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ABSTRACT
Seasonal frosting and defrosting on the surface of Mars is hypothe-
sized to drive both climate processes and the formation and evolu-
tion of geomorphological features such as gullies. Past studies have
focused on manually analyzing the behavior of the frost cycle in the
northern mid-latitude region of Mars using high-resolution visible
observations from orbit. Extending these studies globally requires
automating the detection of frost using data science techniques
such as convolutional neural networks. However, visible indica-
tions of frost presence can vary significantly depending on the
geologic context on which the frost is superimposed. In this study,
we (1) present a novel approach for spatially partitioning data to
reduce biases in model performance estimation, (2) illustrate how
geologic context affects automated frost detection, and (3) propose
future work to further mitigate observed biases in automated frost
detection work.
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1 INTRODUCTION
As on Earth, frost will accumulate on the Martian surface from the
poles towards the equator each winter. This frost is an important
driver for surface geological and climate processes [2] and provides
a key observable constraint for studies of how volatiles are trans-
ported around Mars in the present climate [3]. Unlike the Earth, the
atmosphere of Mars is comprised primarily of carbon dioxide (CO2)
and this volatile constitutes most of the frost, falling as snow or
condensing at the surface due to surface temperatures falling to the
CO2 frost point. A small amount of water frost will also form when
temperatures are below the water (H2O) frost point, but only if the
local concentration of H2O vapor in the atmosphere is high enough.
A global, high-resolution map of where and when specific types of
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frost form around Mars would be a great aid towards generation
of a comprehensive view of the Martian global frost cycle and an
important input for many studies focused on understanding Mars’
atmospheric dynamics, volatile budget, landscape and landform
evolution, and surface operations of robotic and human explorers.

Confident detection of Martian frost and characterization of its
type (i.e., H2O or CO2, snowfall or surface condensate) requires
the combination of information across multiple remote sensing in-
struments, including high-resolution visible imaging systems. Over
100 TB of high resolution surface image data has been returned
from Mars, making it infeasible to manually analyze these images
for the presence of frost. Therefore, we have trained a convolutional
neural network (CNN) model to detect frost using a corpus of la-
beled data from previously studied frost sites. The model can be
deployed across the entire image dataset to automatically detect
frost and enable global-scale scientific analysis of the frost cycle.

This paper describes our initial efforts to train and validate a
Martian frost detection model for visible images. We describe some
domain-specific challenges and approaches related to label collec-
tion, validation, and bias characterization. We find that detection
recall is biased against certain underrepresented terrain types such
as dunes, and we propose future work to mitigate this bias.

2 BACKGROUND
The scientific community is interested in better understanding the
Martian global frost cycle, its effects on surface evolution, and its
role in the larger Martian climate system. The extent of the contigu-
ous seasonal frost cap and broad presence of frost has been mapped
using low-resolution (0.1–6 km/pixel) thermal instruments [11],
while frost within specific small areas (including areas with patchier
frost) has been investigated using medium-resolution (18m/pixel)
spectral instruments [12] and high-resolution (25–50 cm/pixel) vis-
ible instruments [5]. Due to the large volumes of data, extending
the latter type of focused site studies globally, so as to combine
that view with the global, low-resolution results, requires an auto-
mated approach. In this paper, we focus on training and evaluating
a CNNmodel for frost detection within observations acquired using
the High Resolution Imaging Science Experiment (HiRISE) instru-
ment [10], which provides visible band, high-resolution surface
images.
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Figure 1: Previously studied northern mid-latitude frost sites used for training: A: 64.550◦N, 315.907◦E, B: 58.236◦N, 89.607◦E,
C: 63.738◦N, 11.035◦E, D: 42.572◦N, 67.332◦E, E: 56.847◦N, 350.401◦E, F: 59.839◦N, 135.999◦E, G: 64.829◦N, 209.406◦E.

Figure 2: Visible indications of frost, including uniform
albedo (top left), polygonal features (top right), halos (bottom
left), and defrosting marks on dunes (bottom right).

In order to train a CNN frost detection model, we used HiRISE
observations collected for a previous frost study in the northern
mid-latitude region of Mars [15]. The 7 sites we focused on (Fig-
ure 1) are impact craters containing dark-colored basalt dune fields
on which frost is visually apparent in the winter. The presence of
frost on dunes indicates that regional conditions are favorable for
frost formation, which helps to disambiguate whether frost may be
present on nearby terrains. This aspect of the manual frost detection
methodology highlights a key challenge for traditional machine
learning models: confident frost detection often requires the use of
larger scale contextual information not available to CNN models
using only local image information. To address this challenge, we
focused on detecting visible indications of frost, which include a
uniform bright albedo, polygonal features, halos, and defrosting
marks (see Figure 2) but excludes frost that is only detectable at
other wavelengths [8]. This mirrors as closely as possible the man-
ual frost detection problem, excluding the final step of assimilating
information across scales and imaging modalities.

