
 Scopist: Building a Skill Ladder into Crowd Transcription

Jeffrey P. Bigham, Kristin Williams, Nila Banerjee, and John Zimmerman
Human-Computer Interaction Institute

Carnegie Mellon University

{jbigham, kmwillia, johnz}@cs.cmu.edu, {nilanjab}@andrew.cmu.edu

ABSTRACT
Audio transcription is an important task for making content
accessible to people who are deaf or hard of hearing. Much of the
transcription work is increasingly done by crowd workers, people
online who pick up the work as it becomes available often in
small bits at a time. Whereas work typically provides a ladder for
skill development – a series of opportunities to acquire new skills
that lead to advancement – crowd transcription work generally
does not. To demonstrate how crowd work might create a skill
ladder, we created Scopist, a JavaScript application for learning
an efficient text-entry method known as stenotype while doing
audio transcription tasks. Scopist facilitates on-the-job learning to
prepare crowd workers for remote, real-time captioning by
supporting both touch-typing and chording. Real-time captioning
is a difficult skill to master but is important for making live events
accessible. We conducted 3 crowd studies of Scopist focusing on
Scopist’s performance and support for learning. We show that
Scopist can distinguish touch-typing from stenotyping with 94%
accuracy. Our research demonstrates a new way for workers on
crowd platforms to align their work and skill development with
the accessibility domain while they work.

CCS Concepts
• Human-centered computing → Empirical studies in accessibility;
Accessibility design and evaluation methods;

Keywords
Crowdsourcing; text-entry; crowd work; stenography; worker
training; novice to expert transition

1. INTRODUCTION
For many people, work offers more than just an opportunity to
earn money. It often provides other benefits such as social
interaction, the opportunity to develop new skills leading to
advancement, or even the chance to realize a personal passion.
The same cannot be said for crowd work. Crowdwork typically
places workers in front of a computer—one of the best devices for
personalized learning—yet, crowdwork platforms have not

invested in interfaces or systems that help workers advance their
skills or realize other value through their work. While crowdwork
has recently shown promise for supporting web accessibility [25],
it currently depends on a labor ecosystem that neglects skill
development and other valuable aspects of work.

Today, most crowdwork consists of low-paying, unskilled
microtasks that result from decomposing complex jobs into
subtasks to be worked on incrementally. Microtasks are typically
easy for a person to do, but difficult for a computer [26]. One
common example is audio transcription; the result of
decomposing an audio file, like a recording or video of a speech,
into a collection of short utterances that each get posted as a HIT
(Human Intelligence Task) online. A recent survey reported audio
transcription, a vital task in making audio content accessible, as
the second most popular task on Amazon Mechanical Turk,
comprising 26% of all microtasks [30]. Workers typically earn
$0.01-0.02 USD per sentence they transcribe [28].

Yet unlike asynchronous audio transcription, real-time audio
transcription is a highly valued and specialized skill that pays
well; up to $300 per hour. Transcribers that work at the pace of
human speech are needed to create written records of court
proceedings (court reporters) and to close captioning live
television, such as news, sports, and political speeches [12].
However, touch-typing skills are not sufficient for real-time
captioning as it typically takes at least twice as long as the audio
playback time (compare average speaking rates of 200 WPM [37]
with good typing rates of 90 WPM [7]). In contrast, real-time
transcription uses a chording method for text-entry called
stenotype: a technique depressing several keys simultaneously to
input whole words at a time. Using stenotype, well trained
stenographers can achieve entry rates between 200-300 WPM,
closing the gap between transcription time and audio time [29].

We investigate how crowdlabor platforms could support workers
in learning a valuable new skill while they work. As a proof-of-
concept of a skill ladder for crowdwork, we developed Scopist.
Using Scopist, crowdworkers learn one new chord during each
microtask. Scopist provides prompts for chords relevant to the
microtask and accepts both touch-typing and stenotyping as valid
inputs. This approach allows workers to gradually incorporate
new chords into transcription without abandoning their familiar
work practice.

We performed three formative evaluations of Scopist with crowd
workers to demonstrate our approach. The first examines the
ability of Scopist to distinguish between chording and touch-
typing text-entry. The second and third examine whether
crowdworkers can effectively incorporate a new chord into
transcription microtasks. We found that Scopist could distinguish

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions
from Permissions@acm.org.
W4A 2017, April 02-04, 2017, Perth, Western Australia, Australia
© 2017 ACM. ISBN 978-1-4503-4900-0/17/04 $15.00
DOI: http://dx.doi.org/10.1145/3058555.3058562

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3058555.3058562

touch-typing from stenotype 94% of the time; a number that
would likely improve with a more advanced language model. In
our second and third studies, we found that using a new chord
without interface support slowed workers. We then used these
findings to design a new user interface which could support
workers in learning the hand postures and aural mapping of
stenotype.

Our work contributes a proof-of-concept application
demonstrating how to extend crowdlabor platforms to support
workers in gaining new skills supportive of accessibility. Further,
we extend prior research reframing crowdlabor platforms as sites
for redesigning work, and reflect on other opportunities for
crowdlabor platforms to provide value to their workers.

2. RELATED WORK
Human-computer interaction (HCI) has radically reshaped
crowdsourcing platforms. What began as a way for scientists to
quickly accomplish large tasks (e.g., protein folding or topological
features of Mars) has become a living lab for social science
research [2]. HCI has transformed how crowdsourcing platforms
work by employing them in many stages of technology’s design
and build process before committing to the designs in commercial
systems. This includes rapidly prototyping novel interaction
techniques [3], testing user interfaces [20], and investigating how
user goals and motivations can be used to solve difficult
computing problems [26]. Researchers have turned crowdsourcing
platforms into places for work, teamwork, real-time work, and
even real-time teamwork [26]. Our work extends this previous
research by recasting crowdlabor platforms as a site for designing
crowdwork to provide value to workers beyond pay. We
synthesize the related literature below on crowdlabor and
stenography to inform our research.

