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ABSTRACT 
Audio transcription is an important task for making content 
accessible to people who are deaf or hard of hearing. Much of the 
transcription work is increasingly done by crowd workers, people 
online who pick up the work as it becomes available often in 
small bits at a time. Whereas work typically provides a ladder for 
skill development – a series of opportunities to acquire new skills 
that lead to advancement – crowd transcription work generally 
does not. To demonstrate how crowd work might create a skill 
ladder, we created Scopist, a JavaScript application for learning 
an efficient text-entry method known as stenotype while doing 
audio transcription tasks. Scopist facilitates on-the-job learning to 
prepare crowd workers for remote, real-time captioning by 
supporting both touch-typing and chording. Real-time captioning 
is a difficult skill to master but is important for making live events 
accessible. We conducted 3 crowd studies of Scopist focusing on 
Scopist’s performance and support for learning. We show that 
Scopist can distinguish touch-typing from stenotyping with 94% 
accuracy. Our research demonstrates a new way for workers on 
crowd platforms to align their work and skill development with 
the accessibility domain while they work. 

CCS Concepts 
• Human-centered computing → Empirical studies in accessibility;
Accessibility design and evaluation methods;
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1. INTRODUCTION
For many people, work offers more than just an opportunity to 
earn  money. It often  provides other  benefits  such as social 
interaction, the opportunity to develop new skills leading to 
advancement, or even the chance to realize a personal passion. 
The same cannot be said for crowd work. Crowdwork typically 
places workers in front of a computer—one of the best devices for 
personalized learning—yet, crowdwork platforms have not 

invested in interfaces or systems that help workers advance their 
skills or realize other value through their work. While crowdwork 
has recently shown promise for supporting web accessibility [25], 
it currently depends on a labor ecosystem that neglects skill 
development and other valuable aspects of work. 

Today, most crowdwork consists of low-paying, unskilled 
microtasks that result from decomposing complex jobs into 
subtasks to be worked on incrementally. Microtasks are typically 
easy for a person to do, but difficult for a computer [26]. One 
common example is audio transcription; the result of 
decomposing an audio file, like a recording or video of a speech, 
into a collection of short utterances that each get posted as a HIT 
(Human Intelligence Task) online. A recent survey reported audio 
transcription, a vital task in making audio content accessible, as 
the second most popular task on Amazon Mechanical Turk, 
comprising 26% of all microtasks [30]. Workers typically earn 
$0.01-0.02 USD per sentence they transcribe [28]. 

Yet unlike asynchronous audio transcription, real-time audio 
transcription is a highly valued and specialized skill that pays 
well; up to $300 per hour. Transcribers that work at the pace of 
human speech are needed to create written records of court 
proceedings (court reporters) and to close captioning live 
television, such as news, sports, and political speeches [12]. 
However, touch-typing skills are not sufficient for real-time 
captioning as it typically takes at least twice as long as the audio 
playback time (compare average speaking rates of 200 WPM [37] 
with good typing rates of 90 WPM [7]). In contrast, real-time 
transcription uses a chording method for text-entry called 
stenotype: a technique depressing several keys simultaneously to 
input whole words at a time. Using stenotype, well trained 
stenographers can achieve entry rates between 200-300 WPM, 
closing the gap between transcription time and audio time [29]. 

We investigate how crowdlabor platforms could support workers 
in learning a valuable new skill while they work. As a proof-of-
concept of a skill ladder for crowdwork, we developed Scopist. 
Using Scopist, crowdworkers learn one new chord during each 
microtask. Scopist provides prompts for chords relevant to the 
microtask and accepts both touch-typing and stenotyping as valid 
inputs. This approach allows workers to gradually incorporate 
new chords into transcription without abandoning their familiar 
work practice. 

We performed three formative evaluations of Scopist with crowd 
workers to demonstrate our approach. The first examines the 
ability of Scopist to distinguish between chording and touch-
typing text-entry. The second and third examine whether 
crowdworkers can effectively incorporate a new chord into 
transcription microtasks. We found that Scopist could distinguish 
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touch-typing from stenotype 94% of the time; a number that 
would likely improve with a more advanced language model. In 
our second and third studies, we found that using a new chord 
without interface support slowed workers. We then used these 
findings to design a new user interface which could support 
workers in learning the hand postures and aural mapping of 
stenotype.  

Our work contributes a proof-of-concept application 
demonstrating how to extend crowdlabor platforms to support 
workers in gaining new skills supportive of accessibility. Further, 
we extend prior research reframing crowdlabor platforms as sites 
for redesigning work, and reflect on other opportunities for 
crowdlabor platforms to provide value to their workers. 

2. RELATED WORK
Human-computer interaction (HCI) has radically reshaped 
crowdsourcing platforms. What began as  a way for scientists to 
quickly accomplish large tasks (e.g., protein folding or topological 
features of Mars) has become a living lab for social science 
research [2]. HCI has transformed how crowdsourcing platforms 
work by employing them in many stages of technology’s design 
and build process before committing to the designs in commercial 
systems. This includes rapidly prototyping novel interaction 
techniques [3], testing user interfaces [20], and investigating how 
user goals and motivations can be used to solve difficult 
computing problems [26]. Researchers have turned crowdsourcing 
platforms into places for work, teamwork, real-time work, and 
even real-time teamwork [26]. Our work extends this previous 
research by recasting crowdlabor platforms as a site for designing 
crowdwork to provide value to workers beyond pay. We 
synthesize the related literature below on crowdlabor and 
stenography to inform our research. 

