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ABSTRACT

Crowd flow forecasting, e.g., predicting the crowds entering or leav-
ing certain regions, is a fundamental task in smart city efforts. One
of the key properties of crowd flow data is periodicity: a pattern
that occurs at regular time intervals, such as a weekly pattern. To
capture such periodicity, existing studies either fuse the periodic
hidden states into channels for networks to learn or apply extra
periodic strategies to the network architecture. In this paper, we
devise a novel periodic residual learning network (PRNet) for better
modeling of the periodicity in crowd flow data. Unlike existing
methods, PRNet frames the crowd flow forecasting as a periodic
residual learning problem by modeling the variation between the
inputs (the previous time period) and the outputs (the future time
period). Compared to directly predicting crowd flows that are highly
dynamic, learning more stationary variation is much easier, which
thus facilitates the model training. Besides, the learned variation
enables the network to produce the residual between future con-
ditions and its corresponding weekly observations at each time
interval, and therefore contributes to substantially more accurate
predictions. We provide a series of empirical studies to show that
PRNet can be easily integrated into existing models to enhance
their predictive performance. We further propose a lightweight
Spatial-Channel Enhanced Encoder to build more powerful region
representations, by jointly capturing global spatial correlations and
temporal dependencies. Experimental results on two real-world
datasets demonstrate that PRNet with SCE Encoder outperforms the
state-of-the-art methods in terms of both accuracy and robustness.

KEYWORDS

Crowd flow, periodic residual, spatio-temporal data mining, urban
computing, deep learning, convolutional neural networks

ACM Reference Format:

Chengxin Wang, Yuxuan Liang, and Gary Tan. 2022. Periodic Residual
Learning for Crowd Flow Forecasting. In Proceedings of DeepSpatial °22:
3rd ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data,
Applications, and Systems (DeepSpatial "22). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Nowadays, the development of intelligent transportation systems
has drawn increasing attention as the number of vehicles grows
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Figure 1: A visualization of crowd flows in Beijing. Left hand
side: the city is divided into many regions; right hand side:
the crowd inflow of a region during a period of two weeks,
i.e., from 06 March 2016 to 19 March 2016.

over the years. The total number of motor vehicles has reached 273
million in the U.S. [23], and 6080 thousand in Beijing by 2018, re-
spectively, and it has grown to 6570 thousand in Beijing by 2020 [10].
To manage citywide transportation more efficiently, crowd fore-
casting aims to divide a city into multiple regions, i.e., even grid
cells, and generate future vehicles’ in/out-flow for each region. It is
a crucial task that facilitates a wide range of applications in urban
areas, such as assisting transportation managers to alleviate the
congestion [21, 35], guiding carsharing companies to pre-allocate
vehicles [4], helping travelers’ decision-making [13].

Spatio-temporal (ST) dependency is an important characteristic
in crowd flow forecasting: one region’s future crowd flow volume
is conditioned on other regions’ histories and its historical obser-
vations. Mainstream works [17, 34] employ convolutional neural
networks (CNNs) to capture spatial correlations and utilize differ-
ent sub-branches or channels to model temporal dependencies of
different time scales. Besides, there are some methods adopting
recurrent neural networks (RNNs) [20, 37] or Transformer [25, 31]
to enhance temporal modeling via recurrent state transformations
or attention mechanisms. However, these models always require
higher computational costs and longer inference time compared to
their CNN counterparts. Meanwhile, more recent works [15, 16]
suggest that CNNs can effectively model the spatial and channel-
wise correlations simultaneously with the Squeeze-and-Excitation
(SE) mechanism [9]. With advanced mechanisms to express com-
plex ST features, prior works have achieved promising prediction
performance.

Another key characteristic in citywide crowd flow is periodicity
[33, 34]. As can be observed from Fig. 1, crowd flow data show
periodic patterns, e.g., daily and weekly. For instance, on the daily
scale, the volume in the grid follows a similar trend that increases
during the morning and decreases during the night; on the weekly
scale, the flow pattern trends to repeat every week (see the red and
yellow line). Existing works on presenting such periodic patterns
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(a) Existing periodic models (b) Ours

Figure 2: Graphical models for periodic modelling, where X
and ¥ represent the currently observed segment and target
segment, respectively. Yz and Yr denote segments for daily
scale and weekly scale, respectively. The solid line represents
the direct relationship, and the dashed line denotes the indi-
rect relationship.

