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Abstract—Understanding the different workload-
dependent factors that impact the latency or reliability
of a storage system is essential for SLA satisfaction
and fair resource provisioning. However, due to the
volatility of system behavior under multiple workloads,
determining even the number of concurrent types of
workload functions, a necessary precursor to workload
separation, is an unsolved problem in the general case.

We introduce CENSUS, a novel classification framework
that combines time-series analysis with gradient boost-
ing to identify the number of functional workloads in a
shared storage system by projecting workload traces into
a high-dimensional feature representation space. We show
that CENSUS can distinguish the number of interleaved
workloads in a real-world trace segment with up to 95%
accuracy, leading to a decrement of the mean square error
to as little as 5% compared to the fairest guess according
to the daily average.

Index Terms—workload analysis, machine learning, in-
terleaved workloads, workload feature extraction.

I. INTRODUCTION

A storage system which provides fine grained moni-
toring and optimization strategies would help data-driven
enterprises to gain greater value from their mass data.
However, storage system tuning is a difficult, delicate
balance of reliability, availability, security, and perfor-
mance concerns spread over all of the different types of
usage patterns that the system may encounter. As storage
systems increase in size, in order to reduce hardware and
energy consumption, multi-tenancy, or multiple work-
loads sharing the same space has become commonplace.
As a result of normal OS processes such as batching or
CPU scheduling, I/Os from different workloads tend to
appear interleaved when viewed in a trace. In a recent
study, 60% of traces recorded were strided and composed
of interleaved workloads [37], which makes performance
management and optimization more complicated.
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The general definition of a ”workload” often corre-
sponds to a user layer application, where each workload
may have several phases (e.g. first heavy sequential
reads, then some random reads, then sequential writes).
When discussing system provisioning, we care more
about the observable metrics, such as cost or latency,
that a workload may contribute to than the source appli-
cation. To this end, we propose functional workload, or
fworkloads, as a functionally distinct usage of a storage
system. For this work, we define functionally distinct
as distinctly impact system metrics. Once we identify
and distinguish the fworkloads, we posit future system
configuration would be more carefully provisioned and
equitable. For example, a fworkload characterized by
sequential write accesses would be a good candidate
offloading onto a LFS (log-structured file system) par-
tition but not to an SSD (Solid State Drives). Thus,
our performance optimization is not per application, but
instead per function.

A storage provider typically knows the different ten-
ants that are present on their system. Our goal is not to
re-derive this number. Instead, we want to know what
different individual functional use cases co-exist at any
given time, which is essential for automated storage
performance management. For example, imagine that
developers, software testers, and managers are working
in VMs that rely on the shared underlying storage. While
there may be dozens of tenants in the system, there
may be only three types of storage uses, or fworkloads,
disparate enough to justify separate provisioning. Con-
versely, a single client may have multiple, fworkloads
that would benefit from specialized storage tuning [12].

Unlike other indicators, we do not have fworkload
labels in a trace. We use the process ID (PID) asso-
ciated with an individual I/O as a non-ideal proxy for
the ground truth fworkload labels in lieu of a better
validation parameter. Similar choices could be the user



ID (UID) or process name. Although PID is also not a
perfect proxy for fworkload, it is a sufficient stand-in for
our current work, because our traces are user level, so
PIDs tend to have limited functional variation.

Although systems with multiple fworkloads are in-
creasingly commonplace, characterization of multiple
fworkloads within a single system trace remains difficult
because interleaved fworkloads are highly dynamic. Pre-
vious attempts to separate workloads have been stymied
by the fact that every technique requires the number
of workloads as an input [10]. Counting the number of
fworkloads in a system requires a deep understanding of
how the system I/O is cross-correlated to itself and how it
changes over time. Common workload characterization
features in the literature typically are aggregate values
such as “read count” or simple heuristics, such as “se-
quentiality,” that fail to capture the level of complexity
we need to answer this superficially trivial question [4],
[7]. Previous efforts in this space rely on ground truth
values provided by system operators, but often cus-
tomers do not know how their storage systems are being
used [36]. As the hybrid multi-cloud becomes common
for storage deployments, such decision-making solutions
shift complexity and responsibility to customers who
perform low-level storage operation and maintenance.
Thus, identifying the number of independent fworkloads
contributing to a sample trace is itself a difficult, impor-
tant, and unsolved problem.

We propose CENSUS, a novel classification framework
to predict the number of interleaved fworkloads in I/O
traces. CENSUS uses novel time-series methods to select
fworkload features customized for a tree-based classi-
fier to predict the number of interleaved fworkloads.
By projecting the trace into a high-dimensional feature
representation space, we extract features such as address
complexity and address change quantiles that are not typ-
ically collected directly by administrators, and interpret
features with system readable meanings. This extension
of fworkload features is crucially, highly dissimilar to
prior workload analysis such as IOPS or read/write ratio,
opening the field to insights derivable from formerly
overlooked metrics.

In our experiments, we evaluate the performance
based on existing public I/O traces and a newly collected
trace of a deep learning workload from a research server.
We intend to publicly release this trace. We demonstrate
that, over sliding windows of a storage trace, we can
identify the number of interleaved fworkloads with as
little as 5% error and up to 95% accuracy over three
real datasets. If we extend our classifier to predicting

a close approximation of our number of fworkloads,
CENSUS maintains an average 90% accuracy. We further
demonstrate that CENSUS significantly decreases the
mean squared error of the current best technique to
separate interleaved fworkloads.

