A Fast Unsupervised Spatial Temporal Trajectory Similarity
Measure Based on Trajectory Image Structure Matching

Xiaolin Chang
Beijing University of Technology
Chaoyang Qu, Beijing Shi, China
changxl@emails.bjut.edu.cn

ABSTRACT

In order to perform the spatial temporal trajectory similarity mea-
sure quickly and accurately, for the characteristics of large amount
of trajectory data, existence of spatial temporal heterogeneous
distribution and obvious noise, a fast computational method TISM-
CAE for trajectory image structure matching combined with convol-
utional auto-encoder is proposed. Firstly, the given spatial temporal
trajectory slices are remapped into a two-dimensional matrix. Sec-
ondly, the low-dimensional features of the trajectory images are
obtained in an unsupervised learning manner using a convolutional
auto-encoder model. Finally, the trajectory similarity is equivalent
to compare the similarity between the low-dimensional features.
The real floating vehicle dataset in Shanghai and the artificially sim-
ulated similar trajectory dataset are used for experimental analysis.
Final results show that the proposed method has a large improve-
ment in accuracy and time complexity compared with the current
commonly used methods LCSS and EDR, providing a feasible path
for fast and accurate analysis of massive spatial temporal trajecto-
ries.
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1 INTRODUCTION

With the increasing maturity of wireless communication technol-
ogy, positioning technology, sensor technology and real-time video
acquisition technology, the acquisition of spatial temporal trajec-
tory data has become more and more convenient [31]. These data
integrate spatial information, temporal information and attribute
information, and contain rich and diverse semantic information
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and behavioral patterns. Therefore mining and analysis of spatial
temporal trajectory data has become an important research topic
in the field of data mining. Spatial temporal trajectory data mining
is mainly divided into four categories [26], such as spatial temporal
trajectory clustering [21] [22], concomitant pattern mining [10],
frequent pattern mining [13] and trajectory classification. Spatial
temporal trajectory clustering refers to dividing spatial temporal
objects with similar behaviors into the same group based on sim-
ilarity measure, so that the difference between groups is as large
as possible and the difference within groups is as small as possi-
ble. Trajectory classification refers to building a model based on
the similarity measure between training trajectory data, by which
the class of a trajectory can be predicted. One of the most critical
methods for these studies is the trajectory similarity measure [28].

As an important tool for trajectory data mining, trajectory simi-
larity measure is widely used in various fields of real-world trajec-
tory computing. For example, in the field of intelligent recommen-
dation, merchants can analyze the hobbies and interests of certain
types of users by finding similar activity trajectories that satisfy
certain spatial and temporal constraints, so as to make targeted rec-
ommendations and improve users’ experience and stickiness [19].
In the field of smart traveling, users’ travel time can be reasonably
planned by drawing on their similar trajectories, which provides
the possibility of smart travel [23]. In the field of infectious disease
prevention and control, especially in the period of local outbreaks
and sporadic distribution of the COVID-19, the trajectory similarity
measure plays an important role in finding the spatial and temporal
concomitants of confirmed cases in the massive trajectory data [20].
However, the trajectory data from various sources are affected by
spatial and temporal distribution, sampling equipment, communi-
cation failures and other factors leading to uneven sampling, large
data volume, the presence of noise and other characteristics, which
bring great challenges to the efficiency and accuracy of similarity
measure between two trajectories [27] [14].

For different application scenarios and actual needs, a series of
different similarity measures have been proposed. Various trajec-
tory similarity measures have their own different delineations for
trajectory similarity [12]. With the idea of similar image match-
ing in computer vision, this paper proposes a fast computational
method of trajectory image structure matching based on convo-
lutional auto-encoder(TISM-CAE), which can evaluate trajectory
similarity measure with lower time complexity and higher accuracy
on trajectory data sets under scenarios of uneven sampling, large
data volume, the presence of noise and so on. The main contribu-
tions of this paper are as follows.
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1. We map the specified spatial temporal trajectory slices into
trajectory images and employ the idea of image processing to mea-
sure the similarity between trajectories. The trajectory images have
stronger ability to recognize the geometry and position of trajecto-
ries.

2. We use convolutional auto-encoder network to rapidly extract
trajectory image features with an unsupervised learning approach,
without the need for complex deep learning network frameworks
and training data with labels.

3. We perform extensive experimental analysis using real float-
ing vehicle dataset of Shanghai as well as a manually simulated
trajectory dataset, the results show that the proposed method has
lower time complexity and higher accuracy.