2.1 On-the-job Learning for Real-time 
Captioning 
Recently, researchers began examining how to design microtasks 
to support crowdworker learning.  Related studies look at how 
workers can learn from examples [11], structure self and peer 
critique  [40], use interactive tutorials [10], and treat the microtask 
as an internship [34]. However, these cases select the skills to be 
learned based on researcher interest, and they do not show how 
learning produces immediate or lasting value for the crowd 
worker, or even allow crowdworkers to make more effective use 
of the platform. 
A few studies have used crowdsourcing to examine the platform 
itself to test input methods. These include researching Fitts Law 
[4, 18], bubble cursors [23], and even adaptive menus or 
interfaces [18, 23]. Yet again, these studies look at input 
techniques of interest to the researcher and do not look at the 
platform’s support for skill development as we do here. 

2.2 Worker Motivations 
As both developer and requester, designers of crowdsourced 
captioning technologies risk cementing inequalities into the 
crowdlabor platform by not making sufficient functionality and 
information available to workers to make reasonable decisions 
about what skills would be most profitable to acquire [16]. To 
mitigate this risk, researchers began investigating the exchange 
model of crowdlabor platforms. Game theory has been proposed 
as a way to drive design decisions so that incentive properties of 
the platform are explicitly considered [19]. Strategies to align 
incentives so that they are intrinsic to the task include 
entertainment, altruism, and sharing information [26]. Yet, these 

techniques do not work for certain kinds of tasks in which demand 
outstrips supply [21], or when the tasks are inherently tedious and 
benefits accrue only to the requester [18]. That is, some tasks are 
susceptible to persistent asymmetries in exchange, and incentives 
for cooperative gain may not be intrinsic to the task. For example, 
a prior study found that novice audio captioners could collectively 
outperform professional real-time captioning speeds [25], but only 
the requester benefited from this task design. Similarly, Netflix 
depended on the altruism of volunteers from the Amara platform 
to bring their films in compliance with the American with 
Disabilities Act [36, 38]. Using crowdsourcing, requesters gain 
real-time captions at a fraction of the cost, but crowdworkers and 
volunteers simply gained more microtasks to complete. 
Developing platform support for advancing skills in a domain like 
real-time captioning could connect workers to desirable, or at 
least, valuable work. Researchers report that crowdworkers 
engage crowdlabor platforms for many reasons beyond pay: to 
have greater self-direction and control over their schedules,  to 
mentally challenge themselves, to socialize, and to work from 
home [5, 24, 41]. Similarly, real-time captionists identify these 
reasons as perks of their work [12]. Further, they describe the 
intrinsic value that comes from participating in certain 
professional communities, like being part of the legal profession, 
or providing needed services to others [12]. We created Scopist to 
support crowdworkers in preparing for real-time captioning to 
begin aligning their skill development with the professional 
communities they wish to be a part of. 

2.3 Novice to Expert Transition 
Any work domain must support novices entering the field, and 
stenography can serve as an instructive case for designing 
platforms to support workers developing expertise. Low/unskilled 
tasks may be the best entry level for individuals who have never 
worked in the domain before or who come from backgrounds that 
did not offer an opportunity to learn the demanded set of skills 
[24]. The stenography profession balances creating entry-level 
jobs with retaining claims to a wage supportive of seasoned 
workers [12, 33]. To support professional advancement, the 
profession evolved to provide jobs for a range of skill levels from 
offline audio transcription to real-time captioning of the nightly 
news [12]. We focus on stenography here because the profession 
supports such transitions between novice and expert captioning. 
Expert stenographers develop complex associations between 
rhythm and motor planning while freeing up visual attention 
during text-entry. Chording provides efficiency gains over touch-
typing by reducing the amount of time to search and reach 
intended keys [1, 15]. These gains are not direct since touch-
typing does this at a sophisticated level: one finger is often down 
even as the next initializes the second keypress trajectory [1]. This 
touch-typing pattern motivated early designs of the qwerty layout 
[1, 15] and has led stenotypists to invest in specially designed 
keyboards–known as n-key roll-over keyboards–to address these 
limitations of some keyboard matrices. Typists’ highly integrated 
typing patterns introduce key press detection challenges to a user 
interface supporting both touch-typing and stenotype, and so 
require careful design. 

2.4 Stenotype and Text-Entry Studies 
Shorthand languages, such as stenotype, evolved over several 
centuries and admit many spelling quirks. This introduces several 
challenges to technological support. Stenotype enables the typist 
to chunk the speech stream into candidate words using chorded 
text entry [14] and keeps pace with spoken language by 
supporting multiple  key presses—or chords—to encode phonetic 



 

 

syllables or abbreviated words and phrases [27]. Stenotype 
descends from a long history of shorthand methods going back as 
early as Mesopotamia [9], and as a result, adopts abbreviations 
which join consonants phonetically, drop vowels, and admit many 
homophones [9, 27]. Thus, stenotype is not completely defined, 
and typists are encouraged to use their own abbreviations [27]. 
This introduces problems such as identifying word boundaries and 
disambiguating homophones when translating stenotype to 
English [1, 27, 32]. It also places a significant burden on the 
learner to acquire the skill [1, 29]. 