can be summarized in Fig. 2 (a). In detail, the multi-scale time in-

tervals, such as the recent segment, daily segments, and/or weekly

segments, are fed into the network for periodic learning. These
models can be grouped into two categoriefeature-basethodel

and architecture-baseds shown in Fig. 3 (a), the feature-based
models view the multi-scale observations as di erent features and
concatenate them as a tensdrg 17] for the network to process.
However, this scheme raises a new problem: the periodic infor-
mation is mixed in the early stage, while being eliminated as the
network depth increases. To tackle this issue, the architecture-based
models represent the periodicity more naturally via some extra peri-
odic strategies (see Fig. 3 (b)). For example, DeepgTntroduces

di erent branches to capture the periodicity; Periodic-CRR1
designs a loop-back mechanism to integrate the recurrent peri-
odic representations; STDMNBH utilizes the attention mechanism

to calculate the similarity of ST representations between multi-
scale segments. However, these architectures inevitably induce
high computational overheads and extra parameters, which may be
prohibitive in large-scale crowd ow forecasting tasks. Considering
these facts, one may askan we address the periodic pattern in a
more e cient manner?

To answer this question, we rstinvestigate the inherent periodic
behavior of crowd data. As shown in Fig. 1, though the daily crowd
ow often uctuates, the volume di erence of a certain region at
the same time in successive weeks (we term ipasiodic residugl
tends to be stable even in long-term trends (see the green line).
As opposed to raw crowd ow data, periodic residual hold clearer
patterns that are easier to learr2]. We argue that periodic residual
features are consolidated representations extracted from raw data
that can help to reduce the di culties in modeling complex crowd
ow patterns. By learning such features, the network can be trained
more e ciently, even with fewer parameters. Based on this insight,
we propose to think from a new perspective - introducing the
residual concept to represent the periodic behavior.

In this paper, we present a novel architecture-based framework
entitled Periodic ResidualNetwork (PRNet) for multi-step ahead
crowd ow forecasting. Instead of designing complex ST extrac-
tion models or sophisticated periodic strategies, PRNet focuses on
learning the periodic residuals. As depicted in Fig. 2 (b), PRNet
converts the learning focus from directly generating predictions to
computing the periodic residual. Formally, it structures a residual
mapping that predicts the future temporal di erences based on the
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(a) Feature-based model  (b) Architecture-based model

Figure 3: Periodicity representation in ST neural networks.

past temporal di erences. This periodic learning structure allows
the network to: 1) alleviate the computational costs by representing
the periodicity with an e cient di erencing function; 2) reduce
redundant trainable parameters by encoding each multi-scale time
interval into a shared parameter encoder; 3) make the network
more e ective and robust in long-term forecasting as the model
generates predictions based on the learned periodical residual at
each time step. To evaluate our periodic learning structure, we fur-
ther integrate it into di erent baseline networks (e.g., DeepS34],
ST-ResNet3J) and conduct extensive experiments on two real-
world datasets. Furthermore, we notice that the existing works are
ine cient to capture the global ST correlations, and therefore intro-
duce a lightweight ST enhanced network, named Spatial-Channel
Enhanced (SCE) Encoder to jointly encode the most salient global
spatial correlations as well as channel dependencies, i.e., spatiotem-
poral representation.

Our main contributions are summarized as follows:

We devise a periodic residual learning structure that learns the
periodic residual at each time interval to improve the accuracy
in multi-step ahead prediction. This structure can be easily inte-
grated into existing models and boost the model performance.
We introduce a lightweight Spatial-Channel Enhance (SCE) En-
coder to better capture global spatio-temporal dependencies,
which empirically proves to be more e ective than standard
convolutional layers.

We evaluate PRNet on two real-world datasets. Experimental
results demonstrate that PRNet achieves the best performance
among state-of-the-art approaches in long-term predictions.

2 RELATED WORK

Grid-based Crowd Flow Forecasting . Crowd ow forecasting

has been investigated for more than four decades. Early attempts
employ statistical modelsl 2, 7] to make future condition predic-
tions. In particular, some worksJ2 2§ investigate the periodicity

in crowd ows and apply the seasonal ARIMA to model it. How-
ever, these classical approaches rely on assumptions of linearity
and stationarity and thereby cannot model the complex nonlinear
ST dependency. Recently, deep learning modé|d 6 33 have
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Table 1: The notations of crowd ow, where
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%refers to the total number of selected periods and ? is the periodic index.