2.1 On-the-job Learning for Real-time
Captioning
Recently, researchers began examining how to design microtasks
to support crowdworker learning. Related studies look at how
workers can learn from examples [11], structure self and peer
critique [40], use interactive tutorials [10], and treat the microtask
as an internship [34]. However, these cases select the skills to be
learned based on researcher interest, and they do not show how
learning produces immediate or lasting value for the crowd
worker, or even allow crowdworkers to make more effective use
of the platform.
A few studies have used crowdsourcing to examine the platform
itself to test input methods. These include researching Fitts Law
[4, 18], bubble cursors [23], and even adaptive menus or
interfaces [18, 23]. Yet again, these studies look at input
techniques of interest to the researcher and do not look at the
platform’s support for skill development as we do here.

2.2 Worker Motivations
As both developer and requester, designers of crowdsourced
captioning technologies risk cementing inequalities into the
crowdlabor platform by not making sufficient functionality and
information available to workers to make reasonable decisions
about what skills would be most profitable to acquire [16]. To
mitigate this risk, researchers began investigating the exchange
model of crowdlabor platforms. Game theory has been proposed
as a way to drive design decisions so that incentive properties of
the platform are explicitly considered [19]. Strategies to align
incentives so that they are intrinsic to the task include
entertainment, altruism, and sharing information [26]. Yet, these

techniques do not work for certain kinds of tasks in which demand
outstrips supply [21], or when the tasks are inherently tedious and
benefits accrue only to the requester [18]. That is, some tasks are
susceptible to persistent asymmetries in exchange, and incentives
for cooperative gain may not be intrinsic to the task. For example,
a prior study found that novice audio captioners could collectively
outperform professional real-time captioning speeds [25], but only
the requester benefited from this task design. Similarly, Netflix
depended on the altruism of volunteers from the Amara platform
to bring their films in compliance with the American with
Disabilities Act [36, 38]. Using crowdsourcing, requesters gain
real-time captions at a fraction of the cost, but crowdworkers and
volunteers simply gained more microtasks to complete.
Developing platform support for advancing skills in a domain like
real-time captioning could connect workers to desirable, or at
least, valuable work. Researchers report that crowdworkers
engage crowdlabor platforms for many reasons beyond pay: to
have greater self-direction and control over their schedules, to
mentally challenge themselves, to socialize, and to work from
home [5, 24, 41]. Similarly, real-time captionists identify these
reasons as perks of their work [12]. Further, they describe the
intrinsic value that comes from participating in certain
professional communities, like being part of the legal profession,
or providing needed services to others [12]. We created Scopist to
support crowdworkers in preparing for real-time captioning to
begin aligning their skill development with the professional
communities they wish to be a part of.

2.3 Novice to Expert Transition
Any work domain must support novices entering the field, and
stenography can serve as an instructive case for designing
platforms to support workers developing expertise. Low/unskilled
tasks may be the best entry level for individuals who have never
worked in the domain before or who come from backgrounds that
did not offer an opportunity to learn the demanded set of skills
[24]. The stenography profession balances creating entry-level
jobs with retaining claims to a wage supportive of seasoned
workers [12, 33]. To support professional advancement, the
profession evolved to provide jobs for a range of skill levels from
offline audio transcription to real-time captioning of the nightly
news [12]. We focus on stenography here because the profession
supports such transitions between novice and expert captioning.
Expert stenographers develop complex associations between
rhythm and motor planning while freeing up visual attention
during text-entry. Chording provides efficiency gains over touch-
typing by reducing the amount of time to search and reach
intended keys [1, 15]. These gains are not direct since touch-
typing does this at a sophisticated level: one finger is often down
even as the next initializes the second keypress trajectory [1]. This
touch-typing pattern motivated early designs of the qwerty layout
[1, 15] and has led stenotypists to invest in specially designed
keyboards–known as n-key roll-over keyboards–to address these
limitations of some keyboard matrices. Typists’ highly integrated
typing patterns introduce key press detection challenges to a user
interface supporting both touch-typing and stenotype, and so
require careful design.

2.4 Stenotype and Text-Entry Studies
Shorthand languages, such as stenotype, evolved over several
centuries and admit many spelling quirks. This introduces several
challenges to technological support. Stenotype enables the typist
to chunk the speech stream into candidate words using chorded
text entry [14] and keeps pace with spoken language by
supporting multiple key presses—or chords—to encode phonetic

syllables or abbreviated words and phrases [27]. Stenotype
descends from a long history of shorthand methods going back as
early as Mesopotamia [9], and as a result, adopts abbreviations
which join consonants phonetically, drop vowels, and admit many
homophones [9, 27]. Thus, stenotype is not completely defined,
and typists are encouraged to use their own abbreviations [27].
This introduces problems such as identifying word boundaries and
disambiguating homophones when translating stenotype to
English [1, 27, 32]. It also places a significant burden on the
learner to acquire the skill [1, 29].

Word frequency impacts the ability of the learner to acquire new
chords. Shorthand for more frequent words are easier to learn [31]
and even impacts touch-screen based shorthand [39]. An early
system, called Rapid-type took advantage of frequency effects to
modify a standard typewriter to facilitate learning chords for the
most frequent words of the English language with positive results
[29]. Rapid-type did not investigate this ability within the context
of audio transcription nor generalization to crowd settings. We
follow Rapid-type in supporting the most frequently used
vocabulary, but our work differs by investigating the learning
process on an at-home computer mediated by a crowdlabor
platform.

3. THE DESIGN OF SCOPIST
The goal of Scopist is to teach workers stenotype while they
perform an audio transcription task. Scopist’s name is
inspired by the professionals who historically translated the
stenographer’s shorthand to English. We created Scopist to
facilitate learning stenotype rapidly enough to almost immediately
benefit from the effort. To support this approach, Scopist accepts
both chorded and touchtyping input. However, because stenotype
is not a completely defined language, Scopist must first be able to
disambiguate word boundaries and homophones arising in the
resulting text-entry. In this section, we describe the Scopist
algorithm for doing so.