Word frequency impacts the ability of the learner to acquire new 
chords. Shorthand for more frequent words are easier to learn [31] 
and even impacts touch-screen based shorthand [39]. An early 
system, called Rapid-type took advantage of frequency effects to 
modify a standard typewriter to facilitate learning chords for the 
most frequent words of the English language with positive results 
[29]. Rapid-type did not investigate this ability within the context 
of audio transcription nor generalization to crowd settings. We 
follow Rapid-type in supporting the most frequently used 
vocabulary, but our work differs by investigating the learning 
process on an at-home computer mediated by a crowdlabor 
platform. 

3. THE DESIGN OF SCOPIST 
The goal of Scopist is to teach workers stenotype while they 
perform  an  audio  transcription  task.  Scopist’s  name  is 
inspired by the professionals who historically translated the 
stenographer’s shorthand to English. We created Scopist to 
facilitate learning stenotype rapidly enough to almost immediately 
benefit from the effort. To support this approach, Scopist accepts 
both chorded and touchtyping input. However, because stenotype 
is not a completely defined language, Scopist must first be able to 
disambiguate word boundaries and homophones arising in the 
resulting text-entry. In this section, we describe the Scopist 
algorithm for doing so. 

3.1 Scopist’s Algorithm 
Scopist is an in-browser JavaScript application running on the 
Express framework for Node.js. So that Scopist could be easily 
incorporated into a typical transcription HIT, it is designed to 
intercept the web browser’s key up and key down events as part of 
an Amazon Mechanical Turk webform. When the crowdworker 
types, Scopist saves keyboard events and their properties for the 
algorithm to use when translating pressed keys into English. 
Scopist tracks the entire set of key events because translation 
depends on the keys’ sequence. We describe below how Scopist 
processes these keys  to  distinguish touch-typing from stenotype. 
Suppose the crowdworker enters a set of key events, K=k1, k2, 
k3,…ki where i is the number of key events. Scopist processes K to 
determine which keys are from touch-typing and which keys are 
from stenotyping using properties of the events, p(ki), like their 
char, keycode, etc. For any key event, ki, its’ properties could 
indicate it is a key down or key up, so that p(ki) = d1, d2, u1, u2, d3, 
u3, d4, u4…dn, um where d are down events and u are up events. 
Scopist uses these properties (up and down) and more to 
determine whether keys that are down at the same time are a 
chord (e.g. WO for would, Table 1) or qwerty (d1 is a shift key 
indicating that d2 should be capitalized as in ‘Scopist’). The 
number of up events is always less than or equal to the number of 
down events, m ≤ n and m+n=i, where i is the number of key 
events, and n is the number of keys pressed. Scopist uses this 
feature to make inferences using both forward and backward 
passes through the keyset. 

Scopist processes K in several passes and assigns each key, f(ki), 
to qwerty, stenotype, or unknown based off what is learned from 
the event properties at that stage of processing. In the first pass 
processing, all keys that are neither a member of the stenotype 
keyset, S, or the English alphabet and punctuation keys for the 
qwerty keyset, Q, are removed. Most of these keys are modifier 
keys, such as ctrl, alt, tab, etc. (see lines 5-6). 
A second pass goes through the key event sequence and marks 
keys that are known to be qwerty according to properties of touch-
typing (see lines 9-18). These include: 

• if the shift key is pressed, then the key is qwerty 
• if the key is not included among the keys used in steno 
• if the key follows a key marked as qwerty 
• if the key marks a word boundary, Bw  (e.g., space or 

punctuation mark) 

Algorithm 1: Distinguishing QWERTY from Stenotype 

1: procedure PROCESSKEYEVENTS(K) 
2: input: array K of n key events 
3: hhighest ← □ 
4: for ki in K do 
5: if p(ki) not Q and not S then 
6: remove ki from K 
7: for ki in K do 
8: if p(ki) is type d then 
9: if p(ki) is a shift key then  
10:  qwerty sequence = true  
11:  f(ki) ← qwerty 
12: else if p(ki) is Bw or not S then 
13: f(ki) ← qwerty 
14: if p(ki) is not Bw then 
15:  qwerty sequence = false  
16: else if qwerty sequence then  
17:  f(ki) ← qwerty 
18: if p(ki) is not Bw then 
19: qwerty sequence = false 
20: else 
21: f(ki) ← unknown 
22: add ki to C 
23: else if p(ki) is type u then 
24: if |C| > minimum chord length then 
25: for cj in C do 
26: p(cj) ← ki 

27: p(kj) ← C 
28: C ← {} 
25: for ki in K do 
26:  if ki is type d then  
27:  if ki is a Bw then 
28:       ki ← qwerty 
29: qwerty sequence = true 
29: else if qwerty sequence then 
30: ki ← qwerty 
31: qwerty sequence = false  
32: for ki in K do 
33:      if p(kj) ← C and |C| > 0 then 
34: for cj in C do 
35: if f(ki) ← qwerty then 
36: for cl in C do 