Our primary contributions include:
1) We introduce CENSUS, a gradient and feature

based learning framework that returns the number
of fworkloads represented in an I/O trace, demon-
strating that functionally identifying the number
of fworkloads is tractable for real fworkloads.
CENSUS is publicly available on GitHub.

2) We demonstrate that CENSUS improves fworkload
separation in a test case.

3) We identify over 700 storage trace features that
broaden the options available to the storage com-
munity for workload characterization.

II. BACKGROUND AND RELATED WORK

Workloads are considered interleaved if the accesses
of multiple workloads, or functionally distinguishable
I/O patterns, are commingled. Several studies have been
performed to identify or disentangle interleaved work-
loads. Oh et al. [33] shows that under the certain system,
a supervised classifier is able to predict the presence of
the original workloads from a mixture of at most three
workloads. Chen et al. [10] demonstrates an independent
component analysis based method to separate interleaved
workloads. Both Oh and Chen, as well as every other
interleaved workload separation project [25], [28] we are
aware of, need the number of workloads expected in the
trace as input.

The few separation methods that do not require the
number of workloads as input require hyperparameters
such as similarity and density thresholds that are even
more fragile [16]. Though projects such as Crystal [17]
discuss how to implement provisioning solutions in the
presence of multiple workloads, to the best of our
knowledge no one has successfully separated interleaved
workloads without receiving the number of workloads
out of band.

A. Workload Feature Extraction

Recently, some studies have started to learn memory
access patterns directly [33], [44], [29], [6], [37] to
characterize or identify workloads. However, fworkloads
are difficult to rigorously define with the features typ-
ically used for characterization [12]. Firstly, many of
these workloads’ attributes (e.g., I/O rate, queue length,
request disk arrival rate, or inter-arrival time) are file
system or environment dependent [4]. Also, while there
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is a wealth of work analyzing both block-level [3],
[23], [22] and file system [13], [1] traces to optimize
storage system design, most studies focus on understand-
ing the behavior and characteristics of specific storage
systems. Signature based methods are often more gener-
alizable [29], [4], but they cannot handle highly dynamic
interleaved workloads, which workloads on mixed-use
systems are more likely to be [35], [7]. BPP [49] reduces
the time and space overhead by classifying block access
patterns into simple and compound ones based on the
mining costs of different patterns and differentiates the
mining policies for I/O prediction and data caching
accordingly. However, BPP only concerns traditional
sequential and strided patterns, which is insufficient
when the workloads are interleaved.

Since there is no good enough fworkload characteriza-
tion approach for shared storage, we need a method that
returns a large breadth of features to capture the basic
patterns from the interleaved trace. We chose to build our
own extractor because existing characterizations return
at best a few dozen features [42], which we found to
be ineffective for the granularity of our work. Time-
series methods analyze a series of data points indexed in
time order to extract meaningful statistics and character-
istics [18]. Several forecasting models for storage system
workload analysis have been built based on time-series
methods, though these projects do not attempt to expand
the feature set for workload characterization [2], [38],
[19]. Traditionally, Auto-regressive Integrated Moving
Average (ARIMA) models are used for analyzing or
predicting stationary time-series data, which is seasonal
and has the same variance. Shape-based approaches iden-
tify similar pairs of time-series in terms of their values
through time [40]. For example, Dynamic Time Warping
(DTW), which accommodates local temporal shifts in
the data, is specialized in considering an ensemble of
dedicated time-series types [31]. We are not using time-
series analysis to predict the next access address, which
is impossible to be accurate given the sparse address
space. Instead, we cast finding the number of fworkloads
as a classification problem, using time-series analysis as
a feature extraction tool to explore the internal structure
of the I/O trace.

B. Learning Models

Time-series information extraction is similar to text
mining, and various deep learning models, particularly
RNNs (e.g., LSTM). have shown promise for text mining
tasks [45]. However, due to the lack of publicly available
large-scale workload data, it is hard to build a reasonable
deep learning model for predicting the number of inter-

leaved fworkloads. Also, training a deep learning model
is time consuming and most importantly, the result is
typically uninterpretable [9]. Interpretability is critical
because administrators have a wealth of domain knowl-
edge, which could both validate and refine fworkload
counts that they understand. We address these concerns
by using tree based methods [11], [24], [20] for CENSUS,
which we discuss in detail in Section III-B1.

We also considered directly segmenting and clustering
our traces. However, all clustering methods that do
not require the number of clusters as input required
hyperparameters that we could not rigorously tune. For
example, while DBscan could automatically get the clus-
ter number, it still needs the default similarity distance
and density threshold to be defined [16].

III. CENSUS DESIGN

CENSUS includes two main components: time-series
based feature extraction to select fworkload attributes
and a gradient boosting classification model that predicts
the final fworkload number (Figure 1). The inputs to
CENSUS are I/O trace segments of equal length. During
training, we use the process ID (PID) associated with
an individual I/O as a proxy for the fworkload type.
While PID is an imperfect proxy for fworkload, over
the window sizes we are considering, the PID landscape
is demonstrated to be relatively static as well as function-
ally unique. For example, in“Home”, the largest trace in
the FIU dataset (Section V), we observed that the average
number of PIDs for an application in the Home trace over
20 days is only 1.27, with an average standard deviation
of 0.33. In the traces we study, 83% of applications have
a static PID across the entire observation period.