The rest of this paper is organized as follows: Section 2 describes
the related works on trajectory similarity measure. Section 3 intro-
duces the research methodology proposed in this paper. Section
4 discusses experimental data as well as extensive experimental
analysis. Section 5 gives the discussion and conclusion.

2 RELATED WORKS

Trajectory similarity measure is the basis of trajectory data mining.
As spatial temporal trajectory data integrates temporal and spatial
information, the similarity between trajectories cannot be directly
measured by common similarity measure methods such as cosine
similarity, Jaccard similarity and Euclidean distance. Although [1]
utilizes the Euclidean distance to calculate the trajectory similar-
ity, it requires a high quality of trajectories, which requires the
same number of trajectory points as well as the same sampling
interval. Experts and scholars home and abroad have conducted a
lot of research on trajectory similarity measure. Since trajectories
are mainly stored as trajectory points, when similarity measure
methods are performed on trajectories, the most intuitive way is to
use the distance between corresponding points in two trajectories
to measure the similarity between trajectories. The most commonly
used ones in the existing literature include the Dynamic Time
Warping algorithm (DTW) [5], the Longest Common Subsequence
algorithm (LCSS) [4] and the Edit Distance on Real sequence algo-
rithm (EDR) [3]. Dynamic Time Warping algorithm (DTW) achieves
local stretching or scaling of the trajectories by copying trajectory
points, so that the similarity can be measured for trajectories with
different sampling rates or different lengths, and in order to im-
prove the computational efficiency, DDTW [8] and ACDTW [9]
are proposed by segmenting the trajectories; Longest Common
Subsequence algorithm (LCSS) mainly considers the similar part
between trajectories as the trajectory similarity measure, so there
is no requirement on the trajectory sampling rate and trajectory
length. Edit Distance on Real sequence algorithm (EDR) eliminates
the effect of noise by quantizing the distance between trajectory
points as two values of 0 or 1. However, most of these similarity
measures need to match each point in the trajectory, and the time
complexity of these methods is O(m * n), where m and n are the
number of trajectory points in two trajectories. In addition, more
improvements based on several basic algorithms mentioned above
[2] [6] are used to solve the problems of high time complexity, sen-
sitivity to uneven sampling and noise in these similarity measure
algorithms.
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With the successful application of deep learning in image pro-
cessing, voice recognition, natural language processing and other
fields, trajectory similarity measure methods based on deep learn-
ing have been gradually developed. [11] introduces word vectors
in natural language processing into the representation of trajecto-
ries and proposes a method t2vec based on seq2seq representation
of trajectories for the first time, which can achieve accurate and
efficient trajectory search in uneven sampling and noisy trajectory
data. However this method is built on top of recurrent neural net-
work (RNN), and the construction of the network framework is
complicated and the learning rate is slow. [25] proposes a model
framework called at2vec to represent the similarity between two
trajectories, but the model needs to introduce POI semantic infor-
mation.

In summary, the trajectory similarity measure based on trajec-
tory points is affected by uneven sampling and noisy points. When
the number of sampling points between two trajectories is inconsis-
tent due to uneven sampling, it is challenging to align the trajectory
points with their corresponding matching points. When there are
noisy points, the final result of similar trajectories is affected by the
distance threshold, although they can be eliminated by setting the
distance threshold. The trajectory similarity measure based on deep
learning is robust to uneven sampling and noisy sampling points,
but the network framework is complex to construct, requiring a
large amount of labeled data for training, and has a slow learning
rate. Inspired by deep learning, this study uses a convolutional
auto-encoder network to quickly, efficiently and accurately match
similar trajectories in an unsupervised learning manner without
complex deep learning network framework and labeled training
data.

3 METHODOLOGY

3.1 Trajectory Image Construction

A trajectory is a series of time-stamped point records used to de-
scribe the motion of moving objects such as people, vehicles, an-
imals and natural phenomena. Theoretically, since the motion of
moving objects is continuous, the resulting trajectories should also
be continuous records. However, in reality, the limitations of po-
sitioning technology lead to the fact that the current position of
moving objects can only be collected periodically, so the phenome-
non of continuous motion of moving objects can only be collected
and stored in the form of discrete points. These discrete point
records are represented by geographic coordinate system (GCS),
longitude and latitude. The symbolic concept of trajectory in GCS is
defined in this paper as follows:Tgcs = {(Point;, time;)|1 < i < n}
where n represents the number of trajectory points contained in
the trajectory, time; represents the moment of the ith trajectory
point, and Point; represents the position of the th trajectory point.
Point; = (lon;, lat;), where lon; represents the longitude of the jth
trajectory point, lat; represents the latitude of the i*" trajectory
point.