 

 

37: p(cl) ← remove chord assignment  
38: H ← CREATEHYPOTHESES(K, 0, “”, [], “”) 
39: for hi in H do 
40:   score ← H(hi | D) 
41: if score > scorebest  
42:     scorebest ← score 
 
As the second pass proceeds, keys that are observed to be down 
together without an intervening key up event are added to a 
sequence of possible steno keys, C (line 18). When a key up event 
is observed, that set, C, is considered as a possible steno chord 
(lines 23-28). 
A third pass (a backward pass) then marks as qwerty any key 
preceding a known qwerty key (lines 25-31). For example, space 
keys are not used in stenotype and instead, are automatically 
inserted after a chord. So we use this feature to identify a keyset 
as qwerty when it occurs before a space. A fourth forward pass 
marks any potential chords as qwerty if any of the preceding 
passes marked any key in the possible chord as qwerty (32-37). 
A final, recursive process generates a set of key translations that 
are possible candidates for the key sequence. This process 
considers a new translation at each key, ki, where it remains 
unknown whether that key is qwerty or steno. In practice, the key 
sequences to which this applies tend to be short as it is difficult 
when typing qwerty to accidentally have more than 2 to 3 keys 
down at the same time (see line 38 and Algorithm 2). For keys 
that are qwerty, this process adds the key’s qwerty letter, li, to a 
candidate word, wq, and appends it to the current hypothesis, hc 
(see lines 6-9 of Algorithm 2). For keys that have been marked as 
a possible chord, the keys are given both a stenotype translation, 
s(∙), and a qwerty translation, q(∙), (see lines 11-21 of Algorithm 
2; and the next section for a description of the stenotype 
dictionary used). 

Algorithm 2: Create Best Guesses for Key Sequence 

1: procedure CREATEHYPOTHESES(K, i, hc, Wq, wq) 
2: input: K of n key events, index i, current hypothesis 
hc,, the set of keys Wq making up a possible chord, the 
possible word wq 

3:  for ki in K do 
4: if ki  is type d 
5: if ki is Bw then 
6: add li to wq 

7: if |wq| ≤ 1 then 
8: remove spaces from hc 

9: add wq to hc 

10: reset wq, Wq  
11: else if p(ki) ← C  
12: if wq is not “” 
13: add ki to Wq 

14: add li to wq 

15: else 
16: q ← q(C) 
17: h1 ← CreateHypotheses(K, i, hc + q, Wq, “”)  
18: s ← s(C) 
19: if s 
20: h2 ← CreateHypotheses(K, i, hc + s, Wq, “”)  
21: H ← h1 and h2 

22: return H 
23: else if f(ki) ← unknown or qwerty 

24: add ki to Wq 

25: add li to wq  
26:  add wq to hc  
27:  return hc 

 
Each of the possible word sequences is then evaluated by a simple 
language model (lines 40-44 of Algorithm 1). We score each 
hypothesis, hi, by counting how many of the words, wi, in that 
hypothesis are English words. That is, given a dictionary, g(∙), we 
add 1 for every word, wi, found in the dictionary, and 0 otherwise. 
The total count is then divided by the total number of words. 

 
The scoring system distinguishes between stenotype and qwerty 
by exploiting the fact that the chorded qwerty keys are not often 
English words; either by themselves, or when combined with the 
subsequently pressed keys. The algorithm uses H(hi) to 
distinguish these cases because the boundary between chords and 
qwerty keys is not marked in the keyset since the spacebar is not 
used in stenotype to separate words. 

4. EVALUATION OF SCOPIST 
To support crowdworkers in developing their transcription skills, 
Scopist needs to facilitate audio transcription when a worker starts 
out using very few chords as well as when they develop further 
proficiency using several chords. To assess whether Scopist could 
offer this, we examined whether it supports 3 needs: skill 
transition, chord learning, and speed gains. In this section, we first 
describe our evaluation of Scopist’s accuracy in distinguishing 
touch-typing from stenotype, as would be needed to support skill 
transition, before reporting on our study of Scopist’s support for 
crowdworkers’ learning and speed gains. 

4.1 Study 1: Support for Mixed Skill Sets 
Crowdworkers serious about developing their transcription skills 
will want to challenge themselves to learn more and incorporate 
new chords into their repertoire. To support this transition, we 
examined Scopist’s ability to process phrases with a mixture of 
touch-typing and stenotyping. 