3.1 Scopist’s Algorithm
Scopist is an in-browser JavaScript application running on the
Express framework for Node.js. So that Scopist could be easily
incorporated into a typical transcription HIT, it is designed to
intercept the web browser’s key up and key down events as part of
an Amazon Mechanical Turk webform. When the crowdworker
types, Scopist saves keyboard events and their properties for the
algorithm to use when translating pressed keys into English.
Scopist tracks the entire set of key events because translation
depends on the keys’ sequence. We describe below how Scopist
processes these keys to distinguish touch-typing from stenotype.
Suppose the crowdworker enters a set of key events, K=k1, k2,
k3,…ki where i is the number of key events. Scopist processes K to
determine which keys are from touch-typing and which keys are
from stenotyping using properties of the events, p(ki), like their
char, keycode, etc. For any key event, ki, its’ properties could
indicate it is a key down or key up, so that p(ki) = d1, d2, u1, u2, d3,
u3, d4, u4…dn, um where d are down events and u are up events.
Scopist uses these properties (up and down) and more to
determine whether keys that are down at the same time are a
chord (e.g. WO for would, Table 1) or qwerty (d1 is a shift key
indicating that d2 should be capitalized as in ‘Scopist’). The
number of up events is always less than or equal to the number of
down events, m ≤ n and m+n=i, where i is the number of key
events, and n is the number of keys pressed. Scopist uses this
feature to make inferences using both forward and backward
passes through the keyset.

Scopist processes K in several passes and assigns each key, f(ki),
to qwerty, stenotype, or unknown based off what is learned from
the event properties at that stage of processing. In the first pass
processing, all keys that are neither a member of the stenotype
keyset, S, or the English alphabet and punctuation keys for the
qwerty keyset, Q, are removed. Most of these keys are modifier
keys, such as ctrl, alt, tab, etc. (see lines 5-6).
A second pass goes through the key event sequence and marks
keys that are known to be qwerty according to properties of touch-
typing (see lines 9-18). These include:

• if the shift key is pressed, then the key is qwerty
• if the key is not included among the keys used in steno
• if the key follows a key marked as qwerty
• if the key marks a word boundary, Bw (e.g., space or

punctuation mark)

Algorithm 1: Distinguishing QWERTY from Stenotype

1: procedure PROCESSKEYEVENTS(K)
2: input: array K of n key events
3: hhighest ← □
4: for ki in K do
5: if p(ki) not Q and not S then
6: remove ki from K
7: for ki in K do
8: if p(ki) is type d then
9: if p(ki) is a shift key then
10: qwerty sequence = true
11: f(ki) ← qwerty
12: else if p(ki) is Bw or not S then
13: f(ki) ← qwerty
14: if p(ki) is not Bw then
15: qwerty sequence = false
16: else if qwerty sequence then
17: f(ki) ← qwerty
18: if p(ki) is not Bw then
19: qwerty sequence = false
20: else
21: f(ki) ← unknown
22: add ki to C
23: else if p(ki) is type u then
24: if |C| > minimum chord length then
25: for cj in C do
26: p(cj) ← ki

27: p(kj) ← C
28: C ← {}
25: for ki in K do
26: if ki is type d then
27: if ki is a Bw then
28: ki ← qwerty
29: qwerty sequence = true
29: else if qwerty sequence then
30: ki ← qwerty
31: qwerty sequence = false
32: for ki in K do
33: if p(kj) ← C and |C| > 0 then
34: for cj in C do
35: if f(ki) ← qwerty then
36: for cl in C do

37: p(cl) ← remove chord assignment
38: H ← CREATEHYPOTHESES(K, 0, “”, [], “”)
39: for hi in H do
40: score ← H(hi | D)
41: if score > scorebest
42: scorebest ← score

As the second pass proceeds, keys that are observed to be down
together without an intervening key up event are added to a
sequence of possible steno keys, C (line 18). When a key up event
is observed, that set, C, is considered as a possible steno chord
(lines 23-28).
A third pass (a backward pass) then marks as qwerty any key
preceding a known qwerty key (lines 25-31). For example, space
keys are not used in stenotype and instead, are automatically
inserted after a chord. So we use this feature to identify a keyset
as qwerty when it occurs before a space. A fourth forward pass
marks any potential chords as qwerty if any of the preceding
passes marked any key in the possible chord as qwerty (32-37).
A final, recursive process generates a set of key translations that
are possible candidates for the key sequence. This process
considers a new translation at each key, ki, where it remains
unknown whether that key is qwerty or steno. In practice, the key
sequences to which this applies tend to be short as it is difficult
when typing qwerty to accidentally have more than 2 to 3 keys
down at the same time (see line 38 and Algorithm 2). For keys
that are qwerty, this process adds the key’s qwerty letter, li, to a
candidate word, wq, and appends it to the current hypothesis, hc
(see lines 6-9 of Algorithm 2). For keys that have been marked as
a possible chord, the keys are given both a stenotype translation,
s(∙), and a qwerty translation, q(∙), (see lines 11-21 of Algorithm
2; and the next section for a description of the stenotype
dictionary used).

Algorithm 2: Create Best Guesses for Key Sequence

1: procedure CREATEHYPOTHESES(K, i, hc, Wq, wq)
2: input: K of n key events, index i, current hypothesis
hc,, the set of keys Wq making up a possible chord, the
possible word wq

3: for ki in K do
4: if ki is type d
5: if ki is Bw then
6: add li to wq

7: if |wq| ≤ 1 then
8: remove spaces from hc

9: add wq to hc

10: reset wq, Wq
11: else if p(ki) ← C
12: if wq is not “”
13: add ki to Wq

14: add li to wq

15: else
16: q ← q(C)
17: h1 ← CreateHypotheses(K, i, hc + q, Wq, “”)
18: s ← s(C)
19: if s
20: h2 ← CreateHypotheses(K, i, hc + s, Wq, “”)
21: H ← h1 and h2

22: return H
23: else if f(ki) ← unknown or qwerty

24: add ki to Wq

25: add li to wq
26: add wq to hc
27: return hc

Each of the possible word sequences is then evaluated by a simple
language model (lines 40-44 of Algorithm 1). We score each
hypothesis, hi, by counting how many of the words, wi, in that
hypothesis are English words. That is, given a dictionary, g(∙), we
add 1 for every word, wi, found in the dictionary, and 0 otherwise.
The total count is then divided by the total number of words.

The scoring system distinguishes between stenotype and qwerty
by exploiting the fact that the chorded qwerty keys are not often
English words; either by themselves, or when combined with the
subsequently pressed keys. The algorithm uses H(hi) to
distinguish these cases because the boundary between chords and
qwerty keys is not marked in the keyset since the spacebar is not
used in stenotype to separate words.