Notation Symbol| De nition Color in Fig 4| Shape

Closeness X2 Current segment Purple , 2 )s1B
Periodic closeness  X» Periodic observations to the current segment Blue , 2 )s1B
Prediction Y Target segment for prediction Green , 2 )opaz
Periodic prediction  Y-» Periodic observations to the target segment Orange , 2 )opa3
Closenessresidual X | The residual between closeness and each periodic closeness Pink % , 2 )s1B
Prediction residual Y | The residual between prediction and each periodic prediction Brown % , 2 )opaz

been used to capture the complex ST correlations. For example, De nition 1 (Region) : As shown in Fig. 1, the area of interest, e.g.,

DeepST B4 and ST-ResNet§3 adopt CNN-based architectures to

a city, is evenly partitioned intoa , regions based on their

learn ST correlations and achieve higher prediction accuracy. Specif- longitude and latitude [33].

ically, they integrate the periodicity into the network by feeding
multi-scale segments to di erent sub-branches. For better periodic
representations, other works consider modeling the periodic pat-
tern explicitly through looping back the periodic representation
dictionary [37] or learning the temporal similarity BZ. However,
they require massive computation costs to loop back the recurrent
hidden states or compute attention scores. Recent e orts focus on
improving spatial modeling for more accurate forecasts. Graph neu-
ral networks (GNNSs) 11, 26 have become the frontier of spatial
interactions learning in road-based network,[12 36|, however,
they have not demonstrated their advantages over CNNs on region-
based problems. Unlike the road-based network that is naturally a
non-Euclidean graph, the even grid cells in the region-based task
are treated as pixels, without explicit graph structure. Meanwhile,
CNNSs have adequate ability to fully learn spatial interactions be-
tween grids via the spatial kernels of each layer. Recently, Liang
et al demonstrates CNNs can e ectively capture the ST correlations
by jointly modeling spatial correlations and temporal dynamics.

CNNs and Attention Mechanisms . CNNs have been successfully
applied to many domains, such as computer visi@h pudio gen-
eration [24], crowd ow prediction [33, etc. Recent works§, 9]
utilize gating and attention mechanisms to further enhance the
feature interdependencies in CNNs. Speci cally, SENgiijitro-

duces squeeze and excitation operations as the gating mechanism

to recalibrate the channel-wise attention through the sigmoid func-
tion. However, it adopts global average pooling to suppress spatial
information, which makes the network unable to capture spatial
correlations e ectively. Although some works further introduce
attention to enhance the spatial representation via operating addi-
tional convolutions layers on average- and max-pooled featus [

or employ dilated convolutions to enlarge the receptive eldq,
they fail to fully uncover the global correlations. DANe8] can
capture global ST dependencies by extending the self-attention
to position attention and channel attention. However, it is com-
putationally expensive since it takes all spatial information into
account. In this paper, we model the global ST representation in
a computationally e cient manner by only considering the most
salient features.

3 FORMULATION

In this section, we rst de ne some notations and then formulate
the problem of crowd ow forecasting.

De nition 2 (Crowd ow) :The crowd ows ata certain timg can

be denotedasa3DtensB® 2R - ,Where isthe number of
attributes, e.g., in ow/out ow. Given a regiort «F ©,in ow refers

to the total number of incoming tra ¢ entering this region from
other regions during a given time interval, whileut ow is the total
number of outcoming tra c leaving from this region.

De nition 3 (Closeness & Periodic closeness) : For better illus-
tration, we de ne several segments in Table 1 and Fig. 4. Given the
current timestampy, the recent segment (i.e., closene3§] and its
corresponding periodic segments (i.e., periodic closeness in Table
1) are denoted as:

h i
Xo=P9)>189 = p9g)>18s P9 .

— C,pC cg.:;?
X19%= P1Pz *Pog Gg )i 2

where) >1gis the length of recent observationrefers to the total
number of selected periodsdenotes the length of period, ari@lis
the period index. See more details in Table 1 and Fig. 4.
De nition 4 (Prediction & Periodic prediction) : After intro-
ducing closeness, we represent the target segment for prediction at
time g and its corresponding pﬁriodic segments as:

i

v =p910)?A43 - pa.l, ,p9.)enss ,

—- pC.,pC C9.)2a43 ; ?
Y19= P1*P3 *Py; Gg1:2 °

where) 5 43is the length of target predictions.
De nition 5 (Closeness residual & Prediction residual) : We
employcloseness residualdenote the residual betweex; and

X149 andprediction residuaio represent the residual between
andYjg,as:

— C cg,;?
X=X P X2 Poicg)e ;=
— C C 9.)7n43 ; ?
Y=Y PS PG,

Figure 4: An example of the multi-scale segments notation.
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De nition 6 (External factors) Crowd ow data is often corre-
lated with external factors, such as weather conditions, time of
day and events. In this study, we denote these external factors as a
vectorE 2 R4, where;4 indicates the feature length.

