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ABSTRACT
Graph neural networks (GNNs) have exhibited remarkable perfor-
mance under the assumption that test data comes from the same
distribution of training data. However, in real-world scenarios, this
assumption may not always be valid. Consequently, there is a grow-
ing focus on exploring the Out-of-Distribution (OOD) problem in
the context of graphs. Most existing efforts have primarily concen-
trated on improving graph OOD generalization from twomodel-
agnostic perspectives: data-driven methods and strategy-based
learning. However, there has been limited attention dedicated to
investigating the impact of well-known GNN model architec-
tures on graph OOD generalization, which is orthogonal to ex-
isting research. In this work, we provide the first comprehensive
investigation of OOD generalization on graphs from an architecture
perspective, by examining the common building blocks of modern
GNNs. Through extensive experiments, we reveal that both the
graph self-attention mechanism and the decoupled architecture
contribute positively to graph OOD generalization. In contrast, we
observe that the linear classification layer tends to compromise
graph OOD generalization capability. Furthermore, we provide
in-depth theoretical insights and discussions to underpin these dis-
coveries. These insights have empowered us to develop a novel
GNN backbone model, DGat, designed to harness the robust prop-
erties of both graph self-attention mechanism and the decoupled
architecture. Extensive experimental results demonstrate the effec-
tiveness of our model under graph OOD, exhibiting substantial and
consistent enhancements across various training strategies.
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1 INTRODUCTION
GraphNeural Networks (GNNs) have emerged as a powerful tool for
representation learning on various graph-structured data, such as
social networks [19, 42, 43], citation networks [12, 15, 46], biological
networks [34, 36], and product graphs [5, 7, 23]. The representations
learned by GNNs can tremendously facilitate diverse downstream
tasks, including node classification [25, 27, 32], graph classifica-
tion [17, 30], and link prediction [47, 49]. In many of these tasks, it
is conventionally assumed that training and test datasets are drawn
from an identical distribution. Nonetheless, this assumption is often
contravened in practical scenarios [38, 39]. For instance, for paper
classification on citation graphs, models may be trained on papers
from a specific timeframe but later be required to make predictions
for more recent publications [39]. Such discrepancies between train-
ing and test data distributions outline the out-of-distribution (OOD)
challenge.

Recent studies on GNNs have pointed out potential vulnerabili-
ties when these models face distributional shifts [3, 20, 21, 38]. To
counteract this, existing techniques aim to enhance graph OOD
generalization for node classification tasks majorly from two per-
spectives: data-based and learning-strategy-based methods. Data-
based methods focus on manipulating the input graph data to boost
OOD generalization. Examples of such strategies include graph
data augmentation [10, 44] and graph transformation [14]. On the
other hand, learning-strategy-based methods emphasize modifying
training approaches by introducing specialized optimization objec-
tives and constraints. Notable methods encompass graph invariant
learning [39, 40] and regularization techniques [48]. When inte-
grated with existing GNN backbone models [9, 15, 33, 37], these
methods can enhance their OOD generalization capabilities.
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While these techniques have made strides in addressing graph
OOD challenges, they primarily focus on external techniques for
improving OOD generalization. Moreover, there is a phenomenon
where different GNN models exhibit varying performance in graph
OOD scenarios[14]. Hence, there remains a significant gap
in our understanding of the inherent OOD generalization
capabilities of different GNN backbone architectures. This
lack of insight raises critical questions: Which GNN architecture
is best suited when dealing with OOD scenarios? Are some models
naturally more robust than others? There is a pressing need to delve
deeper into these architectures, comprehensively assess their innate
capabilities, and provide clearer guidelines for their deployment in
OOD situations.
Research Questions. To bridge the gap, this paper presents the
first systematic examination on OOD generalization abilities of
popular GNN architectures, specifically targeting the node classifi-
cation task. Our analysis is framed around three key questions:
Q1: How do distinct GNN architectures perform when exposed to

OOD data?
Q2: If there are performance differences as indicated in Q1, can we

identify specific designs within GNN architectures responsible
for these variations? What could be the underlying causes?

Q3: Informed by the insights from the previous questions, can we
develop new GNN designs that enhance OOD generalization?

Contributions. By addressing the above questions, our contribu-
tions are summarized as follows:
A1: We rigorously assess a set of common building modules of

GNNs, including attention mechanism, decoupled architecture
and linear classification layer. Our empirical investigation re-
veals that both the attention mechanism and the decoupled
architecture contribute positively to OOD generalization. Con-
versely, we observe that the linear classification layer tends to
impair the OOD generalization capability.

A2: For a deeper understanding, we delve into the reasons why
certain building modules enhance OOD generalization and pro-
vide corresponding analysis. We demonstrate that the graph
self-attention mechanism in graphs adhering to the informa-
tion bottleneck principle is beneficial for OOD generalization.

A3: Based on our findings, we introduce a novel GNN design, De-
coupled Graph Attention Network (DGat), which combines
the attention mechanism with the decoupled architecture, en-
abling dynamical adjustments of the propagation weights and
separating propagation from feature transformation.

Our major contribution lies in the systematic investigation of
the impact of GNN architectural modules on OOD scenar-
ios. Remarkably, our study is orthogonal to existing research
efforts of model-agnostic solutions. Indeed, our findings can
complement existing external strategies. DGat achieves superior
performance against other GNN backbone models when trained
using various OOD algorithms.

2 PRELIMINARIES
2.1 Graph OOD Generalization Problem
The aim of our study is to investigate the out-of-distribution (OOD)
generalization problem in graph domain from an underexplored

perspective, the GNN backbone models. As a preliminary, we first
introduce the graph OOD problem, and then discuss representative
backbones for graph OOD generalization.

The OOD problem originates in the distribution shifts between
training and test data. In a supervised learning setting, such distri-
bution shifts can be defined as two types: i.e., covariate shift and
concept shift [10].

In the realm of graph OOD, the input 𝑋 is specified as a graph
G = (V, E), with 𝑁 nodes 𝑣𝑖 ∈ V , edges

(
𝑣𝑖 , 𝑣 𝑗

)
∈ E, an adjacency

matrix A ∈ R𝑁×𝑁 . Therefore, the covariate variable consists of an
input pair of (X,A), whereX ∈ R𝑁×𝑑 now denotes the node feature
matrix. Consequently, graph OOD problems involve distribution
shifts with both X and A, which is more intricate than the general
OOD problem. Graph distribution shifts can also be defined as
two types: i.e., covariate shift and concept shift. Covariate shift
refers to the distribution shift in input variables between training
and test data. Formally, 𝑃tr (X,A) ≠ 𝑃te (X,A). On the other hand,
concept shift depicts the shift in conditional distribution 𝑃 (𝑌 | X,A)
between training and test data, i.e., 𝑃tr (𝑌 | X,A) ≠ 𝑃te (𝑌 | X,A).

The aim of graph OOD generalization is to bolster model perfor-
mance in OOD scenarios. To solve an OOD problem, we deploy a
GNN backbone model, symbolized as a mapping function 𝑓𝜃 (X,A)
with learnable parameter 𝜃 . The graph OOD generalization problem
can be articulated as:

min
𝜃

max
𝑒∈E
E(X,A,𝑌 )∼𝑝 (X,A,𝑌 |𝑒=𝑒 ) [L(𝑓𝜃 (X,A), 𝑌 ) | 𝑒] (1)

where L(·) represents a loss function, and 𝑒 denotes the environ-
ment. In the graph machine learning research community, much
attention has been dedicated [26, 39] to refining loss function L,
optimizing 𝜃 , or augmenting on X and A. However, our approach
diverges from these methods. Instead, we focus on examining the
impact of the design choices in the backbone model 𝑓 . To the best
of our knowledge, our study offers the first systematic analysis of
GNN backbone architectures’ effects in OOD contexts.