4. EVALUATION OF SCOPIST
To support crowdworkers in developing their transcription skills,
Scopist needs to facilitate audio transcription when a worker starts
out using very few chords as well as when they develop further
proficiency using several chords. To assess whether Scopist could
offer this, we examined whether it supports 3 needs: skill
transition, chord learning, and speed gains. In this section, we first
describe our evaluation of Scopist’s accuracy in distinguishing
touch-typing from stenotype, as would be needed to support skill
transition, before reporting on our study of Scopist’s support for
crowdworkers’ learning and speed gains.

4.1 Study 1: Support for Mixed Skill Sets
Crowdworkers serious about developing their transcription skills
will want to challenge themselves to learn more and incorporate
new chords into their repertoire. To support this transition, we
examined Scopist’s ability to process phrases with a mixture of
touch-typing and stenotyping.

4.1.1 Method and Analysis
We asked crowdworkers to use a mixture of touch-typing and
stenotyping in a text-entry task. Then, we evaluated how well
Scopist processed the entered keys by testing it against an English
language dictionary. We randomly selected 10-word phrases from
a corpus of transcribed TED talks to create phrases for the text-
entry task that approximated spoken language [42]. In each
phrase, we replaced between 0 and 4 of the words with the
equivalent stenotype chord to simulate the number of chords we
would expect crowdworkers with varying skill levels—ranging
from novices to advanced-intermediate—would use. We only
substituted chords with 2 to 3 keys because they are most likely to
provide problems for Scopist’s algorithm.
We made the microtask as simple as we could to encourage
workers to type as quickly as possible so that we could test the
algorithm on typing patterns where more than one key is down at
a time (common in both moderately fast touch- typing and
stenotyping). Since we were examining Scopist’s algorithm—not
crowdworker learning—we asked crowdworkers to type the
requested key pattern from the 10 word phrase (Figure 1) using
the qwerty keys for chords instead of the stenotype characters. We

required workers to start again if they made a mistake to ensure
the collected keysets were as accurate as possible.
We recruited 150 crowdworkers from Amazon Mechanical Turk.
This resulted in 150 keysets. We then processed each keyset
through Scopist’s algorithm to see how well it was able to
reconstruct the correct phrase from the keys. To determine how
accurately Scopist processed the keysets, we divided the total
number of phrases Scopist processed correctly by the total number
of phrases. This number estimates what percentage of mixed
typing phrases from the TED corpus Scopist would be able to
support.

Figure 1. The webpage shown above collected keysets from
crowdworkers containing a mixture of touch-typing and
stenotype. The example phrase ‘so we need energy miracles
now drni use op’ shows how we substituted in the qwerty keys
corresponding to the needed stenotype chords to collect the
test keysets from crowdworkers. In this example, a worker
would need to chord the key combinations d-r-n and o-p.

4.1.2 Results
Scopist was able to process 94.0% of the keysets accurately. This
means that when Scopist processed the 150 collected keysets, 9 of
the resulting phrases contained one or more errors.

4.2 Studies 2 & 3: The Impact of Learning to
Chord on Transcription Tasks
Scopist distinguished touch-typing from stenotype with 94%
accuracy. Thus, Scopist shows promise for supporting text-entry
consisting of both stenotype and touch-typing. To further evaluate
whether Scopist could support crowdworkers’ learning with
immediate benefit, we examined whether stenotype helped
crowdworkers complete transcription tasks faster.

4.2.1 Studies 2 & 3 Procedure
We designed an Amazon Mechanical Turk HIT that asked
workers to transcribe 30 short excerpts from speech described
below. The HIT consisted of two conditions—a baseline,

transcription task and a mixed, stenotype task—to allow us to
assess and characterize how introducing a new chord into the
transcription task impacted performance. Each condition consisted
in a task block of 15 transcription microtasks. The order of
conditions was counterbalanced across participants, and
participants were randomly assigned to an order. We conducted
separate studies for a text transcription version in which workers
simply typed the sequence shown to them, and an audio
transcription version in which workers listened to spoken phrase
and transcribed it.
Each transcription task consisted in typing a phrase with the target
vocabulary we wanted workers to learn to chord. We chose the
target chord ‘something’ (S–G) because it is a commonly used
word, would test predicted time gains from learning (the time to
type 10 keys—including the space bar—would reduce to chording
2), and would prove a test case for the Scopist algorithm (the
qwerty equivalent keys, “A” and “L”, frequently appear together
in English and are often typed rapidly in succession since they lie
on the home row and require opposite hands to type).
Transcription tasks were selected from a corpus of TED talks used
in a prior study and were subdivided as required to train an
automatic speech recognition (ASR) model [42]. We used this
corpus because it provided transcription text aligned with the
audio files and consisted of common vocabulary characteristic of
spoken English. Focusing on commonly spoken English allowed
us to test microtasks that could introduce chords for the most
frequently used vocabulary likely to be encountered in audio
transcription tasks. We wrote a Python script using the output of
the ASR model to identify 60 phrases which contained the
target vocabulary, ‘something’. We then chose two subsets of 15
phrases for each condition consisting of 6 speakers (both male
and female), and different stages of their speech (the
beginning, middle, and end). These phrases were also examined
for occurrence of the target word appearing in the beginning,
middle, and end.
To evaluate the representativeness of our files’ phrase sets for any
typical transcription task, we analyzed them using the
AnalysePhrases Program from McKenzie and Soukoreff [33]. We
did this to ensure that our assessment would generalize to other
transcription tasks that did not use our specific speech corpus and
ASR model. The minimum phrase length was 85 characters and
the maximum 264, with an average phrase length of 160.8
characters (the set recommended by MacKenzie and Soukoreff
ranges from 52-586, averaging 195.9 characters). The average
word length was 4.31 characters and the correlation with English
0.95 (the Mackenzie and Soukoreff phrase sets average 4.39 and
correlate 0.96 with English). We divided the phrases evenly
between the two conditions, and the conditions did not differ
substantially on the criteria detailed above.

4.2.2 Studies 2 & 3 Participants
We recruited 20 participants through Amazon Mechanical Turk
for our text transcription task and 30 participants for our audio
transcription task. Participants were compensated $3.00 for
participating in the non-audio version of our study and $6.00 for
participating in the audio version of our study. This worked out to
approximately $10/hour. Since our evaluations depended on
crowdworker performance across all tasks, participants were only
compensated for completing all of the tasks.