We also collect traces on single-application servers;
here, the server index is used as ground truth instead
of PID. For both classes of data, we consider the 29
most prevalent indices, with a 30th index reserved for
“Other.” Though CENSUS is a general framework, we
focus on block I/O traces because of their availability
and ease of collection. Block I/O traces record the I/O
events that happen on block devices, such as arrival time,
mode (read and write), size, and logical block address
(LBA). Since block I/O traces do not include I/O content,
it has low overhead compared to other I/O logging, along
with smaller data size and privacy concerns.

A. Feature Extraction

Since an I/O trace may contain thousands of ac-
cesses per minute, we use time-series analysis as a
data pre-processing step that maps a segment of the
I/O trace to a set of lower-dimensional representations
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Fig. 1. CENSUS architecture. Features are extracted from the address value and time interval of I/O trace segments within a window. Labeled
training data is then fed to a classification model, which predicts the number of fworkloads for unseen I/O traces.

called “features.” Since we expect coarse-grained self-
similarity in our traces, we do feature selection offline
to capture the full spectrum of fworkload behavior. After
experimenting with a variety of segment lengths, we
settled on 10 minutes trace segments to balance between
trace lengths that are too short for multiple fworkloads
or too long to identify the transient burst. To take
advantage of time-series analysis tools, we must either
sub-sample the trace with uniform time intervals, which
works poorly for fworkloads with varying intensity lev-
els [26], or interpolate fake values into the I/O trace,
which will affect the data authenticity. To avoid these
issues, we add a time dimension to the data, using delta
time ∆N = TimeN+1 − TimeN instead of raw time
accesses. For example, if the original trace timestamps
are 12345, 12380, 12467, 12493, . . ., the delta time trace
would be 35, 87, 26, . . ..

Time-series techniques yield some familiar workload
characterization features such as max, min, mean, me-
dian, variance, or standard variance. However, they also
yield several features that are less readily intuitive such
as entropy, and coefficient of some mathematical trans-
form such as fast Fourier transform (FFT), or the time
reversal asymmetry statistic, which is the expectation of
the difference between some multiplication of two values
with a certain time lag t. Features such as these lack a
clear corresponding system behavior, and so they have
not to this point been included in the post-hoc analyses
of many workload characterization efforts, however, they
may include some overlooked patterns of the trace.

Individually calculating these features is a burden, and
it is hard to pre-determine which features are important.
CENSUS extends the open source tsfresh library [14]
to rapidly extract a large number of high-information
features automatically.

After segmentation, we calculate 1576 features per
segment trace based on the default feature extraction
functions and parameter setting. To limit the number
of irrelevant features, we judge feature criticality, the
impact a feature has on the CENSUS classifier. Critical
features in CENSUS are found by calculating

argmax
feature

∑
Tree

Gain(Tree, feature)

, which returns the features with highest information gain
per branch point in the tree.

B. Classification

Once we select features, we need to build a classi-
fication model to determine the number of interleaved
fworkloads in our sample. Our model considerations
include applicability to a high-dimensional feature space,
lightweight and interpretable model architecture, effi-
ciency, and high, stable classification performance. To
satisfy these constraints, we focus on the LightGBM [24]
and Random Forest (RF) [20] algorithms. Both of these
algorithms have self-contained feature selection, high
training speed, and good prediction performance. More-
over, they both are tree based, allowing for non-expert
interpretation as well as the potential for inclusion of out-
of-band domain knowledge in the classifier. Additionally,
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the optimal subset of correlated features can be found
from initial features by checking the feature importance
and tuning the parameters, including a maximum ratio
of features for tree building.

1) LightGBM: LightGBM [24] is a tree based gradi-
ent boosting learning algorithm. While boosting converts
weak learners (decision trees) into strong learners, we
chose to use gradient boosting because it strengthens the
learner by adjusting the training target to the residual
error on each iteration. We use gradient boosting to
produce a model from an ensemble of several weak
decision trees using the log loss function and fit the
gradient of the loss function. During the boosting portion
of the algorithm, the loss function is optimized and a new
weak tree is added to the ensemble. Fm(X) = α0f0(X)+
α1f1(X) + . . . + αmfm(x). LightGBM grows the tree
leaf-wise (vertically), while other tree based algorithms
such as XgBoost [11] grow trees level-wise (horizon-
tally). This vertical growth enables LightGBM to be
parallelizable and converge much faster on real data [24].
The multi-class classification is based on log loss for
n, which uses the softmax function S (yi) =

eyi∑
j eyj

to
normalize the raw class probabilities. LightGBM uses a
histogram method to bundle features in bins for the best
tree split points, which further optimises memory usage
and training speed by increasing cache hit likelihood.

