concentrations fluc-
tuate seasonally. Within the California dataset, we chose data
from air monitors around Fresno because we could use the
same data to show year-long trends over time, fluctuations

in its spatial dispersion, and oscillations between air quality
categories even in the same day.

B. Temporal Resolution

The EPA dataset provides data with two levels of temporal
resolution depending on the method used to interpret raw
samples: FRM and FEM. FRM monitors are developed to a
clearly defined standard for particulate matter concentration
(either PM2.5 or PM10) set by the federal government and
known for its high reliability, but their filter-based measure-
ment method results in low temporal resolution as 24 hours
are needed to collect the sample [1], [22], [74]. In comparison,
FEM monitors are developed using new technologies that
can support higher temporal resolution through continuous
sampling such as an hourly temporal resolution [1], [22], [45].
Often FRM and FEM are used interchangeably since both
can be used to monitor compliance with National Ambient
Air Quality Standards [22]. In this study, we use the 24-hour
average of PM2.5 concentrations from continuous monitors
collected using FEM to create the temporal resolutions needed
for our study: either averaged over 3 days or 3 months. The
online data source provided FRM monitor data every few
days, typically every 3 days, so it was necessary to average
the continuous monitor data to synchronize the dates. For
the time-based visualization, a 3-month average was used
to highlight long-term quality trends for decision-making.
We further processed this data to calculate a measure of
uncertainty by comparing these values with the FRM monitors
at the same location and on the same day. If no FRM value was
available at a given location, the corresponding FEM data point
was disregarded, as its uncertainty could not be determined.
Conversely, if only an FRM measurement was available, its
uncertainty was assumed to be zero, as FRM is considered
the reference standard. This decision means that uncertainty is
only calculated when comparing FEM data to the more reliable
FRM data, ensuring that uncertainty values are only assigned
when there’s an accurate reference point for comparison.

C. Spatial Resolution

Collected data is limited by the spatial resolution of air
quality monitors. This results in a sparse dataset. Yet, higher
spatial resolution is needed to leverage this data for local
decisions. To meet this need, spatial interpolation imputes
synthetic values to depict air quality across the entire space
including areas lacking sensor coverage. There are four main
techniques for spatial interpolation, but none of these have
been found clearly better [19]. In this study, we selected
Kriging due to its greater flexibility in parameter tuning. For
example, we could specify the shape of the semi-variogram,
which models how spatial correlation changes with distance.
The semi-variogram shape influences how values are inter-
polated, with different shapes (e.g., spherical, exponential,
Gaussian) impacting the smoothness and accuracy of estimated
values. Choosing an appropriate shape can lead to more precise
estimates at unsampled locations by better capturing the spatial
structure of air quality variations. To choose the shape of the
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semi-variogram, we applied Leave-One-Out Cross-Validation
due to the limited sensor data which assesses different shapes
by systematically omitting sensor readings and predicting
their values to compare accuracy. A limitation of Kriging is
that in areas where sensor data varies significantly between
neighboring locations, interpolation can smooth out extreme
values since it prioritizes spatial consistency. This sometimes
hides the actual recorded concentrations. As a result, the true
PM2.5 concentration at a sampled location may differ from
what is displayed on the interpolated map, potentially affecting
how users perceive air quality at certain locations.

D. Quantifying sensor uncertainty

To quantify sensor uncertainty, we use root mean square
error (RMSE), represented as the following equation [27]:

RMSE =

√∑n
i=1(ŷi − yi)2

n
(1)

where:
• n is the number of air quality data observations,
• yi is the observed value (i.e. the continuous sensor air

quality data value) for the i-th observation,
• ŷi is the actual value (i.e. the gold standard FRM monitor

data) for the i-th observation.
The method calculates a measure of the difference between

the continuous sensor air quality data and the gold standard
FRM monitor data at the same site. As FRM monitor data is
often not collected daily while continuous sensors are 24-hour
averages, it is necessary to synchronize the dates. Based on
the difference in days between FRM monitor data collections -
usually 3 days - this is achieved by calculating the average of
the continuous monitor data spanning between the preceding
and subsequent FRM monitor data collection dates.