Problem Statement (crowd ow forecasting):  Given closeness
X2, periodic closenesX1 o, periodic predictionYy e, the goal is to
predict the prediction residual ¥, which is equivalent to predict
the future crowd ows Y.

usage. More details of our proposed ST Module will be introduced
in Section 5.

4.2 Residual Learning Module

Statistical methods have demonstrated robust prediction by remov-

ing trends and seasonality given time series da2ag7]. In light of

these approaches, we introduce a similar concept to deep learning

networks by devising a residual learning module to eliminate the

sequential seasonality (i.e., periodicity in this paper). This new mod-

ule aims to learn the periodic residuals that are less complex but
g still maintain the periodic information. It consists of two functions:

4 PERIODIC RESIDUAL LEARNING

Fig. 5 illustrates the pipeline of our proposed PRNet, whose core is > k ; - :
a periodic residual learning structure. With the structure, PRNet  di érencing function and fusion function.

reduces the data non-stationary by utilizing the closeness resid- Di erencing function (DIFF) removes the seasonality and pro-
ual to assist prediction residual generation. For each segment (i.e., vides the periodic closeness residual as a reference of temporal
closeness, periodic closeness, and periodic prediction), we rstfed shifting to the network. Traditional statistical approaches use the
the raw inputs to the shared ST Module for spatio-temporal repre- subtraction function to eliminate the seasonality. Thus, we also
sentation. Once we obtain the high-level features for each segment, choose it as our di erencing operation since the learned ST features
we utilize a Residual Learning Module to learn prediction residual from the ST Module map to their corresponding raw observations.
features. These features are then used to generate the predicted Then the hidden states of periodic closeness residual can be cal-

deviations via a Decoder. The details of PRNet will be elaborated in
the following sections.

4.1 Spatio-Temporal Module

Generality is one of the advantages of our proposed model. Most
of the existing Spatio-Temporal (ST) Networks can be easily inte-
grated into PRNet as the Spatio-Temporal (ST) Module. A variety of
ST networks has been designed to capture spatio-temporal depen-
dencies. Based on the learning strategy, we group them into two
categories, i.e., joint ST learning network and factorized ST learning
network. As its name suggests, joint ST learning networks simulta-
neously capture spatial and temporal dependencies by mapping the
temporal inputs to CNN channels and utilizing the CNN kernels
for spatio-temporal dependencies extractiotg] 33. In contrast,
factorized ST learning networks decompose the modeling of ST into
two separate dimensions, i.e., spatial dimension and temporal di-
mension. More speci cally, they capture the spatial interactions and
temporal dependencies sequentially via convolutional laye&g [
or convolutional graph layers39 for spatial dimension and recur-
rent mechanismsZ( or attention mechanisms39 for temporal
dimension. Among these two schemes, joint ST learning networks
are usually applied to grid-based crowd ow forecasting for two
reasons: 1) The grid cells in the crowd ow tasks are even and can
be treated as pixels. 2) Recurrent and attention operations usually
require high computation costs, especially when the multi-scale
time intervals need to be considered [17].

In PRNet, ST Module extracts high-level spatio-temporal repre-
sentations (denoted ds) for each segment as:

h= 5P 8 wpee @)

whereh 2 R is the output featuresb represents the func-
tion of an ST networkWpgcdenotes the learnable parameters, and
Cis the start timestep of a given time interval ar@ls the length of
the time interval. Unlike existing attempts that encode multi-scale
time intervals into compacted feature4§ 17], each segment in our
PRNet is fed separately with a shared ST Module to save parameter

culated by subtracting the hidden state of closenbgsrom the

hidden state of periodic closenebsg generated by ST Module:
rsH =hg hoe (2

wherer 5 denotes the di erencing operator, andzH 2 R”

Note that dimension broadcast is used.