LightGBM is underused because it has several dozen
parameters, e.g., max tree depth, learning rate, min data
in leaf, max number of features, number of leaves, and
regularization terms. We address this parameter tuning
issue by using 5-fold RandomizedSearchCV[34], which
efficiently searches the optimal parameters in a given
range of possible parameter values and the number of
training iterations. The parameters we chose are rela-
tively robust to perturbation and can be found in Table I.
While LightGBM shows good performance on large-
scale datasets, it is traditionally sensitive to overfitting
for small datas [30]. Fine-tuning model parameters is
known to make LightGBM generalizable for smaller
datasets, and our results show that overfitting is not an
issue for LightGBM in CENSUS.

2) Random Forests: To address potential overfitting
issues for small datasets trained with LightGBM, we
also built a random forest [20] (RF) model to com-
pare against. RF is an ensemble learning method con-
structing a multitude of decision trees. The predictions
for unseen samples x′ can be made by averaging the
predictions from all the individual decision trees on
x′, while each tree has a random subset of features:
f̂ = 1

B

∑B
b=1 fb (x

′). Using a random subspace method

and random feature selection, RF does not increase
generalization error when more trees are added. Section
IV discusses the relative strengths of these 2 models in
CENSUS.

3) Training Methodology: To train a generalized
model that is robust to random time window size and
arbitrary domain traces, we need to collect a large rep-
resentative pool of training datasets. Currently, to counter
potential class imbalance due to limitations in training
set breadth, together with a huge distribution difference
between the training set and unforeseen test set, we
present 2 different training methods: Generalized, and
Identical Distribution (ID).

The generalized training space includes data from
multiple domains segmented with various time windows
to simulate different access intensities. With the high di-
versity and sufficient amount of training data, this model
has high generalization ability and adaptability, which
can capture fast changing fworkload characteristics.

With the Identical Distribution (ID) training method,
for a dataset that contains N independent data files,
each file is tested using leave-one-out cross validation:
i.e., each file is tested using a model trained by the
remaining N −1 files before the average performance is
calculated. This method better tests model effectiveness
when training data is scarce, resulting in a stricter, more
domain-specific model since the training set and test set
have a similar distribution.

IV. EXPERIMENTAL RESULTS

We tested CENSUS on three real, publicly avail-
able block I/O datasets: FIU [26], MSR [32], and
EMORYML, a dataset that we collected of a month
of machine learning applications running on a research
server. We were particularly interested in testing CEN-
SUS on an ML workload because a large number of ma-
chine learning training jobs may be co-located on cloud
servers and have unique characteristics such as cyclic
memory usage [43]. In the absence of ML block I/O
workloads, we collected EMORYML from our research
server, which has 16 2.2GHz Intel CPUs and 65.9GB
of memory and runs arch-Linux 5.1.5, while running
machine learning training workloads. EMORYML is
comprised of 30 days of block I/O traces collected by
blktrace [5]. Tasks running on EMORYML include
our daily research work of machine learning modeling
and development, including deep learning model training
and data preprocessing. Each I/O access is represented
by a tuple of <Time, PID, LBA, size in 512
Bytes blocks, Write or Read>. These traces
will be made publicly available on publication.
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FIU [26] represents nearly three weeks of block I/O
traces. The FIU dataset contains 8 sub-traces, which
are Webmail, Online, Webresearch, Webusers, Home4,
Home3, Home2, and Home1. We combine the 4 Home
traces into a single “Home” to better compare to other
data. Finally, MSR represents 1 week of block I/O traces
from 36 different volumes on 13 enterprise servers.
While the FIU and EMORYML traces are annotated with
PID and process name, MSR lacks PIDs, but contains
a volume ID that we use as a high-level indicator of
“workload type” when combining traces for training. To
combine the MSR traces, we reordered data across all
MSR volumes by time and each record is labeled with
the original volume ID. We randomly chose 23 of 36
volumes to limit training time.

A. Extracted Features

Fig. 2. LightGBM feature selection example. The LightGBM API
measures the feature criticality by counting the total loss fuction
reduction (Section III-A) when using each feature for splitting.

Figure 2 shows 20 features with highest overall criti-
cality in our LightGBM classifier. Critical features were
similar for RF. The prefix appended to the feature name
(“address” or “time”) indicates whether the feature is
spatial or temporal.

1) Feature Universality: Feature criticality was Zip-
fian across the 1576 original features we extracted, so
our first step was to drop all features that had little to no
information gain. This left us with 700 features. To better
understand the global feature criticality and, from there,
baseline I/O activities in our fworkloads, we then map
feature criticality across fworkloads and training models
for the most critical features (Figure 3). We observe that,
although the order of top features may differ for each
dataset, the main important features come from several
consistent categories. These features are either calculated

Fig. 3. Feature criticality heat map. For LightGBM classification
models with FIU, MSR, and EMORYML training data, this figure
shows the top 20 most important features based on the normalized
total average training loss reduction.

by the same function while using different parameters or
are multiple values (e.g., different coefficients for FFT
transform) generated by the same function. Therefore,
when it is not possible to give an explicit order of
top features, we believe these features contain important
fworkload characteristics.