Since the Earth is approximately an ellipsoid, the geographical
coordinates expressed by longitude and latitude cannot be calcu-
lated directly in terms of area, distance or direction using the plane
geometry formula. Firstly, the geographical coordinates need to be
projected on the map. Considering that the study area Huangpu
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District of Shanghai is in a low latitude area, Web Mercator is used
for calculation in this paper [7], as shown in the following equation:

X; = R=1I = lon; /180 (1)
(1+sin(lati/180*H))) @
(1 —sin(lat; /180 = II))

Where the radius of the earth R = 6378137m, X; represents
the projection coordinates corresponding to the geographic coor-

Y; = R/2 * log(

dinate of longitude in the ith trajectory point, ¥; represents the
projection coordinates corresponding to the geographic coordi-
nate of latitude in the i‘" trajectory point, the trajectory in the
geographic coordinates corresponding to the trajectory Tgcs in
Web Mercator projection coordinates is represented as Tyicr =
{(mctXYj, time;)|1 < i < n}, where mctXY; = (X;, Y;).

Next, the Web Mercator projection coordinates are mapped into
the set two-dimensional matrix with certain mathematical rules to
generate the trajectory image, as shown in Fig. 1.
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Figure 1: Schematic diagram of geographic coordinates to
projection coordinates.

In the first step, the selected spatial region is divided into a
limited number of grids, as shown in Fig. 1(b). The study area is
divided into grids with the single size of the same length and height
as m, where m denotes the resolution of the trajectory image. The
second step is to convert the Web Mercator projection coordinate
points into coordinates in the divided grid according to a certain
mathematical formula, which is equivalent to the coordinates in a
two-dimensional matrix. In order to ensure that the trajectory image
generated by the two-dimensional matrix is visually consistent with
the direction in the actual situation, the origin of coordinates is set
as the upper left corner of the two-dimensional matrix and noted as
O(Xo, Yo) in this paper. The row and column values of coordinates
in the two-dimensional matrix are customarily expressed by i and
Jj, as shown in Fig. 2(b). Then the symbolic formula for converting
any projected coordinates (X, Y) to row values I, and column
values Jj,; in a two-dimensional matrix is as follows:

Im=Ym-Y)/DY +1 s
{]m:(Xm—Xo)/DX+1 3)

Where represents rounding down andDXDY represents the real
length of each grid. In this paper, the trajectory image is considered
as a two-dimensional matrix containing only 0 and 1.

As shown in Fig. 1(c), it can be seen that some adjacent time-
stamped points in the two-dimensional matrix correspond to in-
coherent features. In order to better represent the structure of the
trajectory, it is necessary to interpolate two adjacent coordinate
points in the two-dimensional matrix. In this paper, we adopt the
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Algorithm 1:Digital Differential Analyzer

Input:Grid matrix L
Start point (I, Js)
End point (I, Je)
Output: Grid matrix L
/*Calculate step size of row and column*/
DI=1I,—IsD] = Je — Js
steps=max(|DI|,|DJ])
for i to steps do
Iy = Is + Isteps x i
Jm =Js + Jsteps =i
add (In, J;m) to L and assign a value of 1
End for
return L

0NNV WN =

Digital Differential Analyzer (DDA), as shown in Fig. 2(b). Let the
coordinates of the starting point of the line to be drawn be (I, J5)
and the coordinates of the ending point be (I, Je), the pseudo-code
corresponding to the steps of Digital Differential Analyzer (DDA)
is shown in Algorithm 1.

Fig. 2(c) shows the image of a real GPS trajectory data in the real
geographic base map and the trajectory image generated with the
algorithm.

v| oxe¥y) JIm 7

Figure 2: Schematic diagram of trajectory image generation.