4.1.1 Method and Analysis 
We asked crowdworkers to use a mixture of touch-typing and 
stenotyping in a text-entry task. Then, we evaluated how well 
Scopist processed the entered keys by testing it against an English 
language dictionary. We randomly selected 10-word phrases from 
a corpus of transcribed TED talks to create phrases for the text-
entry  task  that  approximated  spoken  language [42]. In each 
phrase, we replaced between 0 and 4 of the words with the 
equivalent stenotype chord to simulate the number of chords we 
would expect crowdworkers with varying skill levels—ranging 
from novices to advanced-intermediate—would use. We only 
substituted chords with 2 to 3 keys because they are most likely to 
provide problems for Scopist’s algorithm. 
We made the microtask as simple as we could to encourage 
workers to type as quickly as possible so that we could test the 
algorithm on typing patterns where more than one key is down at 
a time (common in both moderately fast touch- typing and 
stenotyping). Since we were examining Scopist’s algorithm—not 
crowdworker learning—we asked crowdworkers to type the 
requested key pattern from the 10 word phrase (Figure 1) using 
the qwerty keys for chords instead of the stenotype characters. We 



 

 

required workers to start again if they made a mistake to ensure 
the collected keysets were as accurate as possible. 
We recruited 150 crowdworkers from Amazon Mechanical Turk. 
This resulted in 150 keysets. We then processed each keyset 
through Scopist’s algorithm to see how well it was able to 
reconstruct the correct phrase from the keys. To determine how 
accurately Scopist processed the keysets, we divided the total 
number of phrases Scopist processed correctly by the total number 
of phrases. This number estimates what percentage of mixed 
typing phrases from the TED corpus Scopist would be able to 
support. 

 
Figure 1. The webpage shown above collected keysets from 
crowdworkers containing a mixture of touch-typing and 
stenotype. The example phrase ‘so we need energy miracles 
now drni use op’ shows how we substituted in the qwerty keys 
corresponding to the needed stenotype chords to collect the 
test keysets from crowdworkers. In this example, a worker 
would need to chord the key combinations d-r-n and o-p. 

4.1.2 Results 
Scopist was able to process 94.0% of the keysets accurately. This 
means that when Scopist processed the 150 collected keysets, 9 of 
the resulting phrases contained one or more errors. 

4.2 Studies 2 & 3: The Impact of Learning to 
Chord on Transcription Tasks 
Scopist distinguished touch-typing from stenotype with 94% 
accuracy. Thus, Scopist shows promise for supporting text-entry 
consisting of both stenotype and touch-typing. To further evaluate 
whether Scopist could support crowdworkers’ learning with 
immediate benefit, we examined whether stenotype helped 
crowdworkers complete transcription tasks faster. 

4.2.1 Studies 2 & 3 Procedure 
We designed an Amazon Mechanical Turk HIT that asked 
workers to transcribe 30 short excerpts from speech described 
below. The HIT consisted of two conditions—a baseline, 

transcription task and a mixed, stenotype task—to allow us to 
assess and characterize how introducing a new chord into the 
transcription task impacted performance. Each condition consisted 
in a task block of 15 transcription microtasks. The order of 
conditions was counterbalanced across participants, and 
participants were randomly assigned to an order. We conducted 
separate studies for a text transcription version in which workers 
simply typed the sequence shown to them, and an audio 
transcription version in which workers listened to spoken phrase 
and transcribed it. 
Each transcription task consisted in typing a phrase with the target 
vocabulary we wanted workers to learn to chord. We chose the 
target chord ‘something’ (S–G) because it is a commonly used 
word, would test predicted time gains from learning (the time to 
type 10 keys—including the space bar—would reduce to chording 
2), and would prove a test case for the Scopist algorithm (the 
qwerty equivalent keys, “A” and “L”, frequently appear together 
in English and are often typed rapidly in succession since they lie 
on the home row and require opposite hands to type). 
Transcription tasks were selected from a corpus of TED talks used 
in a prior study and were subdivided as required to train an 
automatic speech recognition (ASR) model [42]. We used this 
corpus because it provided transcription text aligned with the 
audio files and consisted of common vocabulary characteristic of 
spoken English. Focusing on commonly spoken English allowed 
us to test microtasks that could introduce chords for the most 
frequently used vocabulary likely to be encountered in audio 
transcription tasks. We wrote a Python script using the output of 
the ASR model to identify 60   phrases   which   contained   the   
target   vocabulary, ‘something’. We then chose two subsets of 15 
phrases for each condition consisting of 6 speakers (both male 
and female), and different stages of their speech (the 
beginning, middle, and end). These phrases were also examined 
for occurrence of the target word appearing in the beginning, 
middle, and end. 
To evaluate the representativeness of our files’ phrase sets for any 
typical transcription task, we analyzed them using the 
AnalysePhrases Program from McKenzie and Soukoreff [33]. We 
did this to ensure that our assessment would generalize to other 
transcription tasks that did not use our specific speech corpus and 
ASR model. The minimum phrase length was 85 characters and 
the maximum 264, with an average phrase length of 160.8 
characters (the set recommended by MacKenzie and Soukoreff 
ranges from 52-586, averaging 195.9 characters). The average 
word length was 4.31 characters and the correlation with English 
0.95 (the Mackenzie and Soukoreff phrase sets average 4.39 and 
correlate 0.96 with English). We divided the phrases evenly 
between the two conditions, and the conditions did not differ 
substantially on the criteria detailed above. 

4.2.2 Studies 2 & 3 Participants 
We recruited 20 participants through Amazon Mechanical Turk 
for our text transcription task and 30 participants for our audio 
transcription task. Participants were compensated $3.00 for 
participating in the non-audio version of our study and $6.00 for 
participating in the audio version of our study. This worked out to 
approximately $10/hour. Since our evaluations depended on 
crowdworker performance across all tasks, participants were only 
compensated for completing all of the tasks. 