Our dataset consists of repeated observations of the same loca-
tions, which introduces another challenge when training models;
we must account for the fact that the same locations are observed at
different times throughout the seasonal cycle. In addition, because

the data are highly clustered into discrete sites, it is necessary to ac-
count for these correlations during the validation process to prevent
“data leakage” across the training, validation, and testing sets [6, 14].
Below, we describe a novel spatial partitioning to address this chal-
lenge. One benefit of the overlapping images is that observations
during summer months can be used to provide frost-free (negative)
training examples, whereas observations during winter months
provide candidate frost (positive) examples.

3 METHODOLOGY
In this section, we provide an overview of our methodology from
data generation to evaluation, with a focus on aspects specific to
our dataset and problem domain.

3.1 Creating a Machine Learning Ready Dataset
Starting from HiRISE observations of the northern mid-latitude
sites shown in Figure 1, we produced a set of labeled image tiles
for the “frost” (positive) and “background” (negative) classes. Since
determining frost composition is not straightforward using visible
image data alone, we did not attempt to differentiate CO2 and H2O
frost. HiRISE observations are typically around 10,000 pixels across,
and of variable length depending on along-track exposure during
“push-broom” imaging.We used themap-projectedHiRISE products
available from the Planetary Data System (PDS), which are between
25–100 cm/pixel resolution [9]. Because entire observations are too
large for most labeling tools, we break each observation into a
“subframe” that is 5,120 pixels along each dimension (except for par-
tial subframes remaining near observation edges). Any subframe
containing more than 75% of pixels outside the valid map-projected
data area were discarded. We randomly selected 15 subframes con-
taining frost identified from previous studies and 15 without frost
from each of the 7 sites, for a total of 210 subframes. Only the 105
frosted subframes required more detailed labeling.

We used the Labelbox1 platform to annotate polygonal bound-
aries around regions with visible evidence of frost. For each polygon,
we collected additional information from the labeler including the
applicable visible indicators as well as geologic context, which is
either “dunes,” “gullies,” “crater rim/wall,” or “other.” Here, the geo-
logic context categories are mutually exclusive, so labelers could

1https://labelbox.com/

https://labelbox.com/
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Figure 3: Site locations within the HEALPix partition (white
grid) of the surface (North pole orthographic projection).

only pick one geologic context per frost polygon. We used the ge-
ologic context information to investigate terrain-dependent bias
in classifier performance. To document the labeling process, we
performed an iterative series of labeling sessions with both data
science and science domain experts. Domain expert labeling guid-
ance and clarifications at each iteration were captured in a labeling
guide, included with the publicly available dataset2. A total of 6
subframes, detailed in the released dataset, were excluded due to
contamination with excess instrument noise or cloud cover. Each
subframe was labeled by three different annotators.

Finally, we split each subframe into 299× 299 pixel tiles to gener-
ate a labeled dataset for training and evaluation. For each tile, the
class label was determined through majority vote by comparing
the set of overlapping polygons across the three annotators. If the
number of polygons overlapping a tile is fewer than the required
majority threshold, it was discarded to avoid ambiguous examples.
The tiling process also discards any frost tiles that contain more
than 10% black pixels, which would indicate that they fall partially
outside the valid map-projected image data.

3.2 Spatial Validation
We used a standard train, validation, and test split methodology to
evaluate the classifier both during and after training. Because the
tiles derived from HiRISE observations are spatially clustered, it is
important to split the data in such a way that does not mix tiles from
the same repeatedly imaged region across train, validation, and test
folds. Here, we present a novel application of Hierarchical Equal
Area isoLatitude Pixelation (HEALPix) to spatially divide the globe
into equal-area regions for model validation [4]. The advantages of
HEALPix over other partitioning approaches is that it can be param-
eterized to flexibly subdivide the surface to arbitrary granularity
(𝑁side = 8 for this application, meaning that each base-resolution
pixel is divided into 8 along each side). The equal-area nature of
the pixelization also ensures that no regions are disproportionately
represented. The pixelization used for our study, along with the
location of the northern mid-latitude sites, is shown in Figure 3.

2http://doi.org/10.5281/zenodo.6561241

Context Other Crater Rim/Wall Gully Dune
Train 83.1% 10.0% 2.6% 4.3%
Test 98.3% — — 1.7%

Table 1: Distribution of Geologic Context in Train/Test Sets
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Figure 4: Comparison of pixel intensity distributions across
all train and test tile pixels.