3.2 Convolutional Auto-encoder Model

Auto-encoder network is a feed-forward neural network for data
compression and feature extraction, which is widely used in un-
supervised learning [16]. However, in the classical auto-encoder
network structure, all neurons are fully connected with the previ-
ous layer, which requires a lot of parameter adjustment during the
learning process and may lead to gradient disappearance during
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back propagation, thus resulting in the loss of local spatial struc-
ture information of the image. The proposed convolutional neural
network (CNN) makes image feature extraction more reasonable
and greatly reduces the number of parameters [24]. Thanks to the
idea of convolutional neural network (CNN), the convolutional
auto-encoder network (CAE) adds a convolutional layer for feature
extraction before feature encoding and adds a deconvolutional layer
for reconstruction operation in feature decoding [30].

The TISM-CAE proposed in this paper combines the advan-
tages of convolutional operations in convolutional neural network
and unsupervised training in auto-encoder network, enabling it
to process trajectory image data based on convolutional opera-
tions during unsupervised learning for feature extraction as well
as feature dimensionality reduction. Compared with traditional
auto-encoder network, convolutional auto-encoder network can
learn the spatial representation of images better, retaining more
local details of images and making the model easy to train and
reconstruct better. By exploring several successful convolutional
auto-encoder networks, the proposed convolutional auto-encoder
network is designed as follows. The network structure includes a
convolutional encoder and a convolutional decoder, as shown in
Fig. 3. The convolutional encoder has four convolutional layers
and four pooling layers. Given a gridded trajectory image I, the
convolutional encoding operation is defined as follows.

mi = +C"+D) 4)

Where m; represents the activation function, * represents the
two-dimensional convolution operation, C" represents the nth con-
volution kernel, and b represents the bias term. The size of the
convolutional kernels in each convolutional layer is set to 9%9, 7*7,
5*5 and 3*3, the number of corresponding convolutional kernels is
set to 16, 16, 8 and 4. A maximum pooling layer with a grid size
of 2*2 is added between the different convolutional layers, and the
activation function uses the ReLU function commonly used in im-
age processing. After the convolutional coding layer, the data size
becomes 4 two-dimensional matrices, which are treated as feature
vectors of the trajectory image after spreading.

Next, the trajectory image is reconstructed using the convolution
decoder, which uses edge zero padding in order to maintain spatial
resolution, and the convolution decoder operation is defined as
follows.

0; = (mj = Cn + I;) (5)

Where o; represents the output of the ith trajectory image after
reconstruction, represents the n’ h convolution kernel in the inverse
convolution process, and represents the bias term in the inverse
convolution process. There are four inverse convolution layers in
the convolution decoder defined in this paper. The convolution
kernel size of each inverse convolution layer is 3*3, 5*5, 7*7 and 9*9,
and the corresponding number of convolution kernels are set to
4, 8, 16 and 16 respectively. The activation function uses the ReLU
function.

The loss function in this paper uses the mean square error (MSE)
and the loss function formula is defined as follows:

1 )
MSE = ;(Xi -Y) (6)
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Where N represents the number of batches, X; represents the
2D matrix corresponding to the i’ h original trajectory image in the
batch, Y; represents the generated trajectory image corresponding
to the it" original trajectory image in the batch. When the mean
square error is smaller, it indicates that the generated trajectory im-
age is closer to the original trajectory image, which means that the
low-dimensional feature vector generated by the convolutional en-
coder can better represent the original trajectory image. Therefore,
the similarity between trajectories can be well represented by com-
paring the Euclidean distance of the feature vectors corresponding
to different trajectory images between two.

3.3 Trajectory Similarity Evaluation Criteria

There is no universally accepted standard for trajectory similarity
measure, and the results and similarity criteria calculated by dif-
ferent trajectory similarity algorithms are not consistent, so it is
impossible to quantitatively assess the accuracy of the results of
different trajectory similarity algorithms.

For artificially simulated trajectory datasets, [18] proposes var-
ious methods for artificially simulated similar trajectory datasets
and the evaluation criteria for the accuracy of the calculation results

of corresponding different similarity measure algorithms, which is

based on the principle that the list istf.ef °"¢ consisting of k most

similar trajectories queried by trajectory T in the original trajectory

dataset and the list list;f fer consisting of k most similar trajecto-
ries queried by trajectory T in the artificially similar trajectory
dataset are close to each other. By calculating the Spearman’s rank
correlation coefficient of the two lists, when the result is closer to
1, it indicates that the corresponding trajectory similarity measure
algorithm has higher accuracy.