4.2.3 Studies 2 & 3 Apparatus
We created a minimal user interface that allowed us to isolate the
inclusion of a new chord from other potential confounds (Figure

2). The interface presented instructions for workers to type what
they either saw or heard (depending on whether they were
completing text transcription or audio transcription), either using
the chord “al” for something, or typing all words using touch-
typing. Workers did 15 transcriptions in sequence either using or
not using the chord. While there are many ways the microtasks
could be ordered and presented, we focused on the simplest
case—presenting microtasks in a row—to evaluate how well
workers could learn a new chord in this most basic scenario. For
each crowdworker, we randomly shuffled the phrase sets in each
condition using the Fisher-Yates shuffling algorithm so that
each crowdworker progressed through a different phrase ordering
and the order of phrases would not impact our performance
measures. This allowed us to control for ordering effects.

Figure 2: Figure 2 shows the task presented to workers in our
second study. Workers received either an audio or text
prompt, and were asked to transcribe it. Workers were asked
to type 15 phrases in sequence using the prompted chord, and
15 in sequence using touch-typing only.

4.2.4 Studies 2 & 3 Design
We used a within subjects design with task condition (using the
chord, or not using) as the independent variable. Dependent
variables included time per task, number of times the backspace
key was used, and keys pressed per task.

4.2.5 Studies 2 & 3 Analysis and Predictions
To analyze crowdworkers’ performance, we used two-tailed
paired t-tests to determine whether crowdworkers took less time
per task, used a lesser number of keys, or used backspace less. For
each of the dependent measures, we removed data points that
were more than three standard deviations from the mean for that
task.

4.2.6 Studies 2 Results
Overall, our hypothesis that Scopist would immediately benefit
workers by supporting them in completing their transcription tasks
can be rejected. Crowdworkers generally completed tasks faster,
corrected errors less often, and used a lesser amount of keys
during the baseline condition. We review these results below.
Time per task. Crowdworkers completed their tasks faster in the
baseline condition (M=30.0s, SD=8.1, Range=15.7s-44.1s) than
they did in the chording condition (M=36.8s, SD=9.7s,

Range=20.7s-51s). A two-tailed, paired t-test revealed this
difference to be significant: t19=2.34, p=0.02.
Backspace Usage. Crowdworkers used the backspace key less in
the baseline condition (M=4.9, SD=2.6, Range=0.5-11.5) than
they did in the chording condition (M=7.0, SD=3.0, Range=1.5-
12.2). A two-tailed, paired t-test revealed this difference to be
significant: t19=3.71, p<0.025.
Number of Keys Used. Crowdworkers used less keys in the
baseline condition (M=167.4, SD=6.1, Range=158-181.6) than
they did in the chording condition (M=175.2, SD=10.9,
Range=159.4-200.4). A two-tailed, paired t-test revealed this
difference to be significant: t19=3.54, p<0.025.
Overall, results indicated that using the chord resulted in slightly
worse performance than touch-typing only. This is surprising
given that the chording condition requires fewer key presses, and
so, should allow workers to transcribe faster. As we will discuss
in Section 6, future work should consider how to lower this cost
even more and investigate via longitudinal studies when and
whether workers would eventually benefit from knowing and
using a few stenotype chords.

4.2.7 Study 3 Results
When we examined how well workers did when using Scopist to
transcribe an audio file, we found our earlier results further
confirmed for audio transcription. Our results suggest that the
addition of audio into the task required much more effort from
crowdworkers. Crowdworkers generally completed tasks faster,
corrected errors less often, and used a lesser amount of keys
during the baseline condition for audio transcription. We review
these results below.
Time per task. Crowdworkers completed their tasks faster in the
baseline condition (M=53.4s, SD=16.1s, Range=26.1-92.2) than
they did in the chording condition (M=80.0s, SD=26.3s,
Range=44.4-151.4). A two-tailed, paired t-test revealed this
difference to be significant: t29=9.27, p<0.025.
Backspace Usage. Crowdworkers used the backspace key less in
the baseline condition (M=9.2, SD=5.3, Range=1.7-25.7) than
they did in the chording condition (M=17.8, SD=7.3, Range=4.1-
33.0). A two-tailed, paired t-test revealed this difference to be
significant: t29=7.58, p<0.025.
Number of Keys Used. Crowdworkers used less keys in the
baseline condition (M=177.4, SD=11.5, Range=159.5-207.3) than
they did in the chording condition (M=197.3, SD=18.2,
Range=161.7-231.7). A two-tailed, paired t-test revealed this
difference to be significant: t29=6.76, p<0.025.

5. UI Design for Learning Stenotype
Although the Scopist algorithm supports both touch-typing and
stenotype to help workers transition to real-time captioning skills,
it provides only part of the support workers would need for
learning on-the-job. Workers also need guidance on how to use
stenotype, such as finger placement to enter the desired word and
mapping the sounds of aural speech to chords. To help guide
future designs, we began by looking at best practices for learning
keyboard use. Cockburn, et al. surveyed design approaches for
learning keyboard shortcuts and offered four techniques for
improving keyboard performance [10]:

1. Enable visibility of keyboard shortcuts without requiring a
switch in input modality. Designs often require mousing to

Figure 3. The user interface for Scopist highlights stenotype keys on a typical qwerty layout to teach a crowdworker the
appropriate hand posture for chording. The highlighted keys are for the prompted word underlined at the top of the page, and a
reminder of the link between the chord keys and the sounds of the prompted word are provided in parentheses.

switch from touch-typing to reveal shortcuts, and this
significantly limits performance gains.

2. Support physical rehearsal such that a novice attempts
to perform the exact same actions as an expert to
develop muscle memory and automaticity.

3. Leverage spatial memory by providing visual cues that
reduce visual search time and support intermediate skill
level. Too many designs degrade performance, losing
time to visual search.