V. CROWDSOURCED EVALUATION

We evaluated the effectiveness of our visualizations by
crowdsourcing a controlled comparison. We varied uncer-
tainty data context and interactivity. For context, we used
3 conditions: map-based, time-based, and sensor-based. For
levels of interactivity, we used 3 levels: static, animated, and
interactive. In total, we designed 9 visualizations. To assess
these, we compared them in terms of intelligibility of the AQI,
interpretability of data uncertainty, and overall respondent
confidence in their judgment. We detail our study more below.

A. Crowdsourcing Visualization Evaluations

Crowdsourcing can offer rapid access to large numbers
of diverse participants at relatively low cost [26]. Despite
lacking many traditional experimental controls, crowdsourcing
has seen increasing use as a tool for research. Successful
applications have been demonstrated in areas such as social
science [55], education [18], natural language processing [68],
image labeling [61], [69], and more [33], [39]. Notably, work
has shown that crowd-based studies can be equivalent to lab
studies especially in the area of visualization and graphical
perception [11], [17], [18], [24], [25], [66]. Crowdsourced

studies can reproduce the results seen in lab-based equivalents
of visualization studies, efficiently and often at lower cost.

We investigate trade-offs and added benefits of exposing
viewers to the full possible distribution of a data’s value by
varying exposure through levels of interactivity, and by varying
context, through visualization forms. To do so, we developed
exploratory hypotheses,

• H1 Less animation will support more accurate interpreta-
tion of the AQI. Specifically, we expect static visualiza-
tion to do the best, followed by interactive, and animated.

• H2 Greater interactivity will support better understanding
of uncertainty. Specifically, we expect interactive visual-
izations to do the best, followed by animated, and finally
static.

• H3 Greater context will support more accurate and con-
fident decision-making. Specifically, we expect spatial
visualizations to do the best, followed by temporal, and
finally, sensor-only.

We used 3 survey questions to measure evidence for each
of our hypotheses. They asked for 1) the AQI interpretation
of a specific value (i.e., good, moderate, etc.), 2) to compare
data from two sensors and choose which was more reliable,
and 3) to rate confidence in the answers to 1 and 2 on a 7
point Likert scale.

B. Procedure

Based on the 9 visualizations, we designed a set of basic de-
mographic and background questions, trial questions, and post-
trial questions. For the basic demographic and background
questions, we adopted the questions from the US Census
and the National Assessment of Educational Progress [9],
[49]. These background questions were designed to elicit self-
reported mathematical proficiency, helping us to understand
the relationship between the interpretation of the visualization
and numerical literacy.

To introduce the trials, we designed one training task based
on the US EPA’s AQI color scheme. We applied the specified
translation to the scale to align the color scheme with the
PM2.5 concentration level [71]. We asked each respondent
to identify a labeled portion of the scale. This provided
both a baseline for comparison and an objective filter for
whether participants could complete the study. Participants
were then asked to answer three questions about each of
the visualizations, alongside each visualization interface. In
total, we designed 27 trial questions for the respondents. Due
to the large number of potential comparisons, we chose to
fully randomized the study trials. Finally, participants were
asked to identify their preferred visualization and give optional
comments on the visualization or study.

To minimize the impact of differing backgrounds and abil-
ities between participants unduly influencing relative results
we elected to use a within-subjects design. Equally, to avoid
ordering effects, the order of the nine visualizations along
with their corresponding trial questions was shuffled using the
Fisher-Yates algorithm.
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Fig. 5. Participants more accurately interpreted the AQI using static vi-
sualizations, but were substantially more inaccurate when using interactive
uncertainty visualizations.

C. Participants

We recruited 150 crowdworkers using Amazon Mechanical
Turk. Due to the nature of the study, focused on US air quality
metrics, we recruited only US-based crowdworkers. Based on
testing by the research team, the estimated task completion
time was approximately 20 minutes. Average earnings on
Amazon Mechanical Turk is estimated to be $6.19/hr [23].
Following recommended practice, we targeted our payments
above this level at U.S. minimum wage [76] and listed the
task for $2.50.

Subsequent to data collection, we filtered responses on the
basis of a) correct completion of the training task and b)
completion time in greater than 7 minutes, a little over 1/3rd
of our estimated completion time. Of the 150 responses, 103
participants correctly completed the training task, the fastest of
which completed the task in 8 minutes 16 seconds. Regardless
of their performance in the training task, or their completion
time, all respondents were paid.