2.2 Graph Neural Network Architectures
Next, we briefly compare the architectures of classic GNN models
that are investigated in our analysis in Section 3.

GCN [15]. The Graph Convolutional Network (GCN) stands
as the most representative model, and is chosen as the standard
baseline model in our study. A graph convolutional layer comprises
a pair of aggregation and transformation operators. At the 𝑙-th
layer, the mathematical representation of the graph convolutional
layer is as follows:

Z(𝑙 ) = 𝜎 (ÂZ(𝑙−1)W(𝑙 ) ), (2)

where Z(𝑙 ) denotes the node representation of 𝑙 − 𝑡ℎ layer. W(𝑙 )

represents the linear transformation matrix. 𝜎 (·) is the nonlinear
activation function. Note that Â is the normalized adjacency matrix,
calculated from Â = D̃− 1

2 ÃD̃− 1
2 , where Ã = A + I is the adjacency

matrix with added self-loops, D̃𝑖𝑖 =
∑
𝑗 Ã𝑖 𝑗 is the degree matrix.

When applying the GCN model, there are two prevalent imple-
mentations. The first [10] adds a linear prediction layer after the
final graph convolutional layer (noted as layer 𝐿), projecting the
dimension of Z(𝐿) to that of the label 𝑌 . The second [15], noted as
GCN–, omits this prediction layer, adjusting dimensions directly
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in the last convolutional layer by altering the dimension ofW(𝐿) .
While the distinction between these methods might be overlooked,
it can influence OOD performance. We have compared both imple-
mentations in Section 3, and our findings and analysis are detailed
in Section 3.4.

GAT [33]. In contrast to the fixed aggregation in GCN, Graph
Attention Networks (GAT) employ a self-attention mechanism to
assign distinct weights to neighboring nodes during aggregation.
The attention mechanism can be expressed as:

𝛼𝑖 𝑗 =

exp
(
𝜎

(
a𝑇

[
WZ𝑖 ∥WZ𝑗

] ))∑
𝑘∈N𝑖

exp
(
𝜎
(
a𝑇 [WZ𝑖 ∥WZ𝑘 ]

) ) , (3)

where a is a learnable weight vector, Z𝑖 is the representation vector
of node 𝑖 , and N𝑖 is the neighborhood of node 𝑖 in the graph. In
light of its connection with GCN, GAT can be studied as an object
to investigate the attention mechanism under the controlled
variable of GCN. We conduct the experiments in Section 3 and our
findings are presented in Section 3.2.

SGC [37]. The Simplifying Graph Convolutional Network (SGC)
is a decoupled GNN model, where “decoupled" refers to a GNN
model that separates the neural network transformation operators
from the propagation (a.k.a, aggregation) operators [6]. Formally,
SGC can be defined as:

Z = Â𝐾XW, (4)

where Â𝐾 can be seen as a composition of𝐾 propagation layers, and
W is a simple transformation layer. SGC can serve as the experimen-
tal group to study the influence of the decoupled architecture on
GCN performance, while a 𝐾 layer GCN acts as the control group.
The results of the control experiment are presented in Section 3.3.

APPNP [9]. APPNP is another decoupled model, which starts
with transformation and subsequently proceeds to propagation. It
can be expressed as:

Z(0) = H = 𝑓𝜃 (X),Z(𝑘+1) = (1 − 𝛽)ÂZ(𝑘 ) + 𝛽H,

Z(𝐾 ) = softmax
(
(1 − 𝛽)ÂZ(𝐾−1) + 𝛽H

)
,

(5)

where 𝑓𝜃 represents a composition ofmultiple transformation layers
(i.e., an MLP), H is the node representation of MLP, and 𝛽 speci-
fies the teleport probability of personalized PageRank propagation.
Only when 𝛽 is set to 0, the propagation is equivalent to GCN and
SGC. Another noticeable distinction between APPNP and SGC is
the order of propagation and transformation layers. Therefore, in
Section 3, we have two settings for APPNP, with and without con-
trolling 𝛽 = 0. These settings aim to distinguish between the effects
of decoupled architecture and teleport in propagation. Detailed
analyses are provided in Section 3.3.

3 INVESTIGATING OOD GENERALIZATION OF
GNN ARCHITECTURES

Graph out-of-distribution (OOD) generalization has primarily been
addressed through learning-strategy-based and data-based meth-
ods. While these model-agnostic approaches provide flexibility, the
potential influence of backbone GNN architectures on OOD general-
ization remains less explored. To delve deeper into this, we initiated

a systematic analysis of various GNN architectures in OOD sce-
narios. When designing the study, we note that GNN architectures
comprise multiple optional components, such as attention mech-
anisms and decoupled propagation. To evaluate their individual
impacts, we adopted themost classic GCNmodel as our baseline and
embarked on a series of ablation studies. Our ablation studies focus
on three primary modifications: (1) substituting graph convolution
with an attention mechanism, (2) decoupling feature transforma-
tion and feature propagation, and (3) removing the GCN’s linear
prediction layer. By controlling external variables, we were able to
distinguish the contributions of these individual factors. The follow-
ing sections provide detailed settings of our experiments and the
consequential findings regarding these architectural components.

3.1 Experimental Setup
Evaluation Metric. Our study aims to assess the impact of various
backbone architectures on graph OOD generalization. In previous
literature, researchers primarily use OOD test performance as their
main metric. Yet, models display performance variations both in
in-distribution (IID) and OOD settings. This suggests that OOD
test performance alone is insufficient for a holistic evaluation of
OOD generalization. To address this, we adopt the IID/OOD gen-
eralization gap metric from the NLP and CV domains [13, 41] for
graph OOD analysis. The IID/OOD generalization gap depicts the
difference between IID and OOD performance, offering a measure
of models’ sensitivity and robustness to distribution shifts. It is
defined as: GAP = IIDtest − OODtest, where IIDtest and OODtest
are the test performance on IID and OOD test datasets, respectively.

To rigorously determine the component’s influence on graph
OOD generalization, we performed a paired T-Test between GCN
baseline and other models. Evaluating across 10 runs for each model
on every dataset, a p-value < 0.05 indicates a significant difference,
with the t-value highlighting the superior model.
Dataset. We utilized the GOOD benchmark [10] for evaluating
graph OOD generalization on node classification task. This bench-
mark offers a unique capability to simultaneously measure both IID
and OOD performance, which is a feature not present in prevalent
datasets from other studies, e.g., EERM [39]. Such simultaneous
measurement is vital as calculating the GAP depends on both perfor-
mance. The GOOD benchmark comprises citation networks, gamer
networks, university webpage networks, and synthetic datasets,
and delineates shifts as either covariate or concept shifts. From
this collection, we selected 11 datasets, excluding CBAS due to its
limited node size and feature dimension, and WebKB-university-
covariate as all models exhibited high variance.
Implementation of GNN models. First, we follow the imple-
mentation of GOOD benchmark and use GCN [15] as our baseline
model, which concludes with a linear prediction layer. In the GOOD
paper [10], models and hyperparameters are selected based on an
OOD validation set. In contrast, our study emphasizes the inherent
robustness of backbone models to unanticipated distribution shifts
common in real-world scenarios. Consequently, we determine opti-
mal hyperparameters using the IID validation set (Appendix A.4).

Next, to establish a comparative analysis framework, we imple-
ment other GNNmodels: GCN–, GAT [33], SGC [37], andAPPNP [9],
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as delineated in Section 2.2. Each implementation ensures consis-
tency by maintaining all factors constant, except for the specific
design under consideration. For instance, while deploying SGC, we
align its hidden dimensions and propagation layers with those of
the GCN baseline, even adjusting the transformation layer size to
make it slightly different from the original SGC (i.e., the linear trans-
formation in Eqn. 4 is replaced by an MLP). This adjustment isolates
the “decoupled architecture" as the sole variation between SGC and
GCN. By comparing these models with GCN, we discern how their
distinct architectures influence graph OOD generalization.