4. Ensure shortcuts are stable (instead of rapidly changing
through adaptation) so that they may be rapidly learned.

We incorporate these 4 techniques in our design of Scopist by
leveraging crowdworkers’ familiarity with the qwerty keyboard.
Specifically, we focused on guiding the worker through the
mapping principles for using the QWERTY keyboard to learn
stenotype. Before describing how we did this, we provide some
background on stenotype.
Stenotype keyboards have 22 keys; many fewer than a QWERTY
keyboard. Rather than provide a one-to-one mapping for each
letter of a word, the stenotype keyboard supports input of the
salient sounds in a word, and so, truncates the number of key
presses. Stenographers type chords to phonically represent a
word: all of the relevant letters are pressed at the same time,
making each word a single event instead of one event per letter.
Because of this, stenographers gain more speed from long words.
For example, the stenotypist would transcribe the word
‘something’ by pressing down ‘S’-‘G’ at the same time, as a
chord.

Sam ple English-Steno Mapping

English Stenotype
would WO

something S-G
other OER
where W*R
there THR*

through THRU
considering KRG

Table 1. The table shows example mappings between English
words and their stenotype chords. The dash in the chord ‘S-G’
indicates that the S is on the left hand side of the keyboard
and the ‘G’ on the right hand (Figure 3).
To provide visual guidance on what keys should be pressed to
chord, we employed techniques 1 and 3 from Cockburn, et al. [8].
Since touch-typists are accustomed to focusing on the monitor in

front of them and not their finger positions, we provided an
onscreen depiction of a qwerty keyboard so that workers could
visually orient their hand posture to the positions required for
stenotype. We did this by modifying a CSS-drawn keyboard
to show which stenotype keys map onto the qwerty layout
and highlighted the target keys for the prompted chord with
a contrasting color (Figure 3). We labeled the onscreen
keyboard with the lettering used for a stenotype keyboard
rather than the lettering workers would be accustomed to
seeing on a qwerty keyboard to facilitate workers learning
the stenotype layout. For the highlighted keys, we provided
subscripts of the qwerty-equivalent letter to help workers
orient themselves to the new layout.
Our approach further employed techniques 2 and 4 from
Cockburn, et al. by keeping a stable mapping between the
physical layout and the stenotype keys. This allowed us to support
physical rehearsal by training novices on a stenotype vocabulary
used by experts, and further helped them learn how stenotype
phonetically represents aural speech (see Table 1). To do this,
Scopist employs the JSON dictionaries of the Open Steno Project
mapping stenochords to their English equivalents and adopting the
same stenotype-qwerty layout [35]. While expert stenographers do
use one key chords (like a -T for the word ‘the’), Scopist only
accepts chords with a minimum of two keys. Single keys are
primarily used as an advanced technique for stacking chords—
entering a sequence of chords to indicate one phrase verses
another—and is already supported by other systems (e.g., [35]).
We chose to not support stacking so that we can accept the touch-
typing of novices transitioning to stenotype without requiring
them to switch modes.

6. DISCUSSION
Scopist demonstrated how to extend the crowdlabor platform to
support varied levels of skill development for workers learning a
new skill while on-the-job. Learning to chord impeded
performance during transcription microtasks while workers were
experimenting with how to integrate chording into their touch-
typing skills. Based on our findings, we designed a new user
interface grounded in the literature on learning keyboard shortcuts
and connected to the online community of stenographers. We
discuss our findings in more detail below.

6.1 Skill Transition
Scopist’s algorithm focused on supporting single word entry and
left support for stacking chords to expert systems (‘stacking’ is
when a sequence of chords is quickly entered in succession and
the order of chords crucially distinguishes between one translation
over another). This allows Scopist to provide support for
transitioning from novice skill levels to adopting a wider

vocabulary range, but it also limits the algorithm’s support for the
upper ranges of skill level and disambiguating some cases. Scopist
had a high processing accuracy (94.0%), but it was unable to
disambiguate cases when a chord’s keys serve as the beginning
letters of an English word. For example, Scopist misprocessed one
keyset as “doing alas simple” instead of the correct string, “doing
something as simple”. Both strings are composed of English
words. It just so happens that ‘al’ are the qwerty keys for
‘something’, and so ‘al’ and ‘as’ get incorrectly combined
together. These remaining errors could likely be corrected with a
more sophisticated language model.

6.2 Chord Learning
Our results fit with related studies which find that attending to
learning a new skill in the crowdsourcing context imposes a cost
and can depend heavily on how the task is introduced in context.
This may be mitigated by experimenting with alternative task
orders and spacing, although would constitute its own area of
study. Prior research has found that the microtask order impacts
performance [6], spaced repetition impacts vocabulary acquisition
[13], and interleaving tasks of varied difficulty and kind similarly
shapes learning [22]. Changes to both the ASR model or the
Python script’s global search of the audio corpus could be used to
both generate and schedule a set of microtasks for more nuanced
support of learning.
We extended the microtasking platform to support microtasks
crowdworkers were already working on: audio transcription. Yet,
how skill development fits within crowdworkers’ work practices
and goals remains an open question. Our study confirms prior
findings from the workplace showing that when a performance
dip occurs while learning a new keyboard shortcut [10]. This may
be enough to dissuade workers from adopting it even though it is
more efficient. The greater longterm gains of learning a skill, like
chording, may incentivize adopting new skills where the task
category imposes its own significant inefficiencies. However, the
way this information is presented to workers may impact worker
performance and a skill’s perceived value. Surfacing information
about the predicted long-term gains of learning and making it
visible to the crowdworker may support better-informed choices
on whether the time and effort are worth investing or whether
predicted gains are relevant to their goals. Based on our findings,
we created a user interface that may better facilitate learning and
decrease learning costs. Future work should test whether this
interface is able to meet these goals.

6.3 Limitations and Future Work
6.3.1 Mapping Qwerty to Stenotype
Scopist offers a crowdworker opportunity to learn stenotype
without investing in a specialized keyboard. However, this limits
Scopist’s current support for developing advanced stenotype
skills. Some chords require key combinations that are
ergonomically difficult, if not impossible, on a qwerty keyboard.
A follow-up study to ours should examine how to generate and
schedule tasks for skill development and optimize chord learning
for the ergonomically feasible chords. This might be done by
developing an alternative set of steno chords. Although, this
would break with the community supported vocabulary (see the
Open Steno Project [35]). However, personalized vocabulary,
known as briefs, are common practice in the stenography
profession [12]. Secondly, we did not examine how well Scopist
facilitates crowdworkers developing a phonic representation of
steno chords. It is possible that using both the qwerty and
stenotype keyboard may hinder developing a steno- supported

phonetic model. A follow-up study to ours would need to assess
how well crowdworkers learn stenotype’s mapping of aural
speech to keys.