Since it is difficult to obtain the real trajectory datasets with sim-
ilar trajectory labels, the trajectory clustering results are generally
used for real trajectory datasets to indirectly assess the accuracy of
different trajectory similarity measure algorithms, because cluster-
ing results are highly dependent on similarity calculations, and high
quality clustering results can be obtained if trajectory similarity
can be accurately measured. [2] proposes a way to evaluate real
trajectories using hierarchical clustering, through two perspectives
of inter-class distance and intra-class distance. Firstly, it is neces-
sary to approximately find the trajectory center T¢* of the real
trajectory dataset T, finding the trajectory that has the smallest
sum of distances to other trajectories in a class, and the symbolic
definition of T* is as follows:

T
n
T = min Z D(T, T7) )
T 1iiefo,..nT]
ACL0n T | 2T
Assuming that Cy, ..., Ck are clustering centers after clustering

the real trajectory dataset T, the intra-class distance (WC) and
inter-class distance (BC) are defined symbolically as follows:

K
BC= )" D(Tf*, TE (8)
K=1
Ko .
WC=) —— D(TE*, T') )
1;:1 ICk] T"GZC o
- K
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Figure 3: Convolutional Auto-Encoder Model.
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4.1 Data Sets and Operating Environment

The data set used in this paper is real floating vehicle GPS records,
which collected 11,870 floating vehicle travel records generated in
one day in Huangpu District, Shanghai, with a trajectory sampling
frequency of 1s, and each trajectory includes vehicle ID, the lon-
gitude and latitude coordinates of trajectory point, sampling time
and other information. Since the trajectories of floating vehicles are
limited by the road network, they may pass the same road section
several times in a day, so each trajectory is segmented to get a
trajectory close to a straight line, avoiding the trajectory of turning
back and circling. The principle of trajectory segmentation in this
paper is that when the angle formed by three consecutive sam-
pling points in a trajectory is less than 145°, the middle sampling
point will be regarded as an inflection point, and all the inflection
points in a trajectory will be found and the trajectory between
two adjacent inflection points will be regarded as a trajectory close
to a straight line. Take the logarithm of longitude and latitude
points contained in each track as the track length,the lengths of
the different straight-line segments obtained by segmenting all the
trajectories in Huangpu District in a day are as follows.

It can be seen from Fig. 4 that the length of the trajectory after
segmentation is concentrated below 20, which means that there are
more short-circuit sections in the road network in Huangpu District,
Shanghai, and the longer the length of the trajectory means that
the floating vehicle travels on the highway, first-class highway and
other road networks, and it is more likely that the trajectory length
appears in the same range is the trajectory of different floating
vehicles walking on the same road network. In order to balance

[10~20) [20~30) [30~40) [40~50) [50~60) [60~70) [70~80)
Tracking record range distribution

Figure 4: Track length range distribution.

the computational cost as well as to select longer linear trajectory
segments, 429 trajectories with lengths between 40 and 50 are
selected for analysis in this paper.

The algorithm in this paper is implemented in PyCharm soft-
ware using python 3.6 programming language. The program runs
on Windows 10 operating system, and the computer’s central pro-
cessing unit (CPU) is a 2.3GHz Intel i5-8300H processor with 16GB
of running memory.

4.2 Convolutional Auto-encoder Network
Parameter Setting

In order to improve the generalization and robustness of the con-
volutional auto-encoder network model proposed in this paper,
various parameters are discussed and analyzed in this section. Ac-
cording to the algorithm proposed in this paper, the target area
needs to be gridded. The smaller the grid size, the lower the res-
olution of the trajectory image, which easily leads to the loss of
small-scale geometric features in the original trajectory; The larger
the grid size is, the higher the resolution of the trajectory image,
which easily leads to the incoherent features corresponding to ad-
jacent timestamp points in the original trajectory and the higher
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Table 1: The Imapct Of Cell Size And Batch Size On Loss

Cell Size 32 64 128

Batch Size=200 0.0438 0.0113  0.0299
Batch Size=300 0.0416 0.0076 0.0108
Batch Size=400 0.0608 0.0183 0.0120

information loss rate and longer computation time during the train-
ing process. In order to determine the grid size, we make the grid
size 32, 64 and 128 with the same learning rate, and the batch size
200, 300 and 400 respectively. And the training results are evaluated
according to the mean square error loss function. The loss values
at different resolutions and different batch sizes are shown in Table
1.