4.2.3 Studies 2 & 3 Apparatus 
We created a minimal user interface that allowed us to isolate the 
inclusion of a new chord from other potential confounds (Figure 



 

 

2). The interface presented instructions for workers to type what 
they either saw or heard (depending on whether they were 
completing text transcription or audio transcription), either using 
the chord “al” for something, or typing all words using touch-
typing. Workers did 15 transcriptions in sequence either using or 
not using the chord. While there are many ways the microtasks 
could be ordered and presented, we focused on the simplest 
case—presenting microtasks in a row—to evaluate how well 
workers could learn a new chord in this most basic scenario. For 
each crowdworker, we randomly shuffled the phrase sets in each 
condition using the Fisher-Yates shuffling algorithm so that 
each crowdworker progressed through a different phrase ordering 
and the order of phrases would not impact our performance 
measures. This allowed us to control for ordering effects. 

 
Figure 2: Figure 2 shows the task presented to workers in our 
second study. Workers received either an audio or text 
prompt, and were asked to transcribe it. Workers were asked 
to type 15 phrases in sequence using the prompted chord, and 
15 in sequence using touch-typing only. 

4.2.4 Studies 2 & 3 Design 
We used a within subjects design with task condition (using the 
chord, or not using) as the independent variable. Dependent 
variables included time per task, number of times the backspace 
key was used, and keys pressed per task. 

4.2.5 Studies 2 & 3 Analysis and Predictions 
To analyze crowdworkers’ performance, we used two-tailed 
paired t-tests to determine whether crowdworkers took less time 
per task, used a lesser number of keys, or used backspace less. For 
each of the dependent measures, we removed data points that 
were more than three standard deviations from the mean for that 
task. 

4.2.6 Studies 2 Results 
Overall, our hypothesis that Scopist would immediately benefit 
workers by supporting them in completing their transcription tasks 
can be rejected. Crowdworkers generally completed tasks faster, 
corrected errors less often, and used a lesser amount of keys 
during the baseline condition. We review these results below. 
Time per task. Crowdworkers completed their tasks faster in the 
baseline condition (M=30.0s, SD=8.1, Range=15.7s-44.1s) than 
they did in the chording condition (M=36.8s, SD=9.7s, 

Range=20.7s-51s). A two-tailed, paired t-test revealed this 
difference to be significant: t19=2.34, p=0.02. 
Backspace Usage. Crowdworkers used the backspace key less in 
the baseline condition (M=4.9, SD=2.6, Range=0.5-11.5) than 
they did in the chording condition (M=7.0, SD=3.0, Range=1.5-
12.2). A two-tailed, paired t-test revealed this difference to be 
significant: t19=3.71, p<0.025. 
Number of Keys Used. Crowdworkers used less keys in the 
baseline condition (M=167.4, SD=6.1, Range=158-181.6) than 
they did in the chording condition (M=175.2, SD=10.9, 
Range=159.4-200.4). A two-tailed, paired t-test revealed this 
difference to be significant: t19=3.54, p<0.025. 
Overall, results indicated that using the chord resulted in slightly 
worse performance than touch-typing only. This is surprising 
given that the chording condition requires fewer key presses, and 
so, should allow workers to transcribe faster. As we will discuss 
in Section 6, future work should consider how to lower this cost 
even more and investigate via longitudinal studies when and 
whether workers would eventually benefit from knowing and 
using a few stenotype chords. 

4.2.7 Study 3 Results 
When we examined how well workers did when using Scopist to 
transcribe an audio file, we found our earlier results further 
confirmed for audio transcription. Our results suggest that the 
addition of audio into the task required much more effort from 
crowdworkers. Crowdworkers generally completed tasks faster, 
corrected errors less often, and used a lesser amount of keys 
during the baseline condition for audio transcription. We review 
these results below. 
Time per task. Crowdworkers completed their tasks faster in the 
baseline condition (M=53.4s, SD=16.1s, Range=26.1-92.2) than 
they did in the chording condition (M=80.0s, SD=26.3s, 
Range=44.4-151.4). A two-tailed, paired t-test revealed this 
difference to be significant: t29=9.27, p<0.025. 
Backspace Usage. Crowdworkers used the backspace key less in 
the baseline condition (M=9.2, SD=5.3, Range=1.7-25.7) than 
they did in the chording condition (M=17.8, SD=7.3, Range=4.1-
33.0). A two-tailed, paired t-test revealed this difference to be 
significant: t29=7.58, p<0.025. 
Number of Keys Used. Crowdworkers used less keys in the 
baseline condition (M=177.4, SD=11.5, Range=159.5-207.3) than 
they did in the chording condition (M=197.3, SD=18.2, 
Range=161.7-231.7). A two-tailed, paired t-test revealed this 
difference to be significant: t29=6.76, p<0.025. 