Of the 103 participants that successfully completed the AQI
training task, 70 were male and 30 female; no respondents
chose a non-binary option or declined to answer. All but one of
these respondents indicated education to bachelors or higher,
with a single participant indicating that their highest level of
education was at the high school level.

VI. FINDINGS

A. Air Quality Index Interpretability

As we expected, the static visualizations supported more
accurate interpretation of the air quality index (AQI; 162
correct answers across the three layouts versus 147 incorrect)
than for the other two visualization conditions. Notably, and to
our surprise, participants were more inaccurate than accurate
at interpreting the AQI using both the animated (152 correct
verses 157 incorrect) and the interactive visualizations (114
correct verses 195 incorrect). While we expected interactive
visualizations to outperform animated visualizations, this was
not the case. A Binomial Regression using the Logit link
function and a mixed effects model revealed the visualization
condition had a significant impact on the correct interpretation
of the AQI: χ2(2, N = 103, p<0.001). Compared to static
visualizations, we found that participants were only 0.3 times
as likely (95% confidence interval [0.20,0.46]) to correctly

Fig. 6. Participants were better able to compare the reliability data reported
by two sensors when using interactive visualizations than when using static
or animated visualizations.

interpret the AQI using interactive visualizations than static
and 0.88 as likely (95% confidence interval [0.60, 1.28])
using animated visualization. That is, participants were 3 times
more likely to make accurate AQI interpretations using static
visualizations than interactive (95% confidence interval [2.16,
4.97]) and 1.14 more accurate than when using animated (95%
confidence interval [0.78, 1.66]).

B. Air Quality Data Uncertainty

In line with our expectations, the interactive visualizations
supported more accurate comparisons of data reliability be-
tween 2 sensors (188 correct verse 121 incorrect). In line with
our hypotheses, this was followed by animated visualizations
(152 correct) and then, static visualizations (134 correct).
Surprisingly, participants were more likely to make inaccurate
comparisons of data reliability between 2 sensors than they
were to make accurate comparisons when using animated or
static visualizations. A Binomial regression using the Logit
link function and a mixed effects model revealed the visual-
ization condition had a significant impact on comparing data
reliability between two sensors: χ2(2, N = 103, p<0.001).
We found that participants were 1.7 times as likely to correctly
compare the reliability of data reported by two sensors when
using interactive visualizations than when using animated
(95% confidence interval [1.12, 2.46]), and 2.1 times more
likely when using interactive visualizations than when using
static visualizations (95% confidence interval [1.43, 3.16]).

C. Confidence in Air Quality Data Judgments

We expected both the greater context of the location and
season in the AQI visualizations to impact participants’ con-
fidence in their AQI interpretations and reliability judgments.
While participants were less likely to correctly interpret the
map condition their mean reported confidence was slightly
higher than for other visualizations (Map: mean=5.8, sd=0.88,
range=3-7; Time: mean=5.7, sd=0.94, range=2-7; Sensor:
mean=5.7, sd=0.97, range=2-7). Further, the combined stan-
dard deviation over the three variants lower (0.86 map <0.94
time <0.98 sensor). This may be due to increased familiarity
with this representation. While we did not observe much differ-
ence in participants’ perceived confidence (see Figure 7). An
Aligned Rank Transform followed by an RMANOVA found
a significant main effect of visualization type on confidence:
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Fig. 7. Despite high numbers of inaccurate AQI interpretations and data
reliability comparisons, study participants were confident in their judgments
overall.

F(2,816)=7.65, p<0.001. Subsequent pairwise comparisons
using Tukey’s adjustment method found significant differences
between the map and sensor conditions (t(816)=-2.75, p<0.05)
and the sensor and time conditions (t(816)=3.78, p<0.001).
Visual inspection of our results suggests that the animated
sensor was largely contributing to differences across the visual
context types (see Figure 7).

We expected the greater context to improve participant’s
interpretation of the AQI. Contrary to expectations, the spatial
condition supported less accurate answers (207 incorrect) than
the temporal condition (165 incorrect) and sensor only condi-
tion (163 incorrect). A Binomial Regression using the Logit
link function and a mixed effects model revealed the contextual
condition had a significant impact on the correct interpretation
of the AQI: χ2(2, N = 103, p<0.001). Compared to temporal
and sensor contexts, we found participants were half as likely
to correctly interpret the AQI using spatial context (0.55 as
likely than sensor only context, with 95% confidence interval
of [0.37, 0.81]; and 0.56 as likely than temporal context, with
95% confidence interval of [0.38, 0.83]).