3.3 Model Training and Evaluation
We fine-tuned the InceptionV3 model [13] for frost detection by
adjusting the weights in the final fully-connected layer using Ten-
sorFlow [1]. The learning rate was fixed to 10−3, and the batch
size was set to 1. Training was performed for 100 epochs using the
Adam optimizer [7] and cross-entropy loss, and the model with the
best validation set accuracy was selected. We used classification
accuracy to evaluate overall model performance on the training,
validation, and test sets. To understand how geologic context affects
detection for the positive frost class, we evaluated performance on
the frost tiles using recall separately for each context.

4 RESULTS
The full labeled dataset contains 23,767 tiles, nearly balanced with
12,657 frost tiles and 11,110 background tiles (53.3% frost tiles).
During tile generation, 6471 potential frost tiles were excluded due
to label ambiguity. Due to the HEALPix-based spatial partitioning,
there is some unevenness in splitting the data, so the training,
validation, and test sets comprise 65.3%, 14.3%, and 20.4% of the
data set, respectively. Total labeling time across all three annotators
was 11.5 hours, which corresponds to 1.7 seconds of labeling effort
per tile produced. The validation set accuracy was maximized on
the 97𝑡ℎ training epoch with a value of 99.4%. The selected model
also has a training set accuracy of 99.4% and a test set accuracy
of 92.0%. We hypothesize that the drop in accuracy on the test set
relative to the validation set is in part due to inter-site variation in
overall image tile characteristics.

Table 1 shows the distribution of geologic contexts (determined
by majority vote across annotations) in both the train and test
sets. The splitting of data by spatial partitioning induces a signifi-
cant shift in this distribution in which two of the contexts (Crater
Rim/Wall and Gully) are not represented in the test set. This sug-
gests a relatively large degree of variability in terrain types covered
by observations at each site. Figure 4 shows the overall differences
in pixel intensity distributions across the train and test sets. While

http://doi.org/10.5281/zenodo.6561241
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Figure 5: Frost detection recall scores as a function classification threshold for train (left) and test (right) sets.

these distributions are similar, they do show some degree of overall
covariate shift in addition to the shift in geologic context.

Focusing on context-dependent performance, Figure 5 shows
classifier recall on the train and test sets for each individual geologic
context. Recall is plotted as a function of classification threshold.
Even within the training set, there is reduced recall for some con-
texts, particularly gullies and dunes. Within the test set, there is a
significant drop in recall for dunes relative to other contexts.
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Figure 6: (Top) Difference in pixel intensities across dune
images within train and test sets. (Bottom) Representative
examples of dune tiles in train and test sets.

To better understand the drop in frost recall scores on dunes, we
visually inspect the differences in these tiles across the train and
test sets, shown in Figure 6. Overall, we see that the distribution
of pixel intensities is multi-modal in the training set, with some
overall bright and dark observations, whereas in the test set, only
one mode is represented with darker pixels overall. The lower half
of Figure 6 shows some representative examples from each set and
shows a difference in the diversity of frost appearance across the

two sets. These overall differences in brightness may be due to
some combination of exposure and illumination across sites.

5 CONCLUSION AND FUTUREWORK
In this work, we explore the use of ML models to automate the
detection of surface frost in high-resolution Martian images. Specif-
ically, we propose a new application of HEALPix for partitioning
spatial data to mitigate artificially inflated estimates of generaliza-
tion performance across geologically varying sites on the surface of
Mars. We explore the biases in model performance induced by the
variability of observed geologic and observational characteristics
across sites. In order to quantify this bias, collecting information
about geologic context during labeling was an essential component
of building a machine-learning-ready dataset for this domain.

We found that geologic context bias is present and significant
for this model’s performance on the test set, specifically for dune
fields often found in northern mid-latitude craters. Interestingly,
for human annotators, dunes often provide strong evidence of frost
due to the striking visual appearance of defrosting marks which
expose dark basalt sand beneath light-color frost. However, there
is also a large degree of diversity in frost appearance on this un-
derrepresented terrain type, both inherently and due to differing
illumination and observational conditions, perhaps making the
concept challenging for the classification model to learn.

To improve model performance and generalizability in future
work, we propose (1) expanding the training set to include more di-
verse examples of underrepresented terrain types, (2) expanding the
number of sites used to improve representation of all terrain types
in the validation and test sets, and (3) performing contrast- and
brightness-based augmentation to promote generalization under
varying observational conditions. We expect these improvements
will permit the training of models better suited for full-planet frost
detection, thereby facilitating the creation of global frost maps.
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