5. UI Design for Learning Stenotype 
Although the Scopist algorithm supports both touch-typing and 
stenotype to help workers transition to real-time captioning skills, 
it provides only part of the support workers would need for 
learning on-the-job. Workers also need guidance on how to use 
stenotype, such as finger placement to enter the desired word and 
mapping the sounds of aural speech to chords. To help guide 
future designs, we began by looking at best practices for learning 
keyboard use. Cockburn, et al. surveyed design approaches for 
learning keyboard shortcuts and offered four techniques for 
improving keyboard performance [10]: 

1. Enable visibility of keyboard shortcuts without requiring a 
switch in input modality. Designs often require mousing to   



 

 

 
Figure 3. The user interface for Scopist highlights stenotype keys on a typical qwerty layout to teach a crowdworker the 
appropriate hand posture for chording. The highlighted keys are for the prompted word underlined at the top of the page, and a 
reminder of the link between the chord keys and the sounds of the prompted word are provided in parentheses. 

switch from touch-typing to reveal shortcuts, and this 
significantly limits performance gains. 

2. Support physical rehearsal such that a novice attempts 
to perform the exact same actions as an expert to 
develop muscle memory and automaticity. 

3. Leverage spatial memory by providing visual cues that 
reduce visual search time and support intermediate skill 
level. Too many designs degrade performance, losing 
time to visual search. 

4. Ensure shortcuts are stable (instead of rapidly changing 
through adaptation) so that they may be rapidly learned. 

We incorporate these 4 techniques in our design of Scopist by 
leveraging crowdworkers’ familiarity with the qwerty keyboard. 
Specifically, we focused on guiding the worker through the 
mapping principles for using the QWERTY keyboard to learn 
stenotype. Before describing how we did this, we provide some 
background on stenotype. 
Stenotype keyboards have 22 keys; many fewer than a QWERTY 
keyboard. Rather than provide a one-to-one mapping for each 
letter of a word, the stenotype keyboard supports input of the 
salient sounds in a word, and so, truncates the number of key 
presses. Stenographers type chords to phonically represent a 
word: all of the relevant letters are pressed at the same time, 
making each word a single event instead of one event per letter. 
Because of this, stenographers gain more speed from long words. 
For example, the stenotypist would transcribe the word 
‘something’ by pressing down ‘S’-‘G’ at the same time, as a 
chord. 

Sam ple English-Steno Mapping 

English Stenotype 
would WO 

something S-G 
other OER 
where W*R 
there THR* 

through THRU 
considering KRG 

Table 1. The table shows example mappings between English 
words and their stenotype chords. The dash in the chord ‘S-G’ 
indicates that the S is on the left hand side of the keyboard 
and the ‘G’ on the right hand (Figure 3). 
To provide visual guidance on what keys should be pressed to 
chord, we employed techniques 1 and 3 from Cockburn, et al. [8]. 
Since touch-typists are accustomed to focusing on the monitor in 

front of them and not their finger positions, we provided an 
onscreen depiction of a qwerty keyboard so that workers could 
visually orient their hand posture to the positions required for 
stenotype. We did this by modifying a CSS-drawn keyboard 
to show which stenotype keys map onto the qwerty layout 
and highlighted the target keys for the prompted chord with 
a contrasting color (Figure 3). We labeled the onscreen 
keyboard with the lettering used for a stenotype keyboard 
rather than the lettering workers would be accustomed to 
seeing on a qwerty keyboard to facilitate workers learning 
the stenotype layout. For the highlighted keys, we provided 
subscripts of the qwerty-equivalent letter to help workers 
orient themselves to the new layout. 
Our approach further employed techniques 2 and 4 from 
Cockburn, et al. by keeping a stable mapping between the 
physical layout and the stenotype keys. This allowed us to support 
physical rehearsal by training novices on a stenotype vocabulary 
used by experts, and further helped them learn how stenotype 
phonetically represents aural speech (see Table 1). To do this, 
Scopist employs the JSON dictionaries of the Open Steno Project 
mapping stenochords to their English equivalents and adopting the 
same stenotype-qwerty layout [35]. While expert stenographers do 
use one key chords (like a -T for the word ‘the’), Scopist only 
accepts chords with a minimum of two keys. Single keys are 
primarily used as an advanced technique for stacking chords—
entering a sequence of chords to indicate one phrase verses 
another—and is already supported by other systems (e.g., [35]). 
We chose to not support stacking so that we can accept the touch-
typing of novices transitioning to stenotype without requiring 
them to switch modes. 

6. DISCUSSION 
Scopist demonstrated how to extend the crowdlabor platform to 
support varied levels of skill development for workers learning a 
new skill while on-the-job. Learning to chord impeded 
performance during transcription microtasks while workers were 
experimenting with how to integrate chording into their touch-
typing skills. Based on our findings, we designed a new user 
interface grounded in the literature on learning keyboard shortcuts 
and connected to the online community of stenographers. We 
discuss our findings in more detail below. 

6.1 Skill Transition 
Scopist’s algorithm focused on supporting single word entry and 
left support for stacking chords to expert systems (‘stacking’ is 
when a sequence of chords is quickly entered in succession and 
the order of chords crucially distinguishes between one translation 
over another). This allows Scopist to provide support for 
transitioning from novice skill levels to adopting a wider 



 

 

vocabulary range, but it also limits the algorithm’s support for the 
upper ranges of skill level and disambiguating some cases. Scopist 
had a high processing accuracy (94.0%), but it was unable to 
disambiguate cases when a chord’s keys serve as the beginning 
letters of an English word. For example, Scopist misprocessed one 
keyset as “doing alas simple” instead of the correct string, “doing 
something as simple”. Both strings are composed of English 
words. It just so happens that ‘al’ are the qwerty keys for 
‘something’, and so ‘al’ and ‘as’ get incorrectly combined 
together. These remaining errors could likely be corrected with a 
more sophisticated language model. 