In the following, we examine the impact of common GNN build-
ing blocks, i.e., attention mechanism, coupled/decoupled ar-
chitecture, and linear prediction layer, respectively.

3.2 Impact of Attention Mechanism
In Table 1, we assess the impact of attention mechanism by compar-
ing OOD performance of GAT against GCN. GAT surpasses GCN
on 10 out of 11 datasets, and shows a lower GAP value on 9 out
of 11 datasets. Particularly, on the Arxiv-time-degree dataset, GAT
improves OOD performance by 5.1% relative to GCN and decreases
the GAP by 36.4%, underscoring the advantages of attention
mechanism for graph OOD generalization.

To statistically validate these observations, we further applied
T-Tests to the OOD results of both models on each dataset. In Ta-
ble 1, red numbers denote that GAT significantly outperforms GCN,
while blue signifies the opposite. The data reveals GAT’s signifi-
cant advantage on 7 datasets, further emphasizing the potency of
attention in graph OOD generalization. The detailed T-Test results
are reported in Figure 4.(a) in Appendix A.1.
Theoretical Insights. Next, we present a theoretical analysis that
delves into the success of GAT, elucidating why graph attention
yields advantages for OOD generalization. Our analysis comprises
two key components: (1) We establish a compelling link between
the graph attention mechanism and the fundamental concept of
information bottleneck; and (2) We demonstrate that optimizing the
information bottleneck can notably enhance OOD generalization
capabilities. At the start of our analysis, we introduce the concept
of the information bottleneck (IB).

We denote the variables of input node features as 𝑋 , and the
variables of the output representations as 𝑍 . Thus, the mapping
function of GNN 𝑓𝜃 (·) can be expressed as 𝑓 (𝑍 | 𝑋 ). Consider a dis-
tribution𝑋 ∼ N(𝑋 ′, 𝜖) with𝑋 as the noisy input variable,𝑋 ′ as the
clean target variable, and 𝜖 as the variance for the Gaussian noise.
Following Kirsch et al. [16], the information bottleneck principle
involves minimizing the mutual information between the input 𝑋
and its latent representation 𝑍 while still accurately predicting 𝑋 ′

from 𝑍 , and can be formulated as:

𝑓 ∗IB (𝑍 | 𝑋 ) = argmin𝑓 (𝑍 |𝑋 ) 𝐼 (𝑋,𝑍 ) − 𝐼
(
𝑍,𝑋 ′) (6)

where 𝐼 (·, ·) stands for the mutual information. With the aforemen-
tioned notations and concepts, we now introduce our proposition.

Proposition 1. Given a node 𝑖 with its feature vector 𝑥𝑖 and its
neighborhood N(𝑖), the following aggregation scheme for obtaining

its hidden representation z𝑖 ,

z𝑖 =
∑︁

𝑗∈N(𝑖 )

𝜂𝑖 exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )∑
𝑗∈N(𝑖 ) exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )

x𝑗 , (7)

with 𝜂𝑖 ,W𝑄 ,W𝐾 being the learnable parameters, can be understood
as the iterative process to optimize the objective in Eq. (6).

The detailed proof of the proposition mentioned above is avail-
able in Appendix A.2. Proposition 1 unveils an intriguing relation-
ship between the aggregation scheme in Eq. (7) and the information
bottleneck principle in Eq. (6): it demonstrates that the information
bottleneck principle can be approached by adaptively aggregat-
ing similar node features into a learnable representation vector. It
is worth noting that the aggregation scheme employed in Graph
Attention Networks (GAT) (Eq. (3)) can be viewed as a specific
instance of Eq. (7) under certain conditions: (1) GAT sets 𝜂𝑖 to a
constant value; and (2) GAT computes attention using a weight
matrix multiplication on the concatenated node pair vector. Given
the insights provided by the proposition, it is reasonable to con-
jecture that GAT shares a similar connection with the information
bottleneck principle.

Furthermore, we highlight that the information bottleneck prin-
ciple plays a pivotal role in enhancing the OOD generalization of
neural networks. Notably, Ahuja et al. [1] have substantiated that a
form of the information bottleneck constraint effectively addresses
critical issues when invariant features completely capture the in-
formation about the label and also when they do not, under the
context of distribution shifts. Consequently, we postulate that the
reason the graph attention mechanism contributes to the OOD
generalization of GNNs is intricately tied to its connection with the
information bottleneck principle.

3.3 Impact of Coupled/Decoupled Structure
In order to compare coupled and decoupled structures, we evaluate
the performance of various decoupled GNNs, presented in Table 2.
For both OOD tests and GAP values, SGC surpasses GCN on merely
5 out of 11 datasets. In contrast, when the order of propagation
and transformation is reversed, APPNP (𝛽 = 0) exceeds GCN’s
performance on 9 out of 11 datasets and demonstrates a lower GAP
value on 9 out of 11 datasets. This reveals the significance of the
transformation-propagation order in OOD generalization, suggest-
ing a preference for transformation prior to propagation in
graph OOD contexts. The T-Test results are presented in the same
color scheme as in Section 3.2, which further confirms our initial
observation.

Such observation can be potentially explained from the theory
that decoupled graph neural networks are equivalent to label prop-
agation, proposed by Dong et al. [6]. From a label propagation
perspective, the models propagate known labels across the graph
to generate pseudo-labels for unlabeled nodes. These pseudo-labels
then optimize the model predictor. The augmentation with pseudo-
labels may curb overfitting and the architecture’s training approach
can adaptively assign structure-aware weights to these pseudo-
labels [6]. This might account for the enhanced OOD generalization
performance seen in the decoupled architecture.
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Table 1: OOD and GAP performances for investigating the impact of self-attention. All numerical results are averages across 10
random runs. Red color indicates the statistically significant improvement(i.e., 𝑃𝑣𝑎𝑙𝑢𝑒 < 0.05 and 𝑇𝑣𝑎𝑙𝑢𝑒 > 0) over the GCN. Blue
color indicates the statistically significant worse(i.e., 𝑃𝑣𝑎𝑙𝑢𝑒 < 0.05 and 𝑇𝑣𝑎𝑙𝑢𝑒 < 0) over the GCN. The best performance in each
dataset is highlighted in bold. OOD indicates the OOD performance on OOD test data.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate GCN 65.85 5.62 56.05 18.26 70.38 2.90 59.05 19.01 52.32 22.13 - -
GAT 66.23 5.77 56.12 17.99 70.95 2.08 59.32 18.78 52.83 21.17 - -

Concept GCN 65.44 3.05 62.48 7.05 62.50 13.42 60.13 16.36 45.12 39.25 26.42 39.41
GAT 65.86 2.21 63.85 4.83 64.96 10.89 63.07 11.99 44.14 40.81 29.27 35.23

Table 2: OOD and GAP performances for investigating the impact of decoupled architecture. All numerical results are averages
across 10 random runs. Red color indicates the statistically significant improvement(i.e., 𝑃𝑣𝑎𝑙𝑢𝑒 < 0.05 and 𝑇𝑣𝑎𝑙𝑢𝑒 > 0) over the
GCN. Blue color indicates the statistically significant worse(i.e., 𝑃𝑣𝑎𝑙𝑢𝑒 < 0.05 and𝑇𝑣𝑎𝑙𝑢𝑒 < 0) over the GCN. The best performance
in each dataset is highlighted in bold.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

covariate

GCN 65.85 5.62 56.05 18.26 70.38 2.90 59.05 19.01 52.32 22.13 - -
SGC 66.19 5.61 55.43 18.46 70.54 2.27 59.66 18.10 54.03 20.40 - -
APPNP(𝛽 = 0) 66.66 5.16 56.14 17.83 70.69 2.84 59.33 18.67 51.66 22.18 - -
APPNP 67.48 6.37 58.33 17.16 69.22 3.38 55.40 22.10 56.47 16.75 - -

concept

GCN 65.44 3.05 62.48 7.05 62.50 13.42 60.13 16.36 45.12 39.25 26.42 39.41
SGC 65.21 3.16 62.41 6.77 63.88 11.94 56.66 20.26 44.22 40.52 25.78 40.38
APPNP(𝛽 = 0) 66.21 2.81 64.09 4.85 65.10 10.94 65.44 9.86 44.10 39.87 29.17 35.83
APPNP 66.46 4.24 64.81 5.55 63.46 11.51 64.28 9.51 46.81 35.99 30.28 35.22

Figure 1: Comparision of OOD and GAP between GCN and GCN– for investagating the impact of linear classifier. GCN– means
GCN without linear classifier. D1, D2, D3, D4, D5, D6 represent G-Cora-Word, G-Cora-Degree, G-Arxiv-Time, G-Arxiv-Degree,
G-Twitch-Language and G-WebKB-University respectively.