Fusion function (FUSE) works on generating the prediction resid-
ual, i.e., residual between future crowd owéand its correspond-
ing periodic predictionsr7, based on the periodic closeness residual
and periodic predictions. We use a concatenation function followed
by a canonical linear layer as our fusion function:

H =WS3'r3H k hp-° 3)
wherek is the concatenation operation, anif3 denotes learnable
parameters. Therefore, the embedded vedtoR R” can
represent the hidden states of the prediction residual, which are
conditioned on the features of closeness residual and periodic pre-
diction. It enables the model to learn deviations between future
conditions and its historical observations. It is worth noting that
with the residual learning strategy, PRNet provides stationary fea-
tures to the network so that it increases the model capacity with
no extra costs in parameter space.

4.3 External Module & Decoder

External factors, such as date, event, and weather, have signi cant
in uences on crowd ows [14 15 18 33. Same as the ST Module,
the External Module in PRNet is also a general module, which can
be plugged by any existing attempt83 34 or be omitted [1§.
The same form is for the Decoder. And the default Decoder of
PRNet is a fully-connected layer. However, instead of generating
absolute values, PRNet focuses on fully uncovering the temporal
shifting in periodicity by predicting the variation ¥ between the
future and its corresponding historical average ows basedidn

or the concatenation o™ and external factor embedding. To
strengthen the robustness of our model, gthistorical segments
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Figure 5: The overview of PRNet, where ST Module captures the ST correlations of each observed segment simultaneously.
Then the network employs a di erencing function (DIFF) to provide the closeness residual, and a fusion function (FUSE) to
generate representations for the prediction residual. The decoder generates predicted deviations for all periodical weeks.

are considered. Therefore, we de ne the loss function as:

L1\o=

) 243
g=1

ooy . (4)

where\ denotes learnable parameters in the model. Then the pre-
dicted deviation ¥ 2 R% -+ 2)2a43 can be easy to convert to

the absolute crowd ows? 2R+ 2 )7a4s:
5
9= 8:11 ¥ Yo0e%e (5)

where%is the total number of the periodic segments.

5 SPATIAL CHANNEL ENHANCED ENCODER

CNNs are widely used as the backbone to capture long-range spatial
correlations [L7, 33, but they have underestimated the relationship
between channels within feature maps. To this end, Liang e
adopt squeeze-and-excitation networks (SEN&Htp explicitly
model the channel-wise relations to enhance spatio-temporal repre-
sentation learning. However, it fails to capture complex global pat-

terns as it squeezes global spatial features at each block. To addressfeaturesS'2 R

5.2 Spatial-Channel Enhanced Block

In Fig. 6, we illustrate a single SCE block in SCE Encoder. It com-
prises three main modules: Standard CNN Module, Spatial En-
hanced Module, and Channel Enhanced Module. Since the spatial
and temporal information has been indexed to dimensions and
channels, the Standard CNN Module can capture the local spatio-
temporal correlation via convolution layers:

1c 0

> 752

ic o
1

<o _ 1< 0 1< 0 1< 0
P<=wg,, ¢ XWwg ¢h <" 15

(6)
whereWsg,, Ws, 157 andls; are learnable parameterg,refers

to a convolution operatorXt ° is ReLU activation function, and

< denotes index number of SCE Blocks. Note th&Y is z and
®2R . We will omit the index< for the same block in the
following sections.

Spatial Enhanced Module (SEM) enhances the standard CNN
by selecting the salient features globally for better spatial repre-
sentation. To achieve it, we adopt adaptive max pooling (AMP)
to down-sample the hidden staf®by selecting most important
and translate ittoS°2 R~ ° °. Then

the above issue, our SCE Encoder enhanced the SENet by introduc-the excitation operator] is adopted to adaptively recalibrate these

ing a lightweight global spatial enhanced module to emphasize the
global salient spatial features. It contains two main components:
Embedding Layer and Spatial-Channel Enhanced Block.

5.1 Embedding Layer

We follow the previous studies][7, 33 to employ an embedding
layer for a feature transformation. In detail, this layer converts each
observed segme® 2 R ) tofeature mapgz 2R
through a convolutional operation with kernel size 1, wheye
denotes the total time intervals of the segment, namply g for
closeness anyha 43for prediction.

global salient features for better spatial correlation modelling:

™

wheref refers to sigmoid functionX denotes the ReLU function,
6! °represents the gated functioﬁ\B 2R O O, Wg 2 R 0 8,
W 2R® ° ° ands 0 0 By using learnable parameters
Wg and Wp to reduce and increase the feature dimensions se-
quentially, the gated function enables the network to dynamically
control the bypass signals and only capture the most salient fea-
tures. Then we reshapﬁB and obtain the nal encoded global
spatial featureéfg 2 R 0.0

Ag=f161S%Wgo=f X SOWg Wg -
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