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Abstract

Identifying the characteristics of a storage workload is critical for resource provi-
sioning for metrics including performance, reliability, and utilization. Although
multi-tenant systems are increasingly commonplace, characterization of multiple
workloads within a single system trace is difficult because workloads are highly
dynamic and typically not labeled. We show that, by converting a block I/O work-
load to a signal and applying blind source separation, we are able to successfully
separate many application workloads.

1 Introduction

Tuning a storage system is a difficult, delicate balance of reliability, availability, security, and
performance spread over the workloads that the system serves. For characterization, we define a
workload as a functionally distinct usage of the system.

As storage systems increase in size, multi-tenancy, or multiple workloads sharing the same space, has
become commonplace. As a result of normal OS processes such as batching or CPU scheduling, I/Os
from different workloads tend to appear interleaved when viewed in a trace. In a recent study, 60% of
traces recorded were strided and composed of interleaved workloads [8].

An interleaved storage workload could arise from something as simple as a small organization running
both a database and a web-server simultaneously on the same hardware. Other common instances
of this functional multi-tenancy include co-locating a set of VMs or balancing several users using a
service on the same hardware such as for streaming services. Part of provisioning a storage system
is understanding how to balance the unique needs of multiple clients with individual service level
agreements (SLAs). SLAs are hard to consistently meet when it is difficult to isolate a client’s activity.
Moreover, a single client may have multiple, functionally distinct workloads that are not rigorously
defined [1]. Though projects such as Crystal [3] discuss how to implement multi-tenant solutions
in the presence of multiple workloads, to the best of our knowledge no one has studied separating
workloads by functional qualities.

Block I/O traces are commonly available measures of workloads because they are relatively simple to
instrument and do not incur the storage and privacy concerns of traces from higher in the stack. If a
trace is translated into a signal by binning across the spatial dimension, the problem of separating
workloads becomes analogous to separating any set of signals that share a noisy channel. We thus
posit that they are amenable to blind source separation techniques such as independent component
analysis (ICA) that traditionally are used for signal separation.
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2 Methods

A multi-user, multi-application workload is similar to a noisy party: there are many different
“conversations” happening in the room, but we are recording them with a single microphone and
we’d like to know who said what. Methods originating in signal processing have shown considerable
promise in systems data analysis. Separating out signals by visually examining trace logs is very
difficult, as I/O contention and system activity results in the individual workloads being mixed even
more thoroughly than our cocktail-party example.

Blind source separation (BSS) is, very generally, trying to answer the following question: if the
components of an observed p-variate vector x are linear combinations of the components of a latent
unobserved p-variate source vector y, and one can write x = Ωy where Ω is an unknown full-rank
mixing matrix, can we derive Ω based on a set of observations x1, . . . , xn [7].

We begin with the hypothesis that functional workload signals are non-Gaussian, which our prelim-
inary results (Figure 1) support. Blind source separation techniques like independent components
analysis (ICA) isolate individual non-Gaussian signals within a shared data pipeline by selecting
a set of candidate signals and then minimizing the mutual information across said signals. This is
accomplished through measuring signal kurtosis and using non-Gaussianity as a proxy for indepen-
dence [4]. ICA has been used successfully to separate other dependent parallel time series such as
financial data [4] and EEG recordings [10], providing sound evidence that ICA could be used to
separate storage workloads as a precursor to identification. ICA takes the number of source signals as
a parameter; while in this work we provide a source number as input, techniques exist to estimate this
number from an arbitrary mixed workload trace [2].

2.1 Creating the source signal

The mixing matrix can be thought of as simulating I/O contention and scheduling issues between
the workloads. Since the ICA mixing process is that the N observations are a linear combination of
the N sources. Using the vector-matrix notation, the ICA mixing model can be written as x = As,
where x is the observation with N vectors, s is the source with N vectors, and A is the N ∗N mixing
matrix. The goal of ICA is to find matrix W (the inverse of A) that will reconstruct the source s′,
which satisfies s′ = Wx.

While solving the ICA problem, we should keep in mind that it has two kinds of ambiguities[4] . First,
ambiguity comes from the magnitude and scale. Since both s and A is unknown, scalar k multiplied
in s can be counteracted by dividing the corresponding ai by the same k. In this way, we could not
get a certain solution. Second, the order of the independent components is not fixed because if a
permutation matrix P is multiplied to s, since x = AP−1Ps, the mixing matrix became W = AP−1

. Under either circumstance, directly calculating the Mean Square Error (MSE) by comparing the
generated s’ and source s is not appropriate. However, the first problem can be simply overcome
using unit variance E

{
s2i
}

= 1. While this still leaves the sign ambiguity, we can set the absolute
value to the all the outcomes. The Second ambiguity can also be eliminated by trying every possible
signal order when calculating the MSE. With these three processing, the MSE could be used to test
the performance of different ICA algorithms.