3.4 Impact of Linear Prediction Layer
Lastly, we evaluate the impact of the linear prediction layer on
a GCN. As shown in Figure 1, GCN– surpasses GCN on 8 out of
11 OOD datasets and achieves a lower GAP value on 8 out of 11
datasets. This indicates that removing the last linear prediction
layer can enhance graph OOD performance. The T-Test results
are reported in Figure 4.(b) in Appendix A.1.

The performance dip of the linear prediction layer might be at-
tributed to two factors. First, introducing an extra linear prediction
layer might lead to surplus parameters and higher model complex-
ity, amplifying the overfitting risk on IID. Second, the propagation
process is non-parametric and has a lower risk of overfitting. It may
be advantageous in both IID and OOD contexts. In contrast, the
additional linear prediction layer is fit to the training data’s label dis-
tribution, potentially hindering performance when faced with OOD

distribution shifts. By omitting this layer, we amplify the graph’s
intrinsic structure, leading to improved OOD generalization.

4 NEW GNN DESIGN FOR ENHANCED OOD
GENERALIZATION

In the previous section, we provided both empirical results and
theoretical analysis that show the beneficial roles of the attention
mechanism and the decoupled architecture in enhancing the OOD
generalization of GNNs. On the other hand, we noted that the linear
prediction layer detracts from OOD generalization. Motivated by
these observations, we propose to merge the attention mech-
anism with the decoupled architecture, opting to omit the
linear prediction layer. Specifically, we calculate attention scores
from transformed features and employ these scores throughout each
propagation layer. In the following, we delve into the details of our
proposed model, Decoupled Graph Attention Network (DGat).
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Figure 2: An illustration of our proposed model DGat. In this decoupled architecture, we calculate attention scores from
transformed features and employ these scores throughout each propagation layer.

4.1 A New GNN Design
Our proposed DGat model integrates the principles of decoupled
architecture and the attention mechanism, both of which have
demonstrated positive contributions to OOD performance in previ-
ous sections. To adopt a decoupled architecture, we separate the
linear transformation and propagation operations and conduct the
linear transformation prior to propagation. Furthermore, we inject
the attention mechanism into the propagation operations. As a
result, our model includes three components: linear transforma-
tion, attention score computation, and adaptive propagation. The
framework is illustrated by Figure 2.
Linear Transformation. Our DGat model decouples the GNN
into transformation and propagation. This design can enhance
OOD performance as discussed in Section 3.3. Therefore, DGat
first applies two linear transformation layers to the input data.

Z(init) = 𝜎 (𝑾 (init)X + 𝒃 (init) ) ∈ R𝑁×𝑑

Z(0) = 𝑯 =𝑾 (0)Z(init) + 𝒃 (0) ∈ R𝑁×𝑐 (8)

where 𝑑 is the hidden dimension and 𝑐 indicates the number of
classes. The second linear layer maps features to the label space.
These pseudo-labels help mitigate overfitting and dynamically as-
sign structure-aware weights to them.
Attention Score Computation. Our experimental findings in
Section 3.2 highlight the advantages of the attention mechanism
for handling graph OOD, supported by the theoretical evidence
that the graph self-attention mechanism aligns with the informa-
tion bottleneck principle. To incorporate the attention mechanism
into our model, we calculate attention scores based on the node
representation Z(init) , formulated as:

𝛼𝑖 𝑗 =

exp
(
LeakyReLU

(
a𝑇

[
WZ(init)

𝑖
∥WZ(init)

𝑗

] ))
∑
𝑘∈N𝑖

exp
(
LeakyReLU

(
a𝑇

[
WZ(init)

𝑖
∥WZ(init)

𝑘

] )) , (9)

where 𝛼𝑖 𝑗 represents the attention score. We use 𝑷 to denote the
attention matrix, where 𝑷𝑖 𝑗 = 𝛼𝑖 𝑗 . We compute 𝛼𝑖 𝑗 using Z(init)

instead of Z(0) , because Z(0) usually has a low dimensionality
which can hamper the identification of important nodes.
Adaptive Propagation. The last step in DGat is propagation.
Instead of a traditional fixed propagation, DGat achieves adaptive

propagation by combining attention score matrices and adjacency
matrices. We define ˆ̃A := (1 − 𝛾)𝑷 + 𝛾�̂�. The adaptive propagation
function is expressed as follows:

Z(𝑘+1) = (1 − 𝛽) ˆ̃AZ(𝑘 ) + 𝛽H,

Z(𝐾 ) = softmax
(
(1 − 𝛽) ˆ̃AZ(𝐾−1) + 𝛽H

)
,

(10)

where 𝛽 is a hyperparameter to control the trade-off of the initial
connection.

Note that we do not employ a linear layer at the end of the model
architecture as it can negatively impact the OOD generalization
(Section 3.4). As a consequence, our model combines both the de-
coupled architecture and attention mechanism, creating an elegant
fusion of the strengths of the two preceding components.
Complexity analysis. In the following, we will show that the
computational complexity of our model is at the same level as
GCN. We define the adjacency matrix as A ∈ R𝑁×𝑁 , the input
as X ∈ R𝑁×𝑑 , and the transformation matrix as W ∈ R𝑑×𝑑 . The
operations of the GCN layer result in the following time complexity:
𝑂
(
𝑁𝑑2 + 𝑁 2𝑑

)
. Again noting that each multiplication with A is a

sparse multiplication, we have 𝑂
(
𝐿 |𝐸 |𝑑2 + 𝐿𝑁 2𝑑

)
. |𝐸 | represents

the number of edges, 𝐿 represents the number of layers. The APPNP
has the same computational complexity as GCN.

For self-attention, we need to compute XW𝑄 , XW𝐾 , and XW𝑉 ,
which each take O

(
𝑁𝑑2

)
time. Unlike in the GCN case, we also

now need to compute QK⊤ in order to get the attention score 𝜶 .
This operation takes O

(
𝑁 2𝑑

)
time. Finally, computing 𝛼V takes

O
(
𝑁 2𝑑

)
time. These computations result in a time complexity of

O
(
𝑁 2𝑑 + 𝑁𝑑2

)
. All of these operations are computed at each layer,

leading to the final time complexity of O
(
𝐿𝑁 2𝑑 + 𝐿𝑁𝑑2

)
. Hence,

the computational complexity of our model is 𝑂 (𝐿 |𝐸 |𝑑2 + 𝐿𝑁 2𝑑),
which is at the same level of complexity as GCN.
Advantages. Despite its simplicity, our model stands out by offer-
ing several compelling advantages:

(a) Simple yet robust. DGat is grounded in the findings of our
prior experimental study and theoretical analysis outlined in Sec-
tion 3. It enjoys the strengths of essential components that positively
contribute to OOD generalization.
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(b) Favorable computational efficiency. The efficiency analysis
above reveals that the computational complexity of DGat is com-
parable to that of traditional GNNs, yet it demonstrates superior
OOD generalization.