2) Interpretation: Time-series features are less read-
ily interpretable than classical observed fworkload fea-
tures such as IOPS or read/write ratios. The most critical
features in EMORYML and FIU are similar, while MSR
features are distinct, likely due to different index iden-
tification. We describe and contextualize the eight most
critical features below, and further feature descriptions
can be found in Appendix VII-B. As mentioned in
Section III-A, these features are chosen based on their
criticality.
• address complexity measures the complexity of the

address series by calculating the root of the sum
over the squared distance between the consecutive
data points. √√√√n−2∑

i=0

(xi − xi+1)
2

A high feature value indicates that more random
accesses and less sequential accesses are in the
trace, which implies more concurrent fworkloads
during that time window. We tested this hypothesis
on our data and saw a clear correlation between
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Fig. 4. Top features for classification. Features are compared between the different numbers (2, 10, 30) of fworkloads from FIU for 80 time
windows (x axis). Feature value is plotted on the y axis. The strong correlations between feature value and high numbers of PIDs support the
validity of our criticality measures for estimating the number of fworkloads in a sample.

the number of processes and address complexity
(Fig. 4a).

• address absolute sum of changes calculates the
sum over the absolute value of the changes between
consecutive data points in the address series in a
certain time window:∑

i=0,...,n−2
|xi+1 − xi|

. Similar to address complexity, a high feature
value indicates that more random accesses and less
sequential accesses are in the trace, which implies
more concurrent fworkloads during that time win-
dow. which indicates the (Fig. 4b).

• address change quantiles returns the average ab-
solute consecutive changes of the address series
identified between given quantiles. The defined
quantiles set a threshed to constrain the random
address change and remove the outlier, which works
as a hedge for noisy random addresses. A high
feature value means diverse consecutive changes
exist in address series. Complex activities always
suggest more concurrent fworkloads in that time
window (Fig. 4c).

• time longest strike below mean returns the length
of the longest sub-sequence that is smaller than the
mean of time-series deltas. A high feature value
corresponds to longer subtraces with high access
density, which suggests, again, more concurrent
fworkloads in that time window (Fig. 4d).

• address longest strike above mean returns the
length of the longest sub-sequence of addresses

that is larger than the mean address. A high
feature value may indicate long sequential I/O
subtraces are long or a group of related fworkloads
with close access addresses. A trace with more
concurrent fworkloads is more likely to generate
higher feature value. (Fig. 4e).

• time count above mean is the same metric applied
to time delta sequentiality instead of address se-
quentiality. A high feature value means that more
consecutive accesses do not request closely in time,
which may suggest that they come from concurrent
fworkloads (Fig. 4f).

• address sum of reoccurring values calculates the
sum of values that recur in an address series. A
high feature value means that more repeated ad-
dresses are present in the address series. Since one
fworkload may repeatedly access some addresses,
a high feature value may suggest more concurrent
fworkloads in that window (Fig. 4g).

• time number cwt peaks a is a measure of the
signal-to-noise (SN) ratios in a time-series. First,
this feature smooths the delta-time series by con-
volving it with a Ricker wavelet [41], which is
the second derivative of a Gaussian, and then it
returning the number of peaks with SN ratios above
a threshold. Many such peaks mean that many
consecutively significant changes exist in the time-
series. This instability indicates that there may be
interfering operations in a storage system, which
suggests that denser accesses and more concurrent
fworkloads in that time window (Fig. 4h).
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B. Model Evaluation

After feature extraction and filtering, we implement
the classification models using the model designs de-
scribed in section III-B.

Since the FIU dataset has multiple domain-specific
sub-traces, it is well suited for the generalized model
that tests by window. EMORYML and MSR datasets are
considerably smaller, so CENSUS under the ID model is
a better fit since it tests at a file-level granularity.

To avoid comparing against a straw man, we calculate
a baseline classification to compare against by randomly
generating labels based on the known distribution of
labels in the training set, which is by far the fairest
guess of fworkload numbers. By comparing our accuracy
values against this baseline, we show that CENSUS does
more than reconstructing a distribution; it provides new
insight into workload composition and the features that
are most linked to workload differentiation.

For performance evaluation, we use true accuracy,
approximate accuracy (x-accuracy), and mean absolute
percentage error (MAPE) as metrics. The x-accuracy
is computed by treating instances with prediction error
within x of the actual value for x ∈ Z+ as correct.
MAPE is defined as

M = 100× 1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣
, where At is the actual value and Ft is the forecast value.
MAPE measures the size of the prediction error in the
classification model, allowing us to identify instances
where CENSUS returns the wrong but “close” number
of fworkloads. While x-accuracy gives us a direct sense
of the relaxing effect of accuracy, MAPE shows the
acceptable error range. We could evaluate the result
better by combining these two metrics. Using MAPE
in addition to x-accuracy allows us to scale our model
as the number of fworkloads increases, capturing the
intuition that predicting 4 fworkloads when there are
2 is much worse than predicting 12 fworkloads when
there ought to be 10. For example, given a series of
ground truth labels like 10, 20, 25, 30,. . ., a predicted
label series 11, 19, 26, 28,. . ., has an impressively low
MAPE of 6.416%, although the accuracy is 0.

1) Generalized Model: To guarantee the framework
has high generalization ability, we trained this model
to capture fast changing fworkload characteristics, as
described in section III-B3. In the training process, we
used all available data from multiple domains of FIU,
EMORYML, and MSR, which are interleaved in their
raw form. We then segment the data over various time

windows (10, 30, 60, 120, 240, and 360 minutes) to
increase the training space and improve the adaptability.

The log-scaled accuracy and MAPE scores of Light-
GBM classifier are shown in Figure 6(a) and Figure 6(b).