2.2 BSS Techniques

The FastICA algorithm is a generative model that separates out the non-Gaussian independent
components using an iterative Gram-Schmidt-like decorrelation to find the weight vectors of the
unmixing matrix that will return the component signals. For weight vectors w in the unmixing matrix,
prior to normalization the update step is:

winewunnorm
=wi −

i−1∑
j=1

wT
i wjwj (1)

Second-order source separation was created by the signal processing community to address situations
with significant correlation between samples, which is more representative of workloads contending
for the same hardware resources. AMUSE [9] (Algorithm for Multiple Unknown Signals Extraction)
is a standard second-order technique that uses covariances and autocovariances with different lags
τ = 1, 2, . . . of an observed multivariate time series.
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Second-Order Blind Identification (SOBI) relies on second-order statistics to explode the time-
correlation structure assumption of the signals. Finally, Joint Approximation Diagonalization of
Eigenmatrices (JADE) uses target matrices as the fourth order cumulants of whited signals.

Other techniques, in particular Dependent Component Analysis (DCA), were considered but were
not appropriate for the size of our data.

3 Results

We experimented with block I/O traces collected at Florida International University [5]. Each I/O is
represented by a tuple of <Time,PID,LBA,size in 512 Bytes blocks,Write or Read>. For
the sake of demonstration, we use PID as a ground truth indicator of workload label. To further
simplify the problem, we removed accesses that did not correspond to one of the top 10 PIDs. All
source traces were converted to signals, centered, whitened, and mixed using a mixing matrix of full
rank. To validate, we calculate MSE between the recovered signals and the true source signals.

3.1 Signal Quality

Figure 1: These sample histograms of PID incidence over time show that these signals are non-
Gaussian. Kurtosis values for the first 3 PIDs are -1.67, 24.6, and .303, respectively

Figure 1 shows the non-Gaussianity of our data. All other PIDs we tested had similar distribution.

Table 1: Sample PID Correlations

PID 1 PID 2 Correlation

1 2 -0.4679
1 3 -0.1701
1 4 -0.1813
1 5 -0.1204
3 5 -0.0189

We calculate correlation (Table 1) to measure the independence of our PID-derived signals.

3.2 Signal Separation

Table 2 shows the MSE for separating different mixtures of source PIDs. Jade outperforms all
other BSS techniques. To put the BSS techniques we tried in context, we also calculated the MSE
for signals returned from principal components analysis (PCA). We see, as expected, the MSE is
considerably higher for PCA because PCA has an assumption of independence between signals that
ICA does not.

All of the MSE values in Table 2 are calculated using a week of trace data. Figure 2 shows that even
ten minutes of source data is sufficient to de-interleave trace data in the workloads we examined.

4 Discussion

A major issue with using ICA for this type of analysis is the inherent assumption that the instances
(traces) that we use to separate workloads are iid. Since workloads are by the nature of the problem
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Table 2: Mean Squared Error for BSS

Source PIDs FastICA PCA Amuse Jade Sobi

1,2 0.6975 0.7464 0.4445 0.1345 0.4302
1,3 0.347 0.5618 0.1339 0.016 0.178
1,4 0.3446 0.5647 0.1146 0.0115 0.0232
0,2 0.8218 0.618 0.9403 0.3183 0.3359

1,2,3 0.4579 0.7203 0.2352 0.0969 0.2857
0,1,5 0.5779 0.8699 0.3018 0.0077 0.0142
1,3,5 0.2289 0.531 0.1999 0.01 0.0192

1,2,3,4,5 0.2708 0.9787 0.5867 0.0634 0.1974

Figure 2: Five application traces [6] were converted to signals, mixed, and separated with BSS
techniques and PCA. We see both by visual examination and the MSE that the component signals
returned by BSS techniques closely resemble ground truth (note: sign is arbitrary). The PCA signals
are much less accurate. Also, while MSE was lowest for a long trace, even the first ten minutes of
I/Os led to low MSE for BSS.

description running on the same storage system, there will be dependence in a trace as a result of
resource contention in the underlying architecture. Additionally, while PID is not a perfect indicator
of workload, we are specifically looking for functional groups of signals: it is fine if one “signal”
corresponds to multiple users or server types if they behave similarly.

Block I/O traces are generally possible to collect, but or HPC systems and other applications where
dynamic trace collection is infeasible, it may be possible to separate interleaved workloads by
clustering features in metadata snapshots and then classifying the resulting workloads with a visual
classification model.

In conclusion, we have demonstrated that, surprisingly, mixes of I/O workloads are separable using
BSS techniques. Even though they run on the same hardware, PID signals are independent and
leveraging the excess kurtosis shows very low error values. While our sample data here is limited, it
is collected from a heterogeneous group of users and applications, indicating that it will be noisier
than datasets from industry.
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