(c) Compatible with diverse training strategies. DGat is orthog-
onal to external OOD techniques and can achieve further OOD
generalization from OOD training strategies. In the following sec-
tions, we will empirically verify that this model can function as a
powerful backbone for various popular OOD algorithms.

4.2 Experiment
To assess the OOD generalization capabilities of the proposedDGat,
we conduct experiments under various training strategies on node
classification tasks. Through experiments, we aimed to answer
the following questions: Q1: Can DGat outperform existing GNN
architectures on OOD test data? Q2: Is DGat a better backbone
model in different OOD generalization methods?

4.2.1 OOD performance of DGat. To answer Q1, we evaluate the
performance of our proposed DGat on ERM setting.
Baselines.We evaluate the performance of ourDGat by comparing
it with several state-of-the-art models, including GCN, APPNP, GAT,
SGC, GPRGNN [4], and GraphSAGE [11].
Datasets. In this experiment, we selected 11 datasets from the
GOOD benchmark, the same as introduced in Section 3. In addi-
tion, we conducted experiments on 5 new datasets that are used
in EERM [39] paper. These datasets exhibit diverse distribution
shifts: Cora and Amz-Photo involve synthetic spurious features;
Twitch-E exhibits cross-domain transfer with distinct domains for
each graph; Elliptic and OGB-Arxiv represent temporal evolution
datasets, showcasing dynamic changes and temporal distribution
shifts. The details of these datasets are shown in Appendix A.3
Implementation Details. In Section 3.4, we observed that us-
ing linear transformation as the final prediction layer degrades
the OOD performance. Consequently, we replace the linear pre-
diction layer with an individual graph convolutional layer for all
the models. Similar to our prior experiments, we train and select
model hyperparameters on IID distribution and test the model on
OOD distribution. The number of layers is chosen from {2, 3}. The
hidden size is chosen from {100, 200, 300}. We tune the following
hyper-parameters: 𝛾 ∈ {0, 0.2, 0.5}, 𝛽 ∈ {0, 0.1, 0.2, 0.5}. The details
of parameters are shown in Appendix A.4.
Experimental Results.The results onGOODdatasets are reported
in Table 3. From this table, we find that DGat outperforms base-
lines on 9/11 datasets for the OOD test. Meanwhile, DGat exhibits
a lower GAP value compared to baselines on 6 out of 11 datasets.
For example, DGat delivers an improvement of 1.7% over baselines
for OOD test while achieving a decline of 4.1% over baselines for
GAP on GOODArxiv-degree-concept, which indicates the effective-
ness of our model for Graph OOD generalization. The results on
datasets from EERM paper under ERM setting are reported in Ta-
ble 4. Remarkably, our proposed DGat outperforms baseline GNN
backbones on all of these datasets.

To further validate the contribution of each component in DGat
and the robustness of DGat to the choice of hyperparameters (i.e.,
𝛾 and 𝛽), we conduct additional ablation study and hyperparameter

study. The results confirm the effectiveness of our proposed method
and are shown in Appendix A.5.

4.2.2 DGat Performance as a Backbone. In order to answer the
Q2, we conduct experiments to evaluate our model and baselines
across various strategies proposed for OOD. Specifically, we choose
GCN– and APPNP that perform well under ERM as the backbones.
Representative OOD algorithms such as IRM [2], VREx [18], Group-
DRO [26], Graph-Mixup [35] and EERM [39] are considered as
baseline methods. Among them, Graph-Mixup and EERM are graph-
specific methods. It’s worth noting that within the GOOD frame-
work, Graph-Mixup is equipped with GCN incorporating a linear
classifier, and Graph-Mixup is more suitable for this framework in
APPNP, as it is better suited for enhancement at the hidden dimen-
sion level rather than the class dimension. Hence, for Graph-Mixup,
we have added a linear classifier on top of the models.

The experimental results illustrating the performances related
to OOD and GAP across various training strategies (i.e, IRM, VRex,
GroupDRO, Graph-Mixup) on datasets from GOOD are shown in
Figure 3. The results of OOD performance under EERM setting on
datasets from EERM are reported in Table 4. The results of OOD
performance under EERM setting on datasets from GOOD bench-
mark are reported inTable 9, which is presented in Appendix A.6.
Results on more datasets across various training strategies are also
included in Appendix A.6. We have the following observations.

(a) First, compared to the baselines, our DGatmodel con-
sistently demonstrates better OOD generalization when com-
bined with external OOD algorithms.We find that DGat out-
performs baselines on 9/11 datasets under IRM training strategy.
For example, DGat delivers an improvement of 3.6% over baselines
for OOD test on G-Cora-Degree-Covariate under IRM. Meanwhile,
DGat demonstrates superior OOD performance in comparison
to baselines across 9 out of 11 datasets under Graph-Mixup train-
ing setting. In Table 4 and Table 9, our model also achieves better
performance on most datasets under EERM training setting.

(b) Second,OOD training algorithms do not always improve
the OOD performance of backbone models. For example, on G-
Cora-Word and G-Cora-Degree datasets, all backbone models suffer
from OOD performance degradation when trained with EERM
algorithm. This observation is consistent with the results in GOOD
paper [10] and highlights the limitation of existing OOD algorithms.

(c) Meanwhile, we indeed notice a significant improvement
in certain cases. For example, on G-Twitch-language-concept,
DGat equipped with VREx achieves an improvement of 7.0% over
ERM. This confirms that combining with an effective training al-
gorithm can further enhance the OOD generalization of our DGat
backbone model.

5 RELATEDWORK
5.1 OOD generalization
In the real world, when the distribution of training data differs from
that of testing data, denoted as 𝑃𝑡𝑟 (𝑋,𝑌 ) ≠ 𝑃𝑡𝑒 (𝑋,𝑌 ), this distri-
bution shift is referred to as an OOD problem. Common types of
distribution shifts including covariate shift, concept shift, and prior
shift [22]. To effectively achieve better OOD generalization, several
methods have been proposed [2, 8, 18, 26, 31]. For instance, IRM [2]



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Table 3: OOD and GAP performances under ERM setting on datasets from GOOD. All results are averages over 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate

GCN– 66.56 5.47 58.09 16.22 70.82 2.52 58.95 19.15 51.86 22.55 - -
SGC 66.23 5.51 55.86 17.98 70.27 1.87 59.36 17.96 53.19 16.26 - -
APPNP 67.62 6.28 58.87 16.66 69.2 2.43 56.25 20.74 56.85 16.67 - -
GAT 65.84 5.62 58.25 15.66 70.65 2.38 58.45 19.78 53.3 20.63 - -
GraphSAGE 65.59 7.67 56.54 19.24 69.36 3.00 57.59 19.67 55.88 17.75 - -
GPRGNN 67.59 6.44 59.46 15.75 67.74 2.66 56.68 19.02 56.37 16.05 - -
DGat 67.67 6.09 59.68 15.02 71.33 1.65 60.12 17.56 57.37 15.31 - -

Concept

GCN– 66.70 2.31 64.72 4.27 63.27 12.78 62.46 13.47 44.72 39.65 27.80 34.54
SGC 66.28 1.96 62.58 7.12 63.33 11.61 55.06 21.28 47.43 35.31 29.63 33.37
APPNP 67.31 4.12 66.3 4.83 63.64 10.76 63.92 8.83 48.1 34.08 26.88 44.45
GAT 66.32 2.05 64.41 4.10 65.02 10.86 64.75 9.00 43.95 40.89 28.35 32.65
GraphSAGE 65.42 5.46 65.06 5.43 62.85 11.77 60.92 12.96 45.51 39.93 34.50 40.67
GPRGNN 66.95 3.59 65.97 4.96 61.89 10.96 63.05 8.06 49.07 33.08 27.06 40.27
DGat 67.50 3.57 66.36 4.45 65.11 10.17 65.86 7.73 45.10 40.20 33.57 37.92