Since we synthetically combine MSR data before
counting how many fworkloads are interleaved, we were
worried that including it in our aggregated training
set would reduce the applicability of the generalized
model to real-world problems, particularly given the
significant difference in the distribution for its underlying
fworkloads compared to the other datasets (Figure 7). We
tested this theory by removing MSR from the generalized
model, and we see a small but appreciable improvement
both in MAPE and accuracy (Figure 5). Especially for
EMORYML and FIU Home, the average accuracy of
them increase by 20% and 8% respectively. We see
that the generalized Model presents stable, satisfactory
performance while testing on various traces.

Even with MSR included, CENSUS with LightGBM
(Figures 6(a) and 6(b)) achieves 23% higher accuracy
and 63% lower MAPE than baseline on average. We see
a similar result when using RF classifiers (Figures 6(c)
and 6(d)): CENSUS with RF achieves 26% higher accu-
racy and 61% lower MAPE than baseline on average.
This performance shows that the generalized model has
high stability and generalizability across classifiers and
datasets.

2) ID Model: Since the MSR and EMORYML
datasets have fewer records than FIU, we trained three
models respectively to show the impact of training data
distribution. These three models are trained on different
datasets: MSR, EMORYML and FIU-Home2 sub-trace,
which has a relatively similar class distribution with
EMORYML as shown in Figure 7. For model evaluation,
20 days data of Home2 in FIU are trained, and the aver-
age of RF and LightGBM classification performances is
shown in Figure 8(a) and Figure 8(b). We can see that
the MSR shows a quite different distribution with either
EMORYML or FIU. This may answer the question of
why CENSUS shows such bad result in the generalized
model, but performs better when the training data fit
its distribution. The selected data volumes are tested
with both RF and LightGBM classifiers, and the detailed
average results are shown in Figure 8(a) and Figure 8(b).
The ID Model achieves 25% higher accuracy and 52%
lower MAPE than baseline on average. This performance
shows that the ID Model possesses high precision while
fitting data from various domains.
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(a) LightGBM based Generalized-MSR Accuracy vs. Baseline (b) LightGBM based Generalized-MSR MAPE vs. Baseline

(c) RF based Generalized-MSR Accuracy vs. Baseline (d) RF based Generalized-MSR MAPE vs. Baseline

Fig. 5. The LightGBM based generalized-MSR model achieves 27% higher accuracy and 57% lower MAPE than the fair guess baseline on
average. The RF based generalized-MSR model achieves 26% higher accuracy and 55% lower MAPE than the fair guess baseline on average.
The average raw accuracy score of all experiments is 53%, and the highest is 97% (Web Research). The average x-accuracy score is 73%. The
MAPE is 56% lower than the fair guess baseline on average. The average MAPE score of all experiments is 34%, and the lowest is 5.4% (Web
Research).

C. Application: Separating fworkloads

To illustrate how important knowing the number of
fworkloads is for fworkload separation, we demonstrate
the effect of having a good estimate for ground truth
on the current state-of-the-art fworkload separation ap-
proach [10]. Blind source separation (BSS) techniques
like Joint Approximation Diagonalization of Eigenmatri-
ces (JADE) [8] isolate individual non-Gaussian signals
within a shared data pipeline by selecting a set of candi-
date signals and then minimizing the mutual information
across said signals. This is accomplished by measuring
signal kurtosis and using non-Gaussianity as a proxy for
independence [21].

Blind Source Separation (BSS) algorithms are de-
signed to calculate a linear mixing matrix to separate
sources. Previous work has shown that I/O contention
resembles a linear mixture [10]. The rank of the mixing
matrix is a necessary input to the system, and where the
predicted number of fworkloads comes in.

Establishing this rank using allows us to separate the
signals using the JADE BSS algorithm.

We measure the recovery accuracy using the mean
square error (MSE) between the recovered signals
and the true source signals, defined as MSE =
1
n

∑n
i=1 (yi − ỹi)

2, where yi is the true source signal and
ỹi is the recovered signal. In Figure 9, we can see that

the estimate for the number of fworkloads provided by
CENSUS decreases the average MSE compared to the fair
guess from 0.5869 to 0.5137. For some extreme cases,
the MSE even decrease to 5% compared to the fair guess.
This demonstrates the value of predicting the number of
fworkloads when separating interleaved fworkloads.

V. ANALYSIS AND DISCUSSION

While predicting an exact number of fworkloads is
a hard task, CENSUS maintains an average of 90% 2-
approximate accuracy and exceeds 95% actual accu-
racy on easily separable data such as web traces. The
Generalized model 5(a) has much higher accuracy for
Web than Home traces. We attribute this performance
difference to the data distribution. According to the
instance distribution Figure 7, sub-traces in FIU “Home”
directory have higher variance. In web traces (e.g., online
trace), however, we can see the variances are relatively
lower, which results in better performance.