From Table 1, we can see that the mean square error loss value
can be optimized when the batch size is 300 and the grid size is 64,
therefore, in this paper, we choose a batch size of 300 and a grid size
of 64. On this basis, the learning rates are 0.005, 0.001, 0.0005 and
0.0001, and the training iterations are 4000 times under different
learning rates. Fig. 5 shows the effect of different learning rates on
the loss values, and the model proposed in this paper can get better
results when the learning rate is 0.0005.

0.03
0.025
0.02
0.015

MSE Loss

0.01
0.005

0
1 501 1001 1501 2001 2501 3001 3501 4001

Epoch

—0.0001 0.0005 0.001 0.005

Figure 5: Effect of different learning rates on loss value.

4.3 Experimental Analysis of Artificially
Simulated Trajectory Dataset

This section implements two trajectory transformation operations,
as downsampling and adding noise points, by drawing on several
methods for constructing similar trajectory datasets proposed in
[18]. The trajectory transformation refers to the execution of several
types of transformations on the original trajectory in a controllable
way for any trajectory in the trajectory dataset, the controllable
way refers to the adjustment parameters. There are two parameters
set in this paper, which are ratio and distance. The ratio is used
to specify the percentage of transformed points to the number of
original trajectory points. For example, the length of the trajectory
to be transformed is 100, Ratio=0.1 means there are 100*0.1=10
trajectory points to perform the corresponding operation. The dis-
tance is used to specify how far the trajectory point to perform the
transformation operation is from the original position, for example,
distance=10m means the trajectory point after the operation is 10m
away from its original position. The two trajectory transformation
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Table 2: Classification Of Trajectory Transformation Opera-
tions

Transformation Type = Adjustment Parameters

downsampling ratio
adding noise points ratio,distance

operations set in this paper are shown in Table 2, downsampling
means deleting the specified ratio number of trajectory points for
any trajectory in the real trajectory data set, when the trajectory
Adding noise points means adding a certain number of anomalies to
any trajectory in the real trajectory data set, using ratio to control
the number of anomalies added to the original trajectory and using
distance to control how far the anomalies can be shifted.

4.3.1 Results of Trajectory Similarity Evaluation After Downsam-
pling Process. In order to verify the effect of removing trajectory
points on the similarity measure results of TISM-CAE and the com-
parative algorithms LCSS and EDR, this paper generates similar
trajectory datasets by adjusting the ratio parameter, which is used
to test the Spearman rank correlation coefficients between [ ist;f fer

and [ ist?ef ¢ generated by different similarity measure algorithms.

The ratio parameters are set to 10%, 20% and 30% respectively. To
ensure the reliability of the results, 10 trajectories are randomly se-
lected among 429 original trajectories, the averaged Spearman rank
correlation coefficients of each trajectory under different similarity
measure algorithms are calculated. The correlation coefficient val-
ues of different trajectory similarity measure algorithms are shown

in Fig. 6.

10% 20% 30%

Downsampling rate

e 2 o o
R o o~

Correlation coefficient value

(=]

mTISM-CAE ®mLCSS ®EDR

Figure 6: Trajectory similarity evaluation for downsampling
processing.

As can be seen from Fig. 6, the results of different similarity mea-
sure algorithms have the same trend when dealing with trajectories
with missing sampling points, the correlation coefficient values
all decrease as the downsampling rate increases. The algorithm
TISM-CAE proposed in this paper still has the highest correlation
coefficient values at different downsampling rates, which means
a higher accuracy, with an average improvement of 3.1% over the
best-performing LCSS algorithm.

4.3.2  Results of Trajectory Similarity Evaluation After Adding Noise
Points. In order to verify the influence of adding noise points on
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the similarity measure results of TISM-CAE and the comparison
algorithms LCSS and EDR, this paper only adds some significant
anomalous sampling points on the original trajectory data set, and
sets the ratio parameter to 10% and 20%, and the distance parameter
to 10m and 50m. In order to ensure the reliability of the results, 10
trajectories are randomly selected among 429 original trajectories,
and the averaged Spearman rank correlation coefficients between

list;f fe" and list?ef °T¢ are calculated for each trajectory under

different similarity measure algorithms. The correlation coefficient
values of different trajectory similarity measure algorithms are
shown in Fig. 7.

0.6 | | | |

10%,10m 20%,10m 10%,50m 20%,50m
Noise point parameter setting

(=]
=)

o
B

Correlation coefficient value
o
=]

uTISM-CAE mLCSS ®mEDR

Figure 7: Trajectory similarity evaluation for adding noise
point.