Table 4: OOD performances under ERM and EERM on datasets from EERM paper. All results are averages over 5 random runs.
Dataset Method GCN– SGC APPNP GAT GraphSAGE GPRGNN DGat

Amz-Photo ERM 93.79±0.97 93.83±2.30 94.44±0.29 96.30±0.79 95.09±0.60 91.87±0.65 96.56±0.85
Cora ERM 91.59±1.44 92.17±2.38 95.16±1.06 94.81±1.28 99.67±0.14 93.00±2.17 99.68±0.06
Elliptic ERM 50.90±1.51 49.19±1.89 62.17±1.78 65.36±2.70 56.12±4.47 64.59±3.52 73.09±2.14

OGB-Arxiv ERM 38.59±1.35 41.44±1.49 44.84±1.43 40.63±1.57 39.56±1.66 44.38±0.59 45.95±0.65
Twitch-E ERM 59.89±0.50 59.61±0.68 61.05±0.89 58.53±1.00 62.06±0.09 59.72±0.40 62.14±0.23
Amz-Photo EERM 94.05±0.40 92.21±1.10 92.47±1.04 95.57±1.32 95.57±0.13 90.78±0.52 92.54±0.77

Cora EERM 87.21±0.53 79.15±6.55 94.21±0.38 85.00±0.96 98.77±0.14 88.82±3.10 98.85±0.26
Elliptic EERM 53.96±0.65 45.37±0.82 58.80±0.67 58.14±4.71 58.20±3.55 67.27±0.98 68.74±1.12

OGB-Arxiv EERM OOM OOM OOM OOM OOM OOM OOM
Twitch-E EERM 59.85±0.85 54.48±3.07 62.28±0.14 59.84±0.71 62.11±0.12 61.57±0.12 62.52±0.09

Figure 3: Comparision of OOD performance between DGat and APPNP equipped with various OOD algorithms. Results on
more datasets are reported in Appendix A.6.

is a representative method that aims to discover invariant features
in which the optimal classifier consistently performs across all envi-
ronments. GroupDRO [26] improves themodel’s out-of-distribution
(OOD) generalization by optimizing for the worst-case scenario
over a set of predefined groups and introducing strong regulariza-
tion. VREx [18] considers there exists variation among different
training domains, and this variation can be extrapolated to test do-
mains. Based on this assumption, the method aims to make the risks
across different training domains as consistent as possible, reducing
the model’s reliance on spurious features. Notably, these techniques
are primarily tailored for images and may not fully account for the
unique attributes of graph data, thus maybe suboptimal for graph
OOD generalization.

5.2 OOD generalization on graphs
In graph-structured data, the OOD problem exists as well, but the
research on graph OOD is currently in its early stages. The covari-
ate shift and concept shift also exit in the graph domain. Unlike
the general OOD problem, in graph-based OOD, shifts can occur
not only in features but may also occur implicitly in the graph
structure. Some efforts have been proposed to solve the graph OOD
problem in node classification tasks from two perspectives: data-
based methods and learning-strategy-based methods. Data-based
methods focus on manipulating the input graph data to boost OOD
generalization [14, 22, 35]. For example, GTrans [14] provides a
data-centric view to solve the graph OOD problem and propose to
transform the graph data at test time to enhance the ability of graph
OOD generalization. On the other hand, learning-strategy-based
methods emphasize modifying training approaches by introducing
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specialized optimization objectives and constraints [24, 39, 40]. For
example, EERM [39] seeks to leverage the invariant associations
between features and labels across diverse distributions, thereby
achieving demonstrably satisfactory OOD generalization in the face
of distribution shifts. However, current methods predominantly em-
phasize external techniques to enhance OOD generalization, yet
they do not provide insights into the inherent performance of the
underlying backbone models themselves. Therefore, in this work,
we investigate the impact of the GNN architecture on graph OOD.
Building upon our discoveries, we introduce a novel model aimed
at improving the OOD generalization ability on graphs.

6 CONCLUSION
GNNs tend to yield suboptimal performance on out-of-distribution
(OOD) data. While prior efforts have predominantly focused on
enhancing graph OOD generalization through data-driven and
strategy-based methods, relatively little attention has been devoted
to assessing the influence of GNN backbone architectures on OOD
generalization. To bridge this gap, we undertake the first com-
prehensive examination of the OOD generalization capabilities of
well-known GNN architectures. Our investigation unveils that both
the attention mechanism and the decoupled architecture positively
impact OOD generalization. Conversely, we observe that the lin-
ear classification layer tends to compromise OOD generalization
ability. To deepen our insights, we provide theoretical analysis
and discussions. Building upon our findings, we introduce a novel
GNN design, denoted as DGat, which combines the self-attention
mechanism and the decoupled architecture. Our comprehensive
experiments across a variety of training strategies show that the
GNN backbone architecture is indeed important, and that combin-
ing useful architectural components can lead to a superior GNN
backbone architecture for OOD generalization.
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A APPENDICES
A.1 Results of T-Test
To statistically validate these observations, we further applied T-
Tests to the OOD results of both models on each dataset. The results
are shown in Figure 4 and Figure 5.

A.2 Proof of Proposition 1
Proposition 1. Given a node 𝑖 with its feature vector 𝑥𝑖 and its
neighborhood N(𝑖), the following aggregation scheme for obtaining
its hidden representation z𝑖 ,

z𝑖 =
∑︁

𝑗∈N(𝑖 )

𝜂𝑖 exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )∑
𝑗∈N(𝑖 ) exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )

x𝑗 ,

with 𝜂𝑖 ,W𝑄 ,W𝐾 being the learnable parameters, can be understood
as an iterative process to optimize the objective in Eq. (6).

Proof. Given a distribution 𝑋 ∼ N(𝑋 ′, 𝜖) with 𝑋 as the ob-
served input variable and 𝑋 ′ as the clean target variable. Following
[16], the information bottleneck principle involves minimizing the
mutual information between the input 𝑋 and its latent representa-
tion 𝑍 while still accurately predicting 𝑋 ′ from 𝑍 . In the context of
deep learning, the information bottleneck principle can be formu-
lated as the following optimization objective:

𝑓 ∗IB (𝑍 | 𝑋 ) = arg min
𝑓 (𝑍 |𝑋 )

𝐼 (𝑋,𝑍 ) − 𝐼
(
𝑍,𝑋 ′) (11)

As demonstrated by Still et al. [28], we can utilize the information
bottleneck to solve the clustering problems, in which nodes will
be clustered into clusters with indices 𝑐 . For simplicity, we take
the 1-hop graph of node 𝑢 to illustrate where the node indices are
1, 2, . . . , |N (𝑢) |. Following Strouse and Schwab [29], we assume
that 𝑝 (𝑖) = 1

𝑛 with 𝑛 = |N (𝑢) | and 𝑝 (x|𝑖) ∝ exp [− 1
2𝜖2 | |x − x𝑖 | |2]

with the introduction of a smoothing parameter 𝜖 .
We denote 𝑝𝑡 as the probability distribution after the 𝑡-th itera-

tion, and the iterative equation is given by [45]:

𝑝𝑡 (𝑐 |𝑖) =
log 𝑝𝑡−1 (𝑐)

𝑍 (𝑖) exp [−𝐷KL [𝑝 (x|𝑖) |𝑝𝑡−1 (x|𝑐)]] (12)

𝑝𝑡 (𝑐) =
𝑛
(𝑐 )
𝑡

𝑛
(13)

𝑝𝑡 (x|𝑐) =
1

𝑛
(𝑐 )
𝑡

∑︁
𝑖∈𝑆 (𝑐 )