We observe that distribution of the number of fwork-
loads for EMORYML is more randomly distributed,
resembles Home2, which indicates more I/O bursts and
I/O intensity changes existing compared to the rest sub-
traces of FIU. These are the factors that lead to the rel-
atively lower classification performance of EMORYML
and Home2. Among Home2 and EMORYML, CENSUS
performs better for Home2, since the EMORYML data
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(a) LightGBM based Generalized Accuracy vs. Baseline (b) LightGBM based Generalized MAPE vs. Baseline

(c) RF based Generalized Accuracy vs. Baseline (d) RF based Generalized MAPE vs. Baseline

Fig. 6. The LightGBM based Generalized model achieves 23% higher accuracy and 63% lower MAPE than the fair guess baseline on average.
The RF based Generalized model achieves 26% higher accuracy and 61% lower MAPE than the fair guess baseline on average. The average
raw accuracy score of all experiments is 49%, and the highest is 96% (Web Research). The average x-accuracy score is 65%. The MAPE is
62% lower than the fair guess baseline on average. The average MAPE score of all experiments is 34%, and the lowest is 5.6% (Web Research).

distribution is uniformed on a wider range of value
while Home2 is more centered around two main value.
Therefore, it is harder for CENSUS to predict accurately
on EMORYML data than Home2.

MSR is synthetically combined, and the apparently
different distribution of it with other traces shown in Fig-
ure 7 contributes to the worse classification performance
of the Generalized model compared to other traces.
However, while testing MSR by ID model, it achieves
10% higher raw accuracy and 20% lower MAPE over
the fair guess baseline performance. Compared to the
baseline, our models show up to 27% accuracy increase
and 57% MAPE decrease, which indicates that our
models are robust against data of different distribution
patterns and I/O intensity.

In contrast, the Web Research baseline MAPE is
almost 100% because the baseline prediction errors are
almost equal to the ground truth. Since the baseline
results are generated based on training labels distribu-
tion, the high baseline MAPE illustrates that the training
distribution is quite different from the test data, which
indicates our model performs much better.

A. Workload Characteristics

To our surprise, the fworkload features related to time
delta, which corresponds to interval time in the trace,
do not significantly impact classification accuracy. As

we can see in figure 3, only 30% of top features are
related to time delta. The final result only improves
about 1% when we add the time delta features. We
hypothesize this is because the address may carry more
effective information than time, and throughput change
is not critical for determining the number of fworkloads.
However, we still keep the time delta features in the
model to achieve better accuracy.

B. Classification

LightGBM and RF classifiers have similar classifi-
cation accuracy regardless of the training method used
(Figure 5 and Figure 6). This indicates that the concern
that LightGBM would easily overfit to small amounts
of data is unfounded. The authors recommend that,
even though both classify similarly, CENSUS should be
run with a LightGBM classifier as they are simpler to
build [24] and run faster than RF classifiers because
of their leaf-wise growth strategy and feature histogram
optimization [24]. Figure 10 shows the comparison of
training time between RF and LightGBM based General-
ized models. While running unoptimized code on a local
4-node cluster, the average training time of LightGBM
classifiers for 42,000 samples with 1578 features was
1718 seconds, which is almost half of the average time
of 3336 seconds of our RF classifiers.
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Fig. 7. #Workload distribution per trace segment (x axis) counts (y axis) comparison between EMORYML, sub-traces in FIU and MSR.
#Workload per trace segment of Home3 and Home4 sub-traces are centered around 3 and 4. Compared to Home3, EMORYML data has a more
even #workload distribution per trace segment. MSR shows a different peak from the other traces. All #workload are sorted by prevalence and
numbered; #workload do not correlate between traces.

(a) ID classification accuracy (b) ID classification MAPE

Fig. 8. The ID model achieves 25% higher accuracy and 52% lower MAPE than the fair guess baseline on average. The average raw accuracy
score of all experiments is 37%, and the highest is 47% (FIU Home2). The average x-accuracy score is 74%. The MAPE is 52% lower than
fair guess baseline on average. The average MAPE score of all experiments is 29%, and the lowest is 16% (FIU Home2).

While our prototype for CENSUS is designed to be
run offline, we are working to lower runtimes through
optimizing code and shifting development from Python
to a lower level language. Moreover, LightGBM can be
accelerated by modern processing hardware optimized
for ML workloads [48]. Both LightGBM and RF are
much faster than deep learning models, which took both
our team and others solving similar problems multiple
hours to train [46].

C. Future Work

While CENSUS demonstrates high accuracy of pre-
diction of fworkload numbers within each domain, we
expect that large-scale sets of richer training data, such
as co-located VMs, would allow us to train an even
more robust classifier. This sort of dataset would allow
us to do a broad domain-specific analysis and poten-

tially learn an underlying representation of “groups” of
fworkloads with a high likelihood of co-occurrence. We
encourage industry colleagues to reproduce our work on
internal data and share the distributions of fworkloads
in production systems with more complex interleaving
patterns. We expect that the numbers will be smaller
than anticipated and could renew the conversation about
custom tuning storage for major fworkload classes. CEN-
SUS, through the parallelism and lightweight memory
footprint of LightGBM [30], should have minimal impact
on production systems.

The penultimate future goal of this work is special-
ized tuning for functionally distinct yet stable storage
system access patterns in a shared system. Research has
shown that fully isolating fworkloads leads to inefficient
resource usage while impacting Quality-of-Service [27],
[47], [2], [39], but managing multi-workloads in a mod-
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Fig. 9. Each window represents one day of the respective FIU trace, with time on the x axis. The top row shows the number of fworkloads
predicted by CENSUS plotted against ground truth and daily average value of ground truth. This daily average, which is dependent on the ground
truth, is used to compare CENSUS against instead of a random fworkload number to address the claim that clients may have some idea of their
fworkload mix, but they lack granularity. The bottom row shows that the MSE of the JADE method of fworkload separation is no worse, and
often better, using the number of fworkloads returned by CENSUS.