D. Discriminating Uncertainty

Interestingly, for the 47 respondents who provided incorrect
responses to the training question, just 4% for the static
conditions, 5% for the interactive conditions, and 4% for
the animated conditions indicated that they were unable to
interpret the visualization across all trials. This is likewise
reflected in the reported confidence score, with only 4% of
trials (all variants) indicating a lack of confidence in the
response. Further, of those trials reported with low confidence,
participants were actually correct in 34.5% of cases. Due to the
small numbers of these cases, we do not claim any particular
interpretation on this aspect of our results.

E. Self-reported Mathematical Ability

Our survey included three questions to indicate self-
reported mathematical ability. We asked respondents to in-
dicate whether they would be able to calculate an average
(mean), percentage (restaurant tip), and describe properties of
a triangle (geometry). Of our 103 respondents who passed our
training task, 85 reported being able to complete at least one
of these tasks. 60 participants indicated that they would be

able to do at least two of these tasks. Overall, respondents
indicated a mean ability of 1.7 (SD = 1.1). When also
considering the indicated confidence of their report, responses
were approximately normal.

To identify the effect of self-reported mathematical ability
on our participants’ interpretations of our visualizations, we
conducted Pearson correlations. Self-reported mathematical
ability had a small positive correlation (0.12) with the par-
ticipants’ confidence in interpreting the visualizations. Sur-
prisingly, self-reported mathematical ability had a moderate
negative correlation (−0.30) with the number of correct re-
sponses. This negative correlation was present for both the
ability to correctly interpret an absolute (weak, −0.13) and
relative (nominal, −0.03) reading.

F. The Potential of Gradients for the AQI
The official color scheme for the AQI uses discrete color

bands. Our use of a more fine-grained color banding poten-
tially offers improved access to the data, through an additional
encoding, but at the cost of increased complexity in inter-
preting that data. For our sensor-based visualization—which
closely replicates the clean air scale visualization—we gave
respondents the option to indicate that they were unable to
interpret the visualization. This enabled us to collect data on
whether participants faced challenges with interpreting the
enhanced gradients. We use these responses to isolate the
effect of more finely graduated color scales on the participant’s
ability to correctly discern the underlying data. None of our
103 respondents indicated an inability to interpret the static
EPA-style sensor visualization, though 2% and 3% of trials
indicated some challenges when interpreting the interactive
and animated visualizations, respectively. Further, only 2%
(static), 2% (interactive), and 3% (animated), of trials indicated
a lack of confidence in the associated answers. Only in the
interactive trials were these answers actually incorrect. Thus,
respondents are capable of interpreting data represented using
more granular color scales than used by the US EPA.

G. User Preferences
Our respondents were given the opportunity to identify

their most and least preferred visualization representation. For
brevity, we presented only the type of visualization, not the
level of interactivity. Nearly 40% of respondents indicated
that the map-based visualizations were the least preferred.
As the map-based visualizations elicited the most incorrect
responses, the trouble experienced by participants could be
expected. However, while the sensor visualization elicited the
most frequently correct responses, respondents narrowly indi-
cated that they most preferred the time-based visualizations
(35%). Overall, there was no clear leader with map-based
visualizations coming a close second (34%) and time-based
closely following (31%).

VII. DISCUSSION

A. Balancing AQI Judgments with Understanding Uncertainty
We found that participants more accurately interpreted the

AQI when using static visualizations, but they were better at
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comparing the uncertainty of data from two sensors when us-
ing interactive visualizations. Notably, participants were 33%
more inaccurate at interpreting the AQI when using the interac-
tive visualizations compared to static. This suggests there may
be a trade-off between interpreting the AQI and understanding
the uncertainty associated with the underlying data. We specu-
late that this effect may be due to participants overly focusing
on outliers—or interesting and specific aspects—in the data,
rather than the overall probability distribution, and so, may
impact the overall assessment. Alternatively, respondents may
have overly focused on aspects that support their preexisting
biases; particularly in contentious subject areas such as air
quality and public health data.