𝑡

𝑝 (x|𝑖), (14)

where 𝑍 (𝑖) ensures normalization, 𝑆 (𝑐 )𝑡 represents the set of node
indices in cluster 𝑐 , and 𝑛 (𝑐 )𝑡 = |𝑆 (𝑐 )𝑡 | is the number of nodes as-
signed to cluster 𝑐 . Then, we can approximate 𝑝𝑡−1 (x|𝑐) using a
Gaussian distribution 𝑞𝑡−1 (x|𝑐) ∼ N (𝜇 (𝑐 )

𝑡−1, Σ
(𝑐 )
𝑡−1). When the value

of 𝜖 w.r.t. 𝑝 (x|𝑖) is sufficiently small, we have:

𝐷KL [𝑝 (x|𝑖) |𝑞𝑡−1 (x|𝑐)] ∝[𝜇 (𝑐 )𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]

−1 [𝜇 (𝑐 )
𝑡−1 − x𝑖 ]

+ log det Σ(𝑐 )
𝑡−1 + 𝐵,

(15)

where 𝐵 represents terms that are independent of the assignment of
data points to clusters and are consequently irrelevant to the objec-
tive. By substituting Eq. (15) back into Eq. (12), we can reformulate
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the cluster update as follows:

𝑝𝑡 (𝑐 |𝑖) =
log𝑝𝑡−1 (𝑐)

𝑍 (𝑖)

exp
[
−[𝜇 (𝑐 )

𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]

−1 [𝜇 (𝑐 )
𝑡−1 − x𝑖 ]

]
det Σ(𝑐 )

𝑡−1

=
log𝑝𝑡−1 (𝑐)
det Σ(𝑐 )

𝑡−1

exp
[
−[𝜇 (𝑐 )

𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]

−1 [𝜇 (𝑐 )
𝑡−1 − x𝑖 ]

]
∑
𝑐 exp

[
−[𝜇 (𝑐 )

𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]−1 [𝜇

(𝑐 )
𝑡−1 − x𝑖 ]

] .
(16)

To minimize the KL-divergence between 𝑝𝑡−1 (x|𝑐) and 𝑞𝑡−1 (x|𝑐),
𝜇
(𝑡 )
𝑐 will be updated as:

𝜇
(𝑡 )
𝑐 =

1
𝑛

𝑛∑︁
𝑖=1

𝑝𝑡 (𝑐 |𝑖)x𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

log 𝑝𝑡−1 (𝑐)
det Σ(𝑐 )

𝑡−1

exp
[
−[𝜇 (𝑐 )

𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]

−1 [𝜇 (𝑐 )
𝑡−1 − x𝑖 ]

]
∑
𝑐 exp

[
−[𝜇 (𝑐 )

𝑡−1 − x𝑖 ]⊤ [Σ(𝑐 )
𝑡−1]−1 [𝜇

(𝑐 )
𝑡−1 − x𝑖 ]

] x𝑖
=

𝑛∑︁
𝑖=1

log𝑝𝑡−1 (𝑐)
𝑛 det Σ𝑡−1

exp
[
2 · [𝜇 (𝑐 )

𝑡−1]
⊤Σ−1

𝑡−1x𝑖
]

∑
𝑐 exp

[
2 · [𝜇 (𝑐 )

𝑡−1]⊤Σ
−1
𝑡−1x𝑖

] x𝑖 ,
(17)

where the last equation follows from the assumption that Σ𝑐
𝑡−1 is

shared among all clusters and 𝜇𝑐 are normalized w.r.t. Σ−1
𝑡−1. Let

z𝑐 = 𝜇
(𝑡 )
𝑐 ,𝜂𝑐 =

log𝑝𝑡−1 (𝑐 )
𝑛 det Σ𝑡−1 , 2 · 𝜇 (𝑐 )

𝑡−1 = W𝐾x𝑐 , W𝑄 = Σ−1
𝑡−1 and

rewrite the subscripts appropriately to obtain:

z𝑖 =
∑︁

𝑗∈N(𝑖 )

𝜂𝑖 exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )∑
𝑗∈N(𝑖 ) exp( [W𝐾x𝑖 ]⊤W𝑄x𝑗 )

x𝑗 ,

where 𝜂 indicates attention correction weighting parameters, W𝑄

andW𝐾 are transformation parameter about input features. □

This indicates that the graph self-attention mechanism follows
the information bottleneck principle. Specifically, 𝜇 (𝑡 )𝑐 refers to the
data distribution learned by the information bottleneck, and z𝑐 is
learned by the self-attention mechanism.

A.3 Dataset Details
We majorly leverage the datasets from GOOD [10] to evaluate the
model. For example, GOOD-Cora is a citation network derived from
the complete Cora dataset. It involves a small-scale citation network
graph where nodes correspond to scientific publications, and edges
represent citation links. The objective is a 70-class classification
of publication types. Splits are generated based on two domain
selections: word and degree. GOOD-Arxiv is a citation dataset
adapted from OGB. It features a directed graph representing the
citation network among computer science (CS) arXiv papers. Nodes
denote arXiv papers, and directed edges signify citations. The task
involves predicting the subject area of arXiv CS papers, constituting
a 40-class classification challenge. Splits are generated based on
two domain selections: time (publication year) and node degree.

Additionally, we use datasets from EERM to evaluate our model.
The statistic information are summarised in Table 5. These datasets
have different types of distribution shift. The shift types for Cora
and Amz-Photo are labeled as Artificial Transformation, Twitch-E

Table 5: Statistic information for datasets from EERM

Dataset #Nodes #Edges #Classes
Cora 2,703 5,278 10

Amz-Photo 7,650 119,081 10
Twitch-E 1, 912 − 9, 498 31, 299 − 153, 138 2
Elliptic 203,769 2, 34, 355 2

OGB-Arxiv 169,343 1, 166, 243 40

Table 6: Parameter Searching Space

learning rate (lr) [5𝑒 − 3, 1𝑒 − 3]
dropout [0.1, 0.2, 0.5]
hidden [100, 200, 300]

number of model layer [1, 2, 3]

is categorized as Cross-Domain Transfers, Elliptic and OGB-Arxiv
are identified as Temporal Evolution.

A.4 Hyperparameter Selection
In the investigating experiments, we perform a hyperparameter
search to obtain experimental results that can reflect the general-
ization ability of GCN. We search from a hyperparameter space
and obtain the final one. The hyperparameter space is reported in
Table 6. Ultimately, the parameters of each dataset for section 3 are
determined as follows:

• GOODCora-degree-covariate: lr=1e-3, dropout=0.5,
hidden=200, model_layer=2

• GOODCora-degree-concept: lr=1e-3, dropout=0.5,
hidden=200, model_layer=2

• GOODCora-word-covariate: lr=1e-3, dropout=0.5,
hidden=300, model_layer=2

• GOODCora-word-concept: lr=1e-3, dropout=0.5,
hidden=300, model_layer=1

• GOODArxiv-degree-covariate: lr=1e-3, dropout=0.2,
hidden=300, model_layer=3

• GOODArxiv-degree-concept: lr=1e-3, dropout=0.2,
hidden=300, model_layer=3

• GOODArxiv-time-covariate: lr=1e-3, dropout=0.2,
hidden=300, model_layer=3

• GOODArxiv-time-concept: lr=1e-3, dropout=0.2,
hidden=300, model_layer=3

• GOODTwitch-language-covariate: lr=1e-3, dropout=0.5,
hidden=200, model_layer=2

• GOODTwitch-language-concept: lr=1e-3, dropout=0.5,
hidden=300, model_layer=3

• GOODWebKB-university-concept: lr=5e-3, dropout=0.5,
hidden=300, model_layer=1

The other experiment is to compare our proposed model DGat
with other baselines. We fine-tune the parameters within the fol-
lowing search space: layers (2, 3), dropout (0, 0.1, 0.2, 0.5), hidden
(100, 200, 300), 𝛾 (0, 0.2, 0.5), 𝛽 (0, 0.1, 0.2, 0.5), learning rate (1e-3,
5e-2, 5e-3), heads (2, 4). Taking the GOODCora-degree-Concept
dataset as an example, the parameters used for GCN are: layers: 2,
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learning rate: 5e-3, dropout: 0.2, hidden: 300; the parameters used
for GAT are: layers: 2, learning rate: 5e-3, dropout: 0.2, hidden: 300,
heads: 2; the parameters used for APPNP are: layers: 2, learning
rate: 5e-3, dropout: 0.2, hidden: 300, 𝛽 : 0.2; the parameters used for
DGat are: layers: 2, learning rate: 5e-3, dropout: 0.2, hidden: 300,
heads: 2, 𝛾 : 0.5, 𝛽 : 0.2. The magnitudes of the parameters remain
consistent across various models