As can be seen from Figure 7, the algorithm TISM-CAE proposed
in this paper has the highest correlation coefficient value above
the trajectories processed with different added noise points, which
means a higher accuracy, with an average improvement of 1.1%
over the best performing LCSS algorithm.

4.4 Experimental Analysis of Real Trajectory
Dataset

In order to verify the accuracy of the similarity measure results
of the algorithm TISM-CAE and the comparison algorithms LCSS
and EDR on the real trajectory dataset, in view of the absence of
a reliable evaluation criterion to quantitatively assess the similar-
ity results of different algorithms, this section uses the trajectory
clustering results to indirectly assess the accuracy of different al-
gorithms. Firstly, 100 trajectories are randomly selected in the real
trajectory dataset, then the T®* of the approximate central trajec-
tory is calculated according to (7) using different similarity measure
algorithms, finally the intra-class distance (WC) and inter-class dis-
tance (BC) are calculated according to (8) and (9), and the AC value
is obtained. The clusters are set to 1 90 in this paper, the clustering
results of different algorithms are shown in Fig. 8.

From Fig. 8, it can be seen that with the increase of the number
of clusters, the AC values of all types of algorithms are decreasing
and are approaching the value of 0. Among them, the AC values of
the algorithm TISM-CAE in this paper are significantly lower than
those of LCSS and EDR, indicating that the algorithm in this paper
has better clustering effect.

In order to compare the time complexity between different algo-
rithms, this paper tends to measure the execution time of similarity
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Figure 8: Clustering results of different similarity measure
algorithms.

computation for different number of trajectories. In particular, in
order to obtain more fair experimental results, 100, 200, 300 and 400
trajectories are randomly selected in the original real 429 trajectory
dataset in this paper, and each similarity algorithm computation
experiment is run 50 times for different number of datasets to obtain
the average results. The computation time and trend of TISM-CAE
and the comparison algorithms LCSS and EDR are visualized in Fig.
9. In comparison, the algorithm proposed in this paper can greatly
improve the computational efficiency.

Time/s
(=T S T I Y - ]

/

100 200 300 400
Number of tracks

——TISM-CAE ——LCSS EDR

Figure 9: Running time of different similarity measure algo-
rithms.

5 DISCUSSION

In this paper, we employ real floating vehicle trajectory data in
Huangpu District, Shanghai, segment all trajectories, and select
trajectories with medium length for experiments. The proposed
TISM-CAE shows better results both in accuracy and time complex-
ity. However, some limitations in the setting of experiments should
not be neglected.

Firstly, limited by the floating car data resource, the research area
mainly covers Huangpu District in Shanghai city. Since TISM-CAE
provides an open framework for trajectory similarity estimation,
further experiments can be carried out with the help of suitable
data resource at urban or regional level.

Next, the training process of the convolutional auto-encoder
model is limited by the floating car data with different trajec-
tory lengths. In order to reflect the general situation, in the pre-
processing step, trajectories whose number of GPS track points are
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less than 40 are filtered, and trajectories with long coverage are
firstly segmented within a medium number of GPS track points (i.e.,
the number of GPS track points between 40 and 50) according to
literature review[15] [29] [17]. The medium-length trajectories can
better grasp the internal rules of spatial-temporal mobility, showing
a better experimental effect.

What’s more, the sampling frequency of floating car data also
affects the processing time of trajectory similarity estimation. The
time complexity of traditional algorithms LCSS and EDR is O(n?),
where n is the GPS record number in a given trajectory. The time
complexity of the proposed TISM-CAE is not affected by the sam-
pling frequency since raster data can be processed in a linear man-
ner. This characteristic makes TISM-CAE more suitable for paral-
lelization, showing a valuable avenue for epidemic prevention and
control.

6 CONCLUSION

In this paper, we propose a fast computational method TISM-CAE
for trajectory image structure matching combined with convolu-
tional auto-encoder. The accuracy of TISM-CAE outperforms LCSS
and EDR on similar trajectory datasets with uneven sampling and
noise in artificial simulations. The accuracy of different trajectory
similarity measure algorithms is indirectly evaluated using trajec-
tory clustering results on real trajectory datasets, where TISM-CAE
clustering is the best, while the time complexity between the algo-
rithms is compared using different number of trajectories, TISM-
CAE has the best computational efficiency. This model is accurate
and efficient, with good generalization, and provides a new solution
for trajectory similarity measure method.
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