Participants were more confident using the map-based visu-
alization than the other types of visual contexts. Participants
are likely familiar with map-based data representations as
they regularly encounter similar visualizations through weather
reports which increasingly include air-quality updates, such as
pollen counts [20]. For our time-based visualizations, however,
the additional context of seasonal fluctuations in PM2.5 in
the visualizations resulted in the least confident answers. The
radial plot was most likely novel for the participants. In par-
ticular, our use of longer bars for lower uncertainty may have
been unexpected, and may have lowered participants’ reported
confidence rating. At the same time, the animated sensor
visualization had qualitatively distinct confidence judgements,
but these were averaged out in our analysis. These varying
uncertainty encodings may be interacting with visual context
and support for interactivity to reveal a much more complex
impact on user confidence. Future work should investigate
interaction effects of levels of interactivity and visual context
and their impact on confidence in one’s own judgments.

Surprisingly, we found that self-reported mathematical abil-
ity negatively correlated with correct responses. This raises
questions about the use of novelty in scientific communica-
tions. While our study had a clear air quality theme, un-
expected presentation types may have negatively influenced
perception. This may suggest that more basic and famil-
iar presentation types offer a more effective communication
medium for reporting absolute values to visualization users.
However, our results also highlight that animation offers an
important design dimension for facilitating interpretation of
uncertainty. Notably, this contrasts with the interactive plots
where designers may surrender some control of this dimension
to the user. The ability to direct the viewer’s sequential
and cumulative attention may be important for understanding
uncertainty, but interactive control may risk fixation on specific
data points rather than aggregated probabilities.

B. Interpreting AQI Colors

Unexpectedly, participants were significantly less accurate
when interpreting AQI values with interactive visualizations
compared to the other two interaction levels. When looking
more closely at the results for map-based, time-based, and
sensor-only interactive plots, map-based interactive visual-
izations had the greatest gap between incorrect and correct

answers for interpreting AQI values. One possible explana-
tion for this is related to the limitation of Kriging. After
using the spatial interpolation technique, air quality data at
a specific location is sometimes hidden if neighboring data
is very different. Consequently, the AQI interpretation for a
given location might not accurately reflect the actual PM2.5

concentration visible on the map-based visualization. In our
study, we asked about the AQI color at a sensor location that
could have appeared green, but instead, appeared yellow. We
used FRM monitor data for AQI coloring, which resulted in a
limited number of data points. This spatial sparsity may have
resulted in the specific sensor location’s PM2.5 data being
concealed after applying Kriging. Improving the granularity
of this technique or exploring alternative spatial interpolation
methods could potentially address this issue. Further investiga-
tion into these factors would be valuable to better understand
the high number of incorrect responses associated with this
visualization type.

C. Participant Demographics

While our anticipated effect size was small, we chose to
use a similar size participant pool as with other crowdsourced
visualization studies (e.g. [25]). Despite this constraint, we
were still able to detect relatively small differences in our
data. However, the size of our participant pool and Amazon
Mechanical Turk pose limitations for our study demographics.
Notably, our participant pool was mostly college-educated. For
the purpose of studying scientific communication to the public,
future work should investigate whether our findings hold for
people with other education levels and gender identity. To give
context for our sample, only about 1/3 of the US population
has at least a college degree [44]. Also, our participant
pool skewed male. Further, it did not include anyone who
identified as non-binary. Future work should examine whether
our findings hold for a more diverse population.

VIII. CONCLUSION

We presented a set of air quality data representations that
vary in their support for interactivity and context to make
sense of uncertainty using visualization techniques. We used
these to explore how well they supported accurate air qual-
ity judgments, comparing certainty across two sensor data
streams, and facilitating confidence in one’s own judgment. We
found by supporting interactivity with sensor data uncertainty,
participants were more accurate when comparing the certainty
of two sensor data streams than when using static or animated
visualizations, but they were also the less accurate at interpret-
ing the AQI when using the interactive versions. While static
visualization supported more accurate AQI interpretations, we
found that animated versions did not differ markedly from
static in supporting AQI interpretations. Our work shows that
when communicating uncertainty to the public, care must be
taken to balance support for understanding uncertainty with
helping users make decisions in the context of that uncertainty.
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