A.5 Ablation Study and Hyperparameter Study
We conducted the ablation study to analyze the impact of each
component in DGat. From Table 7, we find that each component
contributes positively to the model.

We also conducted a hyperparameter study on 𝛾 and 𝛽 to evalu-
ate the impact of the choice of hyperparameters. The experiment

is conducted on OGB-Arxiv dataset and results are summarized in
Table 8, where we observed that the performance of DGat demon-
strates robustness to parameter variations.

A.6 DGat Performance as a Backbone
We conduct experiments to evaluate our model and baselines across
various strategies proposed for OOD. The results of OOD perfor-
mance under EERM setting on datasets from GOOD benchmark are
reported in Table 9. The results of OOD performance under IRM,
VREx, GroupDRO, and Graph-Mixup are respectively presented in
Table 10, Table 11,Table 12 and Table 13.
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Table 7: Ablation study of DGat on representative datasets on ERM setting. All numerical results are averages across 10 random
runs.

GOOD-Cora-D-Covariate elliptic OGB-Arxiv

DGat 59.68 ± 0.46 73.09 ± 2.14 45.51 ± 0.67
DGat w/o self-attention 59.19 ± 0.58 69.58 ± 2.08 45.29 ± 0.83
DGat w/o decouple 58.25 ± 0.58 70.26 ± 1.46 40.44 ± 1.36
DGat w/o remove linear classifier 57.52 ± 1.04 67.94 ± 2.63 44.79 ± 0.63

Table 8: Hyperparameter analysis of DGat on OGB-Arxiv on ERM setting. All numerical results are averages across 10 random
runs.

0.1 0.2 0.3 0.4 0.5

𝛾 44.94 ± 0.71 45.44 ± 0.64 45.46 ± 0.54 45.28 ± 0.92 45.13 ± 0.51
𝛽 44.50 ± 0.51 45.51 ± 0.67 45.47 ± 0.91 46.39 ± 0.16 45.78 ± 0.47

Table 9: OOD performances on GOOD datasets under EERM setting. All numerical results are averages across 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

Covariate Concept Covariate Concept Covariate Concept Covariate Concept Covariate Concept Covariate Concept

GCN– 65.38 65.81 58.02 16.22 OOM OOM OOM OOM OOM OOM - 25.14
SGC OOM 64.37 OOM 60.34 OOM OOM OOM OOM OOM OOM - 24.68
APPNP 64.53 65.81 57.59 64.18 OOM OOM OOM OOM OOM OOM - 33.48
GAT 65.37 65.36 56.62 63.70 OOM OOM OOM OOM OOM OOM - 26.79
GPRGNN 64.57 65.09 58.16 64.71 OOM OOM OOM OOM OOM OOM - 34.22
DGat 65.80 65.99 58.69 65.00 OOM OOM OOM OOM OOM OOM - 36.06

Table 10: OOD and GAP performances on IRM setting. All numerical results are averages across 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate
GCN– 66.83 5.46 58.04 16.12 71.01 2.25 58.90 19.20 51.71 22.66 - -
APPNP 67.18 6.52 58.31 17.15 69.03 2.56 56.20 20.87 56.64 16.81 - -
DGat 67.62 6.00 60.40 14.72 70.90 1.98 59.73 17.72 57.25 15.43 - -

Concept
GCN– 66.76 2.21 64.89 4.27 62.89 13.22 62.27 13.61 44.84 39.53 27.34 33.82
APPNP 67.29 4.10 65.39 5.10 63.55 10.76 63.97 8.88 48.13 34.05 26.79 43.21
DGat 67.43 3.45 66.29 4.22 65.10 11.01 65.62 8.54 45.21 40.08 32.93 38.56

Table 11: OOD and GAP performances on VREx. All numerical results are averages across 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate
GCN– 66.52 5.6 59.08 15 69.93 1.27 58.78 19.18 51.09 21.73 - -
APPNP 67.31 6.78 60.38 15.57 70.22 2.47 56.35 20.71 57.85 12.9 - -
DGat 67.68 6.30 60.50 14.34 71.15 1.53 60.44 17.38 57.38 14.23 - -

Concept
GCN– 66.54 2.45 64.78 4.36 62.78 13.26 61.86 12.5 48.89 33.79 27.70 34.46
APPNP 67.36 3.97 66.14 4.96 63.50 10.84 63.23 7.96 52.14 23.43 32.84 38.82
DGat 67.53 3.44 66.49 4.26 64.94 10.42 65.07 7.41 48.27 33.81 33.76 38.07
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(a) (b)

Figure 4: 𝑃𝑣𝑎𝑙𝑢𝑒 and 𝑇𝑣𝑎𝑙𝑢𝑒 of GAT and GCN–

(a) (b)

Figure 5: 𝑃𝑣𝑎𝑙𝑢𝑒 and 𝑇𝑣𝑎𝑙𝑢𝑒 of SGC and APPNP(𝛽 = 0)
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Table 12: OOD and GAP performances on GroupDRO. All numerical results are averages across 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University
OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate
GCN– 66.73 5.48 57.97 16.05 70.31 2.98 58.7 19.22 52.07 22.34 - -
APPNP 67.57 6.39 58.78 16.94 68.78 2.87 56.08 20.87 57.64 13.66 - -
DGat 67.65 6.58 59.69 15.83 70.88 1.80 60.08 1.76 57.24 15.35 - -

Concept
GCN– 66.30 2.69 64.83 4.14 62.92 13.08 62.43 13.38 44.76 39.57 28.07 34.09
APPNP 67.33 4.07 66.37 4.94 63.50 10.81 64.17 8.61 51.31 24.37 32.48 39.02
DGat 67.54 6.45 66.49 4.39 64.42 10.60 64.92 8.81 44.75 40.65 33.19 38.88

Table 13: OOD and GAP performances on Graph-Mixup. All numerical results are averages across 10 random runs.

G-Cora-Word G-Cora-Degree G-Arxiv-Time G-Arxiv-Degree G-Twitch-Language G-WebKB-University

OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓ OOD↑ GAP↓

Covariate
GCN 64.16 8.20 55.28 18.44 67.00 2.34 53.94 20.75 57.55 14.73 - -
APPNP 65.12 8.43 56.91 17.55 63.04 10.95 55.36 21.33 58.12 13.43 - -
DGat 66.00 7.65 58.10 16.59 70.11 2.16 58.03 19.50 57.61 15.26 - -

Concept
GCN 64.69 5.49 63.41 7.37 60.31 11.59 55.36 13.67 47.64 35.55 30.64 43.19
APPNP 66.91 4.15 65.10 4.87 63.05 10.95 63.61 8.91 51.17 28.07 26.51 39.82
DGat 67.11 4.04 65.22 5.35 64.06 10.85 64.38 9.32 45.55 38.77 31.10 39.39
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