Fig. 10. RF based Generalized Model running time vs. LightGBM

ern shared storage cache is famously difficult [15]. Multi-
workload cache management would be much simpler if
the fworkloads were both few and well characterized. We
are also now recurrently training the model when we de-
tect the fworkloads have changed. Fworkload types that
are too new to have standard practices for provisioning
could benefit from our identification of fworkloads.

VI. CONCLUSIONS

In this paper, we introduced CENSUS, a time-series
based feature extraction and trace analysis tool to cal-
culate the number of functionally distinct fworkloads in
a multi-workload setting and separate these fworkloads,
with 90% average 2-approximate accuracy for detection,
and improve fworkload separation accuracy by deceasing
the mean square error to as low as 5% compared to the
fair guess according to the daily average.

With a powerful estimator for the number of ex-
tant interleaved fworkloads in hand, we have set the
stage for building a classifier that can, given interleaved

fworkloads, automatically distinguish the fworkloads and
determine the fworkload type. Once we understand the
nature of the fworkload by function, we can tune the
cache and storage system by fworkload usage, improving
resource provisioning and system performance, which in
turn can improve storage economics.

We also derived critical extracted features, which
are, crucially, highly dissimilar to features presented by
prior fworkload analyses, opening the field to insights
derivable from formerly overlooked metrics. Finally, we
hope this study motivates further rigorous time-series
analyses of systems fworkloads.

AVAILABILITY

All CENSUS code is licensed under Creative Com-
mons and publicly available at https://github.com/
meditates/CENSUS. The EMORYML dataset will be
submitted to the public SNIA IOTTA trace repository
upon publication.
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VII. APPENDIX

A. Hyperparameters

TABLE I
ADDITIONAL LIGHTGBM HYPERPARAMETERS SETTING

Name value Description

boosting gbdt Gradient Boosting Decision Tree
num class 31 # of the possible classes
learning rate 0.01 shrinkage rate
feature fraction 0.8 feature sub-sampling percentage
bagging fraction 0.8 bagging percentage
max depth 6 max tree depth
num leaves 30 max # of leaves per tree
num trees 557 # of boosting iterations
reg alpha 0.6 regularization l1
reg lambda 0.6 regularization l2

TABLE II
ADDITIONAL RF HYPERPARAMETERS

Name value Description

n estimators 482 # of trees
min samples split 15 min. # of samples to split internal node
min samples leaf 30 min. # of samples to leaf node
max features 0.8 ratio of features considered at each split
max depth 5 max. tree depth
max leaf nodes 11 max # of leaves per tree
bootstrap True bootstrap samples when building trees

oob score True Use out-of-bag samples
for generalization accuracy

B. Additional Extracted Features
• address count above mean calculates the number

of values in the address series that higher than
the mean. A high feature value may indicate more
accesses in the trace, implying more concurrent
fworkloads in that time window.

• address abs energy calculates the absolute energy,
which is the sum over the squared values of the
address series. The energy formula is

E =
∑

i=1,...,n

x2i

For example, the average absolute energy value is
4.119117e+20 when the number of running pro-
cesses is 30, however, when the class number is 1,
the average energy value changes to 1.312363e+19.
A high feature value indicates more accesses in
the trace, suggesting more concurrent fworkloads
in that time window.

• address fft coefficient a calculates the fast Fourier
transformation coefficients of the one-dimensional
discrete Fourier transform for address series.

• address ar coefficient a returns the coefficients of
an auto-regressive process for the address series
given parameter a.

• address binned entropy calculates the entropy of
the equal binned address series.

• time quantile a calculates the “a” (0 < a < 1)
quantile of the delta-time series, and returns the
value of delta-time which is greater than “a” of
the ordered delta-time series. A high feature value
means the eligible delta-time is big, indicating
sparse accesses and less concurrent fworkloads.

• address number peaks returns the numbers of
peaks in a given range of left and right neighbors
of the address subseries. A high feature value
means more eligible peaks in the address series,
which suggests more random accesses in that time
window. For example, the address series is [3, 0, 1,
4, 2, 3, 13, 2, 3, 4, 5, 2, 3, 13], if we set the range
to be 3, then the feature value is 3 because we have
three peaks ( 4, 13, 5).

• address standard deviation returns the standard
deviation of the address series. It measures the
amount of variation of address series. A high feature
value means that the address series are more spread
out and unstable, which represents more concurrent
fworkloads in that time window.

• delta time number cwt peaks n 5 detects the
number of different peaks in the delta-time series.
First, it smooths the delta-time series by convolving
it with a Ricker wavelet for supplied widths ranging
from 1 to 5. Then, this feature returns the number of
peaks with high Signal-to-Noise-Ratio(SNR), and
enough width scales accepted. In this experiment,
we find this Ricker wavelet is useful for block I/O
analysis by smoothing the delta-time series. A high
feature value means more peaks, which indicates
the accesses of this trace vary and have less
routine, suggesting more concurrent fworkloads.
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