6.3.2 Career Trajectories
We introduced Scopist to support crowdworkers developing their
skills while on-the-job in preparation for work of greater
complexity and expertise. However, we have not observed
workers actually go through the transition from offline
transcription to real-time captioning. This is very much a
longitudinal question, as traditionally, learning stenography
requires 1-3 years. Future work would explore how and whether
that transition actually happens and what would be needed of the
crowdlabor platform to support it.
In the nearer term, we believe Scopist could be adapted to other
domains. What skills might workers acquire by doing other sorts
of common crowdsourcing tasks? A promising approach could be
to use audio files from a foreign language for developing foreign
language listening skills as a twist on the model of Duolingo [26].
Alternatively, platforms could recommend another skillset to
obtain a more complex job. For example, crowdworkers who
develop skills in audio captioning might also develop skills in
image transcription. Images are often tagged in order to provide
alternative descriptions for accessibility, and workers might be
trained to appreciate more of the context surrounding captioning
work (both audio and visual) to gradually become accessibility
professionals.
Another path that could be developed would be to support
workers in developing their skillsets to create their own emerging
job where they would like to work. For example, there is a
growing area of research on crowdsourcing creative tasks which
may be amenable to captioning films. Creativity tools like web-
based typography could support workers in using expressive
animation techniques like kinetic typography to begin captioning
verbal nuance [17, 38]. Crowdlabor platforms could be extended
to help connect audio captioners with filmmakers to create films
that are compliant with disability rights laws before hitting the
market and offer crowdworkers the opportunity to express
creativity in microtasks.

7. CONCLUSION
We presented Scopist to support crowd transcriptionists learning a
new skill while on-the-job as a proof-of-concept application.
Through Scopist we show that the crowdlabor platform can be
modified to facilitate skill development at varying levels of
expertise. We showed that Scopist is able to distinguish touch-
typing from stenotype with 94% accuracy. Further, Scopist
demonstrates how crowdworkers’ skill development can be made
central to task design so that the crowdlabor platform provides a
skill ladder for valuable careers like real-time captioning. Our
findings motivate research on supporting crowdworkers to
transition to more complex skills and connecting them with
valuable career paths.

8. ACKNOWLEDGEMENTS
The contents of this paper were funded by the National Science
Foundation and the National Institute on Disability, Independent
Living, and Rehabilitation Research. We thank the workers on
Amazon Mechanical Turk who participated in our studies.

9. REFERENCES
[1] Beddoes, M. and Hu, Z. 1994. A chord stenograph

keyboard: a possible solution to the learning problem in
stenography. IEEE Transcations on Systems, Man and

Cybernetics. 24, 7 (1994), 953–960.
[2] Benkler, Y. 2006. The Wealth of Networks: How Social

Production Transforms Markets and Freedom. Yale
University Press.

[3] Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R.C., Miller, R., Tatarowicz, A., White, B.,
White, S. and Yeh, T. 2010. VizWiz: Nearly Real-Time
Answers to Visual Questions. Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST’10) (2010), 333–342.

[4] Bigham, J.P., Wobbrock, J.O. and Lasecki, W.S. 2015.
Target Acquisition and the Crowd Actor. Human
Computation. 2, 2 (2015), 135–154.

[5] Brewer, R., Morris, M.R. and Piper, A.M. 2016. “Why
would anybody do this?”: Understanding Older Adults’
Motivations and Challenges in Crowd Work.
Proceedings of the 2016 SIGCHI Conference on Human
Factors in Computing Systems (CHI ’16) (2016), 2246–
2257.

[6] Cai, C.J., Iqbal, S.T. and Teevan, J. 2016. Chain
Reactions: The Impact of Order on Microtask Chains.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’16) (2016), 3143–
3154.

[7] Card, S.K., Moran, T.P. and Newel, A. 1980. The
Keystroke-Level Model for User Performace Time with
Interactive Systems. Communications of the ACM.

[8] Cockburn, A., Gutwin, C., Scarr, J. and Malacria, S.
2014. Supporting Novice to Expert Transitions in User
Interfaces. ACM Computing Surveys. 47, 2 (2014), 1–36.

[9] Daniels, P., Bright, W. and Editors 1996. The World’s
Writing Systems.

[10] Dontcheva, M., Morris, R.R., Brandt, J.R. and Gerber,
E.M. 2014. Combining crowdsourcing and learning to
improve engagement and performance. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI’14). (2014), 3379–3388.

[11] Doroudi, S., Kamar, E., Brunskill, E. and Horvitz, E.
2016. Toward a Learning Science for Complex
Crowdsourcing Tasks. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI’16) (2016), 2623–2634.

[12] Downey, G.J. 2008. Closed Captioning: Subtitling,
Stenography, and the Digital Convergence of Text with
Television. The Johns Hopkins University Press.

[13] Edge, D., Searle, E. and Chiu, K. 2011. MicroMandarin:
mobile language learning in context. Proceedings
SIGCHI Conference on Human Factors in Computing
Systems (CHI’11) (2011), 3169–3178.

[14] Galli, E.J. 1962. The Stenowriter A System for the
Lexical Processing of Stenotypy. IRE Transactions on
Electronic Computers. 11, 2 (1962), 187–199.

[15] Gopher, D. and Raij, D. 1988. Typing With a Two-Hand
Chord Keyboard: Will the QWERTY Become Obsolete?
IEEE Transactions on Systems, Man and Cybernetics.
18, 4 (1988), 601–609.

[16] Hanrahan, B. V., Willamowski, J.K., Swaminathan, S.
and Martin, D.B. 2015. TurkBench : Rendering the

Market for Turkers. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI’15) (2015), 0–3.

[17] HCID’s Kinetic Sentences: https://github.com/hcid-
snu/kinetic-sentence. Accessed: 2016-09-18.

[18] Horton, J. and Chilton, L. 2010. The Labor Economics of
Paid Crowdsourcing. Proceedings of the 11th ACM
Conference on Electronic Commerce. 1 (2010), 209–218.