6.2 Chord Learning 
Our results fit with related studies which find that attending to 
learning a new skill in the crowdsourcing context imposes a cost 
and can depend heavily on how the task is introduced in context. 
This may be mitigated by experimenting with alternative task 
orders and spacing, although would constitute its own area of 
study. Prior research has found that the microtask order impacts 
performance [6], spaced repetition impacts vocabulary acquisition 
[13], and interleaving tasks of varied difficulty and kind similarly 
shapes learning [22]. Changes to both the ASR model or the 
Python script’s global search of the audio corpus could be used to 
both generate and schedule a set of microtasks for more nuanced 
support of learning. 
We extended the microtasking platform to support microtasks 
crowdworkers were already working on: audio transcription. Yet, 
how skill development fits within crowdworkers’ work practices 
and goals remains an open question. Our study confirms prior 
findings from the workplace showing that when a performance 
dip occurs while learning a new keyboard shortcut [10]. This may 
be enough to dissuade workers from adopting it even though it is 
more efficient. The greater longterm gains of learning a skill, like 
chording, may incentivize adopting new skills where the task 
category imposes its own significant inefficiencies. However, the 
way this information is presented to workers may impact worker 
performance and a skill’s perceived value. Surfacing information 
about the predicted long-term gains of learning and making it 
visible to the crowdworker may support better-informed choices 
on whether the time and effort are worth investing or whether 
predicted gains are relevant to their goals. Based on our findings, 
we created a user interface that may better facilitate learning and 
decrease learning costs. Future work should test whether this 
interface is able to meet these goals. 

6.3 Limitations and Future Work 
6.3.1 Mapping Qwerty to Stenotype 
Scopist offers a crowdworker opportunity to learn stenotype 
without investing in a specialized keyboard. However, this limits 
Scopist’s current support for developing advanced stenotype 
skills. Some chords require key combinations that are 
ergonomically difficult, if not impossible, on a qwerty keyboard. 
A follow-up study to ours should examine how to generate and 
schedule tasks for skill development and optimize chord learning 
for the ergonomically feasible chords. This might be done by 
developing an alternative set of steno chords. Although, this 
would break with the community supported vocabulary (see the 
Open Steno Project [35]). However, personalized vocabulary, 
known as briefs, are common practice in the stenography 
profession [12]. Secondly, we did not examine how well Scopist 
facilitates crowdworkers developing a phonic representation of 
steno chords. It is possible that using both the qwerty and 
stenotype keyboard may hinder developing a steno- supported 

phonetic model. A follow-up study to ours would need to assess 
how well crowdworkers learn stenotype’s mapping of aural 
speech to keys. 

6.3.2 Career Trajectories 
We introduced Scopist to support crowdworkers developing their 
skills while on-the-job in preparation for work of greater 
complexity and expertise. However, we have not observed 
workers actually go through the transition from offline 
transcription to real-time captioning. This is very much a 
longitudinal question, as traditionally, learning stenography 
requires 1-3 years. Future work would explore how and whether 
that transition actually happens and what would be needed of the 
crowdlabor platform to support it. 
In the nearer term, we believe Scopist could be adapted to other 
domains. What skills might workers acquire by doing other sorts 
of common crowdsourcing tasks? A promising approach could be 
to use audio files from a foreign language for developing foreign 
language listening skills as a twist on the model of Duolingo [26]. 
Alternatively, platforms could recommend another skillset to 
obtain a more complex job. For example, crowdworkers who 
develop skills in audio captioning might also develop skills in 
image transcription. Images are often tagged in order to provide 
alternative descriptions for accessibility, and workers might be 
trained to appreciate more of the context surrounding captioning 
work (both audio and visual) to gradually become accessibility 
professionals. 
Another path that could be developed would be to support 
workers in developing their skillsets to create their own emerging 
job where they would like to work. For example, there is a 
growing area of research on crowdsourcing creative tasks which 
may be amenable to captioning films. Creativity tools like web-
based typography could support workers in using expressive 
animation techniques like kinetic typography to begin captioning 
verbal nuance [17, 38]. Crowdlabor platforms could be extended 
to help connect audio captioners with filmmakers to create films 
that are compliant with disability rights laws before hitting the 
market and offer crowdworkers the opportunity to express  
creativity in microtasks. 

7. CONCLUSION 
We presented Scopist to support crowd transcriptionists learning a 
new skill while on-the-job as a proof-of-concept application. 
Through Scopist we show that the crowdlabor platform can be 
modified to facilitate skill development at varying levels of 
expertise. We showed that Scopist is able to distinguish touch-
typing from stenotype with 94% accuracy. Further, Scopist 
demonstrates how crowdworkers’ skill development can be made 
central to task design so that the crowdlabor platform provides a 
skill ladder for valuable careers like real-time captioning. Our 
findings motivate research on supporting crowdworkers to 
transition to more complex skills and connecting them with 
valuable career paths. 
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