[19] Jain, S. and Parkes, D.C. 2009. The role of game theory
in human computation systems. Proceedings of the ACM
SIGKDD Workshop on Human Computation - HCOMP
’09. (2009), 58.

[20] Kittur, A., Chi, E.H. and Suh, B. 2008. Crowdsourcing
User Studies with Mechanical Turk. Conference of the
SIGCHI Conference on Human Factors in Computing
(CHI’08) (2008), 453–456.

[21] Kittur, A., Nickerson, J., Bernstein, M., Gerber, E.,
Shaw, A., Zimmerman, J., Lease, M. and Horton, J.
2013. The Future of Crowd Work. Proceedings of the
ACM Conference on Computer Supported Collaborative
Work (CSCW’13) (2013), 1–17.

[22] Koedinger, K.R., Corbett, A.T. and Perfetti, C. 2012. The
Knowledge-Learning-Instruction Framework: Bridging
the Science-Practice Chasm to Enhance Robust Student
Learning. Cognitive Science. 36, 5 (2012), 757–798.

[23] Komarov, S., Reinecke, K. and Gajos, K.Z. 2013.
Crowdsourcing performance evaluations of user
interfaces. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’13) (2013),
207.

[24] Kuek, S.C., Paradi-Guilford, C., Fayomi, T., Imaizumi,
S. and Ipeirotis, P. 2015. The Global Opportunity in
Online Outsourcing.

[25] Lasecki, W., Miller, C., Sadilek, A., Abumoussa, A.,
Borrello, D., Kushalnagar, R. and Bigham, J. 2012. Real-
time Captioning by Groups of Non-experts. Proceedings
of the ACM symposium on User interface software and
technology (UIST ’12) (2012), 23.

[26] Law, E. and Ahn, L. von 2011. Human Computation.
Morgan & Claypool Publishers.

[27] Newitt, J.W. and Odarchenko, A. 1970. A Structure for
Real-time Stenotype Transcription. IBM Systems
Journal. 9, 1 (Mar. 1970), 24–35.

[28] Novotney, S. and Callison-Burch, C. 2010. Cheap, Fast
and Good Enough: Automatic Speech Recognition with
Non-Expert Transcription. Human Language
Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics. June (2010), 207–215.

[29] Seibel, R. 1964. Data Entry through Chord , Parallel
Entry Devices. The Journal of Human Factors and
Ergonomics Society. 6, 2 (1964), 6–9.

[30] Smith, A. 2016. Shared, Collaborative and On Demand:
the New Digital Economy.

[31] Smith, P.T. and Kelliher, S. 1992. Frequency Effects in
Writing Shorthand. Language and Cognitive Processes.
7, 1 (Feb. 1992), 67–84.

[32] Smith, R.N. 1973. Automatic Steno translation.

Proceedings of the annual conference on - ACM’73
(1973), 92–96.

[33] Springer, V., Russell, J., Dahir, V., Dressel, W., Sawyer,
J. and Brunson, W. 2011. The Future of Court Reporting:
2011 National Survey - Judges & Court Reporters.

[34] Suzuki, R., Salehi, N., Lam, M.S., Marroquin, J.C. and
Bernstein, M.S. 2016. Atelier : Repurposing Expert
Crowdsourcing Tasks as Micro-internships. Proceedings
of the SIGCHI Conference on Human Factors in
Computing (CHI’16) (2016), 2645–2656.

[35] The Open Steno Project:
http://www.openstenoproject.org/. Accessed: 2016-09-
17.

[36] The Sorry State of Closed Captioning: 2014.
http://www.theatlantic.com/entertainment/archive/2014/0
6/why-tv-captions-are-so-terrible/373283/. Accessed:
2016-09-17.

[37] Turn, R. 1974. Speech as a Man-Computer
Communication Channel. Proceedings of the May 6-10,
1974, national computer conference and exposition
(1974), 139–144.

[38] Zdenek, S. 2015. Reading Sounds: Closed Captioned
Media and Popular Culture. The University of Chicago
Press.

[39] Zhai, S. and Kristensson, P.-O. 2003. Shorthand Writing
on Stylus Keyboard. Proceedings of the SIGCHI
Conference on Human Factors in Computing (CHI’03)
(2003), 97–104.

[40] Zhu, H., Dow, S.P., Kraut, R.E. and Kittur, A. 2014.
Reviewing Versus Doing : Learning and Performance in
Crowd Assessment. Proceedings of the ACM Conference
on Computer Supported Cooperative Work (CSCW’14)
(2014), 1445–1455.

[41] Zyskowski, K., Morris, M.R., Bigham, J.P., Gray, M.L.
and Kane, S.K. 2015. Accessible Crowdwork?
Understanding the Value in and Challenge of Microtask
Employment for People with Disabilities. Proceedings of
the ACM Conference on Computer Supported
Collaborative Work (CSCW’15) (2015), 1682–1693.

	ABSTRACT
	CCS Concepts
	Keywords

	1. INTRODUCTION
	2. Related Work
	2.1 On-the-job Learning for Real-time Captioning
	2.2 Worker Motivations
	2.3 Novice to Expert Transition
	2.4 Stenotype and Text-Entry Studies

	3. THE DESIGN OF SCOPIST
	3.1 Scopist’s Algorithm

	4. EVALUATION OF SCOPIST
	4.1 Study 1: Support for Mixed Skill Sets
	4.1.1 Method and Analysis
	1.1.1
	4.1.2 Results

	4.2 Studies 2 & 3: The Impact of Learning to Chord on Transcription Tasks
	4.2.1 Studies 2 & 3 Procedure
	4.2.2 Studies 2 & 3 Participants
	4.2.3 Studies 2 & 3 Apparatus
	4.2.4 Studies 2 & 3 Design
	4.2.5 Studies 2 & 3 Analysis and Predictions
	4.2.6 Studies 2 Results
	4.2.7 Study 3 Results

	5. UI Design for Learning Stenotype
	6. DISCUSSION
	6.1 Skill Transition
	6.2 Chord Learning
	6.3 Limitations and Future Work
	6.3.1 Mapping Qwerty to Stenotype
	6.3.2 Career Trajectories

	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

Accessibility Report

		Filename:

